Skip to main content
Top
Published in: Pediatric Cardiology 1/2006

01-02-2006

Recovery of the Chronically Hypoxic Young Rabbit Heart Reperfused Following No-Flow Ischemia

Authors: R.G. Uy, N.T. Ross-Ascuitto, R.J. Ascuitto

Published in: Pediatric Cardiology | Issue 1/2006

Login to get access

Abstract

The objective of this study was to test whether chronically hypoxic immature hearts exhibit greater tolerance to no-flow ischemia than normoxic hearts. Rabbits (N = 36) were raised from birth to 5 weeks of age in either hypoxic (10% O2/90% N2) or normoxic (room air) environment. Isolated, isovolumically beating hearts, with a fluid-filled balloon catheter in the left ventricular chamber, were perfused with a well-oxygenated buffer and studied during baseline [30 minutes; perfusion pressure, 60 mmHg; end diastolic pressure (EDP), 5 mmHg], no-flow ischemia (until onset of contracture or for 30 minutes), and Reperfusion (30 minutes; perfusion pressure, 60 mmHg). Time for onset of contracture (TOC) was defined by an increase in balloon pressure of 5 mmHg. The results were as follows: hypoxic vs normoxic: Hct, 56.4 ± 2.5* vs 36.3 ± 0.4%, (right ventricle/left ventricle) weight (dry) ratio, 0.50 ± 0.04* vs 0.28 ± 0.02. Baseline: developed pressure (ΔP), 96 ± 4 vs 93 ± 5 mmHg; coronary flow, 90 ± 10* vs 62 ± 4 ml/min/gdry. No-flow ischemia: TOC, 12 ± 1* vs 24 ± 2 minutes. All hypoxic (no normoxic) hearts reached peak contracture. Reperfusion: Just after onset of contracture, ΔP, 80 ± 3* vs 67 ± 4 mmHg; EDP, 5 ± 1* vs 13 ± 2 mmHg; after 30 minutes of no-flow ischemia, ΔP, 58 ± 5 vs 46 ± 4 mmHg; EDP, 13 ± 1* vs 24 ± 3 mmHg; lactate release (LR), 0.15 ± 0.01 vs 0.17 ± 0.01 mmol/gdry, creatine kinase release (CKR), 46 ± 8* vs 242 ± 28 U/gdry. For hypoxic hearts reperfused after onset of contracture, LR was 0.11 ± 0.03 mmol/gdry, comparable to that following 30 minutes of no-flow ischemia (*p < 0.05). Rabbit hearts subjected to hypoxia from birth developed ischemic contracture earlier and reached peak contracture, showed no significant increase in LR after onset of contracture, exhibited better recovery of EDP, and had markedly reduced CKR compared to normoxic controls.
Literature
1.
go back to reference Abdel-aleem S, St. Louis J, Hendrickson SC, et al. (1998) Regulation of carbohydrate and fatty acid utilization by L-carnitine during cardiac development and hypoxia. Mol Cell Bipchem 180:95–103CrossRefPubMed Abdel-aleem S, St. Louis J, Hendrickson SC, et al. (1998) Regulation of carbohydrate and fatty acid utilization by L-carnitine during cardiac development and hypoxia. Mol Cell Bipchem 180:95–103CrossRefPubMed
2.
go back to reference Abdel-aleem S, St. Louis JP, Hughes GC, Lowe JE (1998) Metabolic changes in the normal and hypoxic neonatal myocardium. Ann N Y Acad Sci 874:254–261CrossRef Abdel-aleem S, St. Louis JP, Hughes GC, Lowe JE (1998) Metabolic changes in the normal and hypoxic neonatal myocardium. Ann N Y Acad Sci 874:254–261CrossRef
3.
go back to reference Ascuitto RJ, Ross-Ascuitto NT, Chen V, Downing S (1989) Ventricular function and fatty acid metabolism in neonatal piglet heart. Am J Physiol 256:9–15 Ascuitto RJ, Ross-Ascuitto NT, Chen V, Downing S (1989) Ventricular function and fatty acid metabolism in neonatal piglet heart. Am J Physiol 256:9–15
4.
go back to reference Ascuitto RJ, Ross-Ascuitto NT, Kydon DW, Waddell AE, McDonough KH (1995) Mechanical and metabolic characterization of ischemic contracture in the neonatal heart Pediatr Res 38:228–236CrossRefPubMed Ascuitto RJ, Ross-Ascuitto NT, Kydon DW, Waddell AE, McDonough KH (1995) Mechanical and metabolic characterization of ischemic contracture in the neonatal heart Pediatr Res 38:228–236CrossRefPubMed
5.
go back to reference Ascuitto RJ, Ross-Ascuitto NT, Ramage D, McDonough KH (1990) Mechanical function and fatty acid oxidation in the neonatal pig heart with ischemia and repression. J Dev Physiol 14:249–257PubMed Ascuitto RJ, Ross-Ascuitto NT, Ramage D, McDonough KH (1990) Mechanical function and fatty acid oxidation in the neonatal pig heart with ischemia and repression. J Dev Physiol 14:249–257PubMed
6.
go back to reference Baker EJ, Baker JE (1994) Calcium and cardioplegic protection of the ischemic immature heart; impact of hypoxemia from birth. Ann Thorac Surg 58:1123–1130CrossRefPubMed Baker EJ, Baker JE (1994) Calcium and cardioplegic protection of the ischemic immature heart; impact of hypoxemia from birth. Ann Thorac Surg 58:1123–1130CrossRefPubMed
7.
go back to reference Baker EJ, Boreboom LE, Olinger GN, Baker JE (1995) Tolerance of the developing heart to ischemia; impact of hypoxia from birth. Am J Physiol 268:H1165–H1173PubMed Baker EJ, Boreboom LE, Olinger GN, Baker JE (1995) Tolerance of the developing heart to ischemia; impact of hypoxia from birth. Am J Physiol 268:H1165–H1173PubMed
8.
go back to reference Barrie SE, Harris P (1976) Effects of clironic hypoxia and dietary restriction on myocardial enzyme activities. Am J Physiol 231:1308–1313PubMed Barrie SE, Harris P (1976) Effects of clironic hypoxia and dietary restriction on myocardial enzyme activities. Am J Physiol 231:1308–1313PubMed
9.
go back to reference Dalinghaus M, Knoester H, Gratama JW, et al. (1994) Effect of increased whole blood viscosity on regional blood flows in chronically hypoxemic lambs. Am J Physiol 267:H471–H476PubMed Dalinghaus M, Knoester H, Gratama JW, et al. (1994) Effect of increased whole blood viscosity on regional blood flows in chronically hypoxemic lambs. Am J Physiol 267:H471–H476PubMed
10.
go back to reference Daneshrad Z, Garcia-Riera MP, Verdys M, Rossi A (2000) Differential responses to chronic hypoxia and dietary restriction of aerobic capacity and enzyme levels in the rat myocardium. Mol Cell Biochem 210:159–166CrossRefPubMed Daneshrad Z, Garcia-Riera MP, Verdys M, Rossi A (2000) Differential responses to chronic hypoxia and dietary restriction of aerobic capacity and enzyme levels in the rat myocardium. Mol Cell Biochem 210:159–166CrossRefPubMed
11.
go back to reference Eells JT, Henry MM, Gross GJ, Baker JE (2000) Increased mitochondrial KATP channel activity during chronic myocardial hypoxia. Is cardioprotection mediated by improved bioenergetics? Circ Res 87:915–921CrossRefPubMed Eells JT, Henry MM, Gross GJ, Baker JE (2000) Increased mitochondrial KATP channel activity during chronic myocardial hypoxia. Is cardioprotection mediated by improved bioenergetics? Circ Res 87:915–921CrossRefPubMed
12.
go back to reference Feldbaum DM, Kohman LJ, Veit LL (1993) Recovery of hypoxic neonatal hearts after cardioplegic arrest. Cardiovasc Res 27:1123–1126CrossRefPubMed Feldbaum DM, Kohman LJ, Veit LL (1993) Recovery of hypoxic neonatal hearts after cardioplegic arrest. Cardiovasc Res 27:1123–1126CrossRefPubMed
13.
go back to reference Gennser G (1972) Influence of hypoxia and glucose on contractility of papillary muscles from adult and neonatal rabbits. Biol Neonate 21:90–106CrossRefPubMed Gennser G (1972) Influence of hypoxia and glucose on contractility of papillary muscles from adult and neonatal rabbits. Biol Neonate 21:90–106CrossRefPubMed
14.
go back to reference Hammond G, Nadal-Ginard B, Talner N, Markert C (1976) Myocardial LDH isozyme distribution in the ischemic and hypoxic heart. Circulation 53:637–643CrossRefPubMed Hammond G, Nadal-Ginard B, Talner N, Markert C (1976) Myocardial LDH isozyme distribution in the ischemic and hypoxic heart. Circulation 53:637–643CrossRefPubMed
15.
go back to reference Hashimoto T, Yamasaki S, Taguchi S (2003) Alterations in the expression of myosin heavy chain isoforms in hypoxia-induced hypertrophied ventricles in rats. Comp Biochem Physiol B 136:139–145CrossRefPubMed Hashimoto T, Yamasaki S, Taguchi S (2003) Alterations in the expression of myosin heavy chain isoforms in hypoxia-induced hypertrophied ventricles in rats. Comp Biochem Physiol B 136:139–145CrossRefPubMed
16.
go back to reference Hochachka PW, Buck LT, Doll CJ, Land SC (1996) Unifying theory of hypoxia tolerance: molecular/metobolic defense and rescue mechanisms for surviving oxygen lack, Proc Natl Acad Sci USA 93:9493–9498CrossRefPubMedPubMedCentral Hochachka PW, Buck LT, Doll CJ, Land SC (1996) Unifying theory of hypoxia tolerance: molecular/metobolic defense and rescue mechanisms for surviving oxygen lack, Proc Natl Acad Sci USA 93:9493–9498CrossRefPubMedPubMedCentral
17.
go back to reference Hochachka PW, Owen TG, Alien JF, Whittow GC (1975) Multiple end products of anaerobiosis in diving vertebrates. Comp Biochem Physiol B 50:17–22CrossRefPubMed Hochachka PW, Owen TG, Alien JF, Whittow GC (1975) Multiple end products of anaerobiosis in diving vertebrates. Comp Biochem Physiol B 50:17–22CrossRefPubMed
18.
go back to reference Holmes G, Epstein ML (1993) Effect of growth and maturation in a hypoxic environment on maximum coronary flow rates of isolated rabbit hearts. Pediatr Res 33:527–532CrossRefPubMed Holmes G, Epstein ML (1993) Effect of growth and maturation in a hypoxic environment on maximum coronary flow rates of isolated rabbit hearts. Pediatr Res 33:527–532CrossRefPubMed
19.
go back to reference Holubursch CH, Goulette RP, Litten RZ, et al. (1985) The economy of force development, myosin isozyme pattern and myofibrillar ATP-ase activity in normal and hyperthyroid rat myocardium. Circ Res 57:78–86CrossRef Holubursch CH, Goulette RP, Litten RZ, et al. (1985) The economy of force development, myosin isozyme pattern and myofibrillar ATP-ase activity in normal and hyperthyroid rat myocardium. Circ Res 57:78–86CrossRef
20.
go back to reference Jeremy RW, Koretsone Y, Marban E, Becker LC (1992) Relation between glycolysis and calcium homeostasis in post-ischemic myocardium. Circ Res 70:1180–1190CrossRefPubMed Jeremy RW, Koretsone Y, Marban E, Becker LC (1992) Relation between glycolysis and calcium homeostasis in post-ischemic myocardium. Circ Res 70:1180–1190CrossRefPubMed
21.
go back to reference Julia PL, Kofsky ER, Buckberg GD, Young HH, Bugyi HI (1990) Studies of myocardial protection in the immature heart. I. Enhanced tolerance of immature versus adult myocardium to global ischemia with reference to metabolic differences. J Thorac Cardiovasc Surg 100:879–887PubMed Julia PL, Kofsky ER, Buckberg GD, Young HH, Bugyi HI (1990) Studies of myocardial protection in the immature heart. I. Enhanced tolerance of immature versus adult myocardium to global ischemia with reference to metabolic differences. J Thorac Cardiovasc Surg 100:879–887PubMed
22.
go back to reference Karck M, Ziemer G, Zoeller M, et al (1995) Protection of the chronic hypoxic immature rat heart during global ischemia. Ann Thorac Surg 59:699–706CrossRefPubMed Karck M, Ziemer G, Zoeller M, et al (1995) Protection of the chronic hypoxic immature rat heart during global ischemia. Ann Thorac Surg 59:699–706CrossRefPubMed
23.
go back to reference Katz AM, Tada M (1972) The “stone heart.” A challenge to the biochemist. Am J Cardiol 29:578–580CrossRefPubMed Katz AM, Tada M (1972) The “stone heart.” A challenge to the biochemist. Am J Cardiol 29:578–580CrossRefPubMed
24.
go back to reference Kingsley PB, Sako EY, Yang MQ, et al. (1991) Ischemic contracture begins when anaerobic glycolysis stops: a 31P-NMR study of isolated rat hearts. Am J Physiol 261:H469–H478PubMed Kingsley PB, Sako EY, Yang MQ, et al. (1991) Ischemic contracture begins when anaerobic glycolysis stops: a 31P-NMR study of isolated rat hearts. Am J Physiol 261:H469–H478PubMed
25.
go back to reference Kohler J, Silverman NA, Levitsky S, et al. (1984) A model of cyanotic heart disease: functional, pathological, and metabolic sequelae in the immature canine heart. J Surg Res 37:309–313CrossRefPubMed Kohler J, Silverman NA, Levitsky S, et al. (1984) A model of cyanotic heart disease: functional, pathological, and metabolic sequelae in the immature canine heart. J Surg Res 37:309–313CrossRefPubMed
26.
go back to reference Kubler W, Spieckermann PG (1970) Regulation of glycolysis in the ischemic and anoxic myocardium. J Mol Cell Cardiol 1:351–377CrossRefPubMed Kubler W, Spieckermann PG (1970) Regulation of glycolysis in the ischemic and anoxic myocardium. J Mol Cell Cardiol 1:351–377CrossRefPubMed
27.
go back to reference Marbach EP, Well MH (1967) Rapid enzymatic measurement of blood lactate and pyruvate. Clin Chem 13:314–325PubMed Marbach EP, Well MH (1967) Rapid enzymatic measurement of blood lactate and pyruvate. Clin Chem 13:314–325PubMed
28.
go back to reference Nagashima M, Nollert G, Stock U, et al. (2000) Cardiac performance after deep hypothermic circulatory arrest in chronically cyanotic neonatal lambs. J Thorac Cardiovasc Surg 120:238–246CrossRefPubMed Nagashima M, Nollert G, Stock U, et al. (2000) Cardiac performance after deep hypothermic circulatory arrest in chronically cyanotic neonatal lambs. J Thorac Cardiovasc Surg 120:238–246CrossRefPubMed
30.
go back to reference Ostadal B, Ostadalova I, Dhalla NS (1999) Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev 79:635–659PubMed Ostadal B, Ostadalova I, Dhalla NS (1999) Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev 79:635–659PubMed
31.
go back to reference Owen P, Dennis D, Opie LH (1990) Glucose flux rate regulates onset of ischemic contracture in globally underperfused rat hearts. Circ Res 66:344–354CrossRefPubMed Owen P, Dennis D, Opie LH (1990) Glucose flux rate regulates onset of ischemic contracture in globally underperfused rat hearts. Circ Res 66:344–354CrossRefPubMed
32.
go back to reference Palmisano BW, Mehner RW, Baker JE, et al. (1995) Direct effects of halothane and isoflurane in infant rabbit hearts with right ventricular hypertrophy secondary to chronic hypoxemia. Anesth Analg 80:1122–1128PubMed Palmisano BW, Mehner RW, Baker JE, et al. (1995) Direct effects of halothane and isoflurane in infant rabbit hearts with right ventricular hypertrophy secondary to chronic hypoxemia. Anesth Analg 80:1122–1128PubMed
33.
go back to reference Pierce GN, Philipson KD (1985) Binding of glycolytic enzymes to cardiac sarcolemma and sarcoplasmic reticular membranes. J Biol Chem 260:6862–6870PubMed Pierce GN, Philipson KD (1985) Binding of glycolytic enzymes to cardiac sarcolemma and sarcoplasmic reticular membranes. J Biol Chem 260:6862–6870PubMed
34.
go back to reference Plunkett MD, Hendry PJ, Anstadt MP, et al (1996) Chronic hypoxia induces adaptive metabolic changes in neonatal myocardium. J Thorac Cardiovasc Surg 112:8–13CrossRefPubMed Plunkett MD, Hendry PJ, Anstadt MP, et al (1996) Chronic hypoxia induces adaptive metabolic changes in neonatal myocardium. J Thorac Cardiovasc Surg 112:8–13CrossRefPubMed
35.
go back to reference Prestwich KN, Buss DD, Posner P (1984) A new method for raising neonatal rabbits in a hypoxic environment. J Appl Phvsiol 57:1913–1916 Prestwich KN, Buss DD, Posner P (1984) A new method for raising neonatal rabbits in a hypoxic environment. J Appl Phvsiol 57:1913–1916
36.
go back to reference Purshottam T, Kaveeshwar W, Brahmacham HD (1977) Changes in tissue glycogen stores of rats under acute and chronic hypoxia and their relationship to hypoxia tolerance. Aviat Space Environ Med 48:351–355PubMed Purshottam T, Kaveeshwar W, Brahmacham HD (1977) Changes in tissue glycogen stores of rats under acute and chronic hypoxia and their relationship to hypoxia tolerance. Aviat Space Environ Med 48:351–355PubMed
37.
go back to reference Reiser PJ, Portman MA, Ning XH, Moravec CS (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol 280:H1814–H1820 Reiser PJ, Portman MA, Ning XH, Moravec CS (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol 280:H1814–H1820
38.
go back to reference Ross-Ascuitto NT, Joyce JJ, Hasan AZM, Ascuitto RJ (2004) Performance of the chronically hypoxic young rabbit heart. Pediatr Cardiol 25:397–405CrossRefPubMed Ross-Ascuitto NT, Joyce JJ, Hasan AZM, Ascuitto RJ (2004) Performance of the chronically hypoxic young rabbit heart. Pediatr Cardiol 25:397–405CrossRefPubMed
39.
go back to reference Rumsey WL, Abbott BA, Bertelsen D, et al. (1999) Adaptation to hypoxia alters energy metabolism in rat heart. Am J Physiol 276:H71–H80PubMed Rumsey WL, Abbott BA, Bertelsen D, et al. (1999) Adaptation to hypoxia alters energy metabolism in rat heart. Am J Physiol 276:H71–H80PubMed
40.
go back to reference Samanek M, Bass A, Ostadal B, Hucin B, Stejskalova M, (1989) Effect of hypoxemia on enzymes supplying myocardial energy in children with congenital heart disease. Int J Cardiol 25:265–270CrossRefPubMed Samanek M, Bass A, Ostadal B, Hucin B, Stejskalova M, (1989) Effect of hypoxemia on enzymes supplying myocardial energy in children with congenital heart disease. Int J Cardiol 25:265–270CrossRefPubMed
41.
go back to reference Silverman NA, Kohler J, Levitsky S, et al. (1984) Chronic hypoxemia depresses global ventricular function and predisposes to the depletion of high energy phosphates during cardioplegic arrest; implications for surgical repair of cyanotic congenital heart defects. Ann Thorac Surg 37:304–308CrossRefPubMed Silverman NA, Kohler J, Levitsky S, et al. (1984) Chronic hypoxemia depresses global ventricular function and predisposes to the depletion of high energy phosphates during cardioplegic arrest; implications for surgical repair of cyanotic congenital heart defects. Ann Thorac Surg 37:304–308CrossRefPubMed
42.
go back to reference Spindler M, Meyer K, Stromer H, et al. (2004) Creatine kinase-deficient hearts exhibit increased susceptibility to ischemia-reperfusion injury and impaired calcium homeostasis. Am J Physiol 287:H1039–1045 Spindler M, Meyer K, Stromer H, et al. (2004) Creatine kinase-deficient hearts exhibit increased susceptibility to ischemia-reperfusion injury and impaired calcium homeostasis. Am J Physiol 287:H1039–1045
43.
go back to reference Tajima M, Katayose D, Bessho M, Isoyama S (1994) Acute ischemic preconditioning and chronic hypoxia independently increase myocardial tolerance to ischemia. Pediatr Res 52:561–567 Tajima M, Katayose D, Bessho M, Isoyama S (1994) Acute ischemic preconditioning and chronic hypoxia independently increase myocardial tolerance to ischemia. Pediatr Res 52:561–567
44.
go back to reference Teitel D, Sidi D, Bernstein D, Heyman MA, Rudolph AM (1985) Chronic hypoxemia in the newborn lamb: cardiovascular, hematopoietic, and growth adaptations. Pediatr Res 19:1004–1010CrossRefPubMed Teitel D, Sidi D, Bernstein D, Heyman MA, Rudolph AM (1985) Chronic hypoxemia in the newborn lamb: cardiovascular, hematopoietic, and growth adaptations. Pediatr Res 19:1004–1010CrossRefPubMed
45.
go back to reference Torrance SM, Belanger MP, Wallen WJ, Wittnich C (2000) Metabolic and functional response of neonatal pig hearts to the development of ischemic contracture: Is recovery possible? Pediatr Res 48:191–199CrossRefPubMed Torrance SM, Belanger MP, Wallen WJ, Wittnich C (2000) Metabolic and functional response of neonatal pig hearts to the development of ischemic contracture: Is recovery possible? Pediatr Res 48:191–199CrossRefPubMed
46.
go back to reference Uy R, Tede N, Ross-Ascuitto NT, Ascuitto R (2004) Performance of the neonatal pig heart subjected to oxygen insufficiency. Biol Neonate 85:42–50CrossRefPubMed Uy R, Tede N, Ross-Ascuitto NT, Ascuitto R (2004) Performance of the neonatal pig heart subjected to oxygen insufficiency. Biol Neonate 85:42–50CrossRefPubMed
47.
go back to reference Vogel WM, Apstein CS, Briggs LL, Gaasch WH, Ahn J (1982) Acute alterations in left ventricular diastolic chamber stiffness. Circ Res 51:465–478CrossRefPubMed Vogel WM, Apstein CS, Briggs LL, Gaasch WH, Ahn J (1982) Acute alterations in left ventricular diastolic chamber stiffness. Circ Res 51:465–478CrossRefPubMed
48.
go back to reference Xia Y, Warshaw JB, Haddad GG (1995) Effect of chronic hypojda on glucose transporters in heart and skeletal muscle of immature and adult rates. Am J Physiol 268:H1165–H117 Xia Y, Warshaw JB, Haddad GG (1995) Effect of chronic hypojda on glucose transporters in heart and skeletal muscle of immature and adult rates. Am J Physiol 268:H1165–H117
49.
go back to reference Xu KY, Zweier JL, Becker LC (1995) Functional coupling between glycolysis and sarcoplasmic reticulum Ca++ transport. Circ Res 77:88–97CrossRefPubMed Xu KY, Zweier JL, Becker LC (1995) Functional coupling between glycolysis and sarcoplasmic reticulum Ca++ transport. Circ Res 77:88–97CrossRefPubMed
Metadata
Title
Recovery of the Chronically Hypoxic Young Rabbit Heart Reperfused Following No-Flow Ischemia
Authors
R.G. Uy
N.T. Ross-Ascuitto
R.J. Ascuitto
Publication date
01-02-2006
Publisher
Springer New York
Published in
Pediatric Cardiology / Issue 1/2006
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-005-1094-1

Other articles of this Issue 1/2006

Pediatric Cardiology 1/2006 Go to the issue