Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2012

Open Access 01-12-2012 | Research

Error-enhancing robot therapy to induce motor control improvement in childhood onset primary dystonia

Authors: Claudia Casellato, Alessandra Pedrocchi, Giovanna Zorzi, Giorgio Rizzi, Giancarlo Ferrigno, Nardo Nardocci

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2012

Login to get access

Abstract

Background

Robot-generated deviating forces during multijoint reaching movements have been applied to investigate motor control and to tune neuromotor adaptation. Can the application of force to limbs improve motor learning? In this framework, the response to altered dynamic environments of children affected by primary dystonia has never been studied.

Methods

As preliminary pilot study, eleven children with primary dystonia and eleven age-matched healthy control subjects were asked to perform upper limb movements, triangle-reaching (three directions) and circle-writing, using a haptic robot interacting with ad-hoc developed task-specific visual interfaces. Three dynamic conditions were provided, null additive external force (A), constant disturbing force (B) and deactivation of the additive external force again (C). The path length for each trial was computed, from the recorded position data and interaction events.

Results

The results show that the disturbing force affects significantly the movement outcomes in healthy but not in dystonic subjects, already compromised in the reference condition: the external alteration uncalibrates the healthy sensorimotor system, while the dystonic one is already strongly uncalibrated. The lack of systematic compensation for perturbation effects during B condition is reflected into the absence of after-effects in C condition, which would be the evidence that CNS generates a prediction of the perturbing forces using an internal model of the environment.
The most promising finding is that in dystonic population the altered dynamic exposure seems to induce a subsequent improvement, i.e. a beneficial after-effect in terms of optimal path control, compared with the correspondent reference movement outcome.

Conclusions

The short-time error-enhancing training in dystonia could represent an effective approach for motor performance improvement, since the exposure to controlled dynamic alterations induces a refining of the existing but strongly imprecise motor scheme and sensorimotor patterns.
Appendix
Available only for authorised users
Literature
1.
go back to reference Krebs HI, Hogan N, Hening W, Adamovich SV, Poizner H: Procedural motor learning in Parkinson's disease. Exp Brain Res 141, 425: 437. Krebs HI, Hogan N, Hening W, Adamovich SV, Poizner H: Procedural motor learning in Parkinson's disease. Exp Brain Res 141, 425: 437.
2.
go back to reference Shadmehr R, Mussa-Ivaldi FA: Adaptive representation of dynamics during learning of a motor task. J Neurosci 1994, 14: 3208-3224.PubMed Shadmehr R, Mussa-Ivaldi FA: Adaptive representation of dynamics during learning of a motor task. J Neurosci 1994, 14: 3208-3224.PubMed
3.
go back to reference Wolpert DM, Ghahramani Z, Jordan MI: An internal model for sensorimotor integration. Science 1995, 269: 1880-1882. 10.1126/science.7569931CrossRefPubMed Wolpert DM, Ghahramani Z, Jordan MI: An internal model for sensorimotor integration. Science 1995, 269: 1880-1882. 10.1126/science.7569931CrossRefPubMed
4.
go back to reference Flanagan JR, Nakano E, Imamizu H, Osu R, Yoshioka T, Kawato M: Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J Neurosci 1999, 19: RC34.PubMed Flanagan JR, Nakano E, Imamizu H, Osu R, Yoshioka T, Kawato M: Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J Neurosci 1999, 19: RC34.PubMed
5.
go back to reference Kawato M: Internal models for motor control and trajectory planning. Curr Opin Neurobiol 1999, 9: 718-727. 10.1016/S0959-4388(99)00028-8CrossRefPubMed Kawato M: Internal models for motor control and trajectory planning. Curr Opin Neurobiol 1999, 9: 718-727. 10.1016/S0959-4388(99)00028-8CrossRefPubMed
6.
go back to reference Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 2006, 168: 368-383. 10.1007/s00221-005-0097-8CrossRefPubMed Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 2006, 168: 368-383. 10.1007/s00221-005-0097-8CrossRefPubMed
7.
go back to reference Masia L, Frascarelli F, Morasso P, Di Rosa G, Petrarca M, Castelli E, Cappa P: Reduced short term adaptation to robot generated dynamic environment in children affected by Cerebral Palsy. J Neuroeng Rehabil 2011, 8: 28. 10.1186/1743-0003-8-28PubMedCentralCrossRefPubMed Masia L, Frascarelli F, Morasso P, Di Rosa G, Petrarca M, Castelli E, Cappa P: Reduced short term adaptation to robot generated dynamic environment in children affected by Cerebral Palsy. J Neuroeng Rehabil 2011, 8: 28. 10.1186/1743-0003-8-28PubMedCentralCrossRefPubMed
8.
go back to reference Sullivan KJ, Kantak SS, Burtner PA: Motor learning in children: feedback effects on skill acquisition. Phys Ther 2008, 88: 720-732. 10.2522/ptj.20070196CrossRefPubMed Sullivan KJ, Kantak SS, Burtner PA: Motor learning in children: feedback effects on skill acquisition. Phys Ther 2008, 88: 720-732. 10.2522/ptj.20070196CrossRefPubMed
9.
go back to reference Darainy M, Mattar AA, Ostry DJ: Effects of human arm impedance on dynamics learning and generalization. J Neurophysiol 2009, 101: 3158-3168. 10.1152/jn.91336.2008PubMedCentralCrossRefPubMed Darainy M, Mattar AA, Ostry DJ: Effects of human arm impedance on dynamics learning and generalization. J Neurophysiol 2009, 101: 3158-3168. 10.1152/jn.91336.2008PubMedCentralCrossRefPubMed
10.
go back to reference Malfait N, Shiller DM, Ostry DJ: Transfer of motor learning across arm configurations. J Neurosci 2002, 22: 9656-9660.PubMed Malfait N, Shiller DM, Ostry DJ: Transfer of motor learning across arm configurations. J Neurosci 2002, 22: 9656-9660.PubMed
11.
12.
go back to reference Berardelli A, Rothwell JC, Hallett M, Thompson PD, Manfredi M, Marsden CD: The pathophysiology of primary dystonia. Brain 1998,121(Pt 7):1195-1212.CrossRefPubMed Berardelli A, Rothwell JC, Hallett M, Thompson PD, Manfredi M, Marsden CD: The pathophysiology of primary dystonia. Brain 1998,121(Pt 7):1195-1212.CrossRefPubMed
13.
14.
go back to reference Ostry DJ, Darainy M, Mattar AA, Wong J, Gribble PL: Somatosensory plasticity and motor learning. J Neurosci 2010, 30: 5384-5393. 10.1523/JNEUROSCI.4571-09.2010PubMedCentralCrossRefPubMed Ostry DJ, Darainy M, Mattar AA, Wong J, Gribble PL: Somatosensory plasticity and motor learning. J Neurosci 2010, 30: 5384-5393. 10.1523/JNEUROSCI.4571-09.2010PubMedCentralCrossRefPubMed
15.
go back to reference Tinazzi M, Priori A, Bertolasi L, Frasson E, Mauguière F, Fiaschi A: Abnormal central integration of a dual somatosensory input in dystonia. Evidence for sensory overflow. Brain 2000,123(Pt 1):42-50.PubMed Tinazzi M, Priori A, Bertolasi L, Frasson E, Mauguière F, Fiaschi A: Abnormal central integration of a dual somatosensory input in dystonia. Evidence for sensory overflow. Brain 2000,123(Pt 1):42-50.PubMed
16.
go back to reference Sanger TD, Tarsy D, Pascual-Leone A: Abnormalities of spatial and temporal sensory discrimination in writer's cramp. Mov Disord 2001, 16: 94-99. 10.1002/1531-8257(200101)16:1<94::AID-MDS1020>3.0.CO;2-OCrossRefPubMed Sanger TD, Tarsy D, Pascual-Leone A: Abnormalities of spatial and temporal sensory discrimination in writer's cramp. Mov Disord 2001, 16: 94-99. 10.1002/1531-8257(200101)16:1<94::AID-MDS1020>3.0.CO;2-OCrossRefPubMed
17.
go back to reference Casellato C, Zorzi G, Pedrocchi A, Ferrigno G, Nardocci N: Reaching and Writing Movements: Sensitive and Reliable Tools to Measure Genetic Dystonia in Children. J Child Neurology 2011, 26: 822-829. 10.1177/0883073810392997CrossRef Casellato C, Zorzi G, Pedrocchi A, Ferrigno G, Nardocci N: Reaching and Writing Movements: Sensitive and Reliable Tools to Measure Genetic Dystonia in Children. J Child Neurology 2011, 26: 822-829. 10.1177/0883073810392997CrossRef
18.
go back to reference Rumelhart DE, Hinton GE, Williams RJ: Learning representations by back-propagating errors. Nature 1986, 323: 533-536. 10.1038/323533a0CrossRef Rumelhart DE, Hinton GE, Williams RJ: Learning representations by back-propagating errors. Nature 1986, 323: 533-536. 10.1038/323533a0CrossRef
19.
go back to reference Dancause N, Ptito A, Levin MF: Error correction strategies for motor behavior after unilateral brain damage: short-term motor learning processes. Neuropsychologia 2002, 40: 1313-1323. 10.1016/S0028-3932(01)00218-4CrossRefPubMed Dancause N, Ptito A, Levin MF: Error correction strategies for motor behavior after unilateral brain damage: short-term motor learning processes. Neuropsychologia 2002, 40: 1313-1323. 10.1016/S0028-3932(01)00218-4CrossRefPubMed
20.
go back to reference Delnooz CC, Horstink MW, Tijssen MA, van de Warrenburg BP: Paramedical treatment in primary dystonia: a systematic review. Mov Disord 2009, 24: 2187-2198. 10.1002/mds.22608CrossRefPubMed Delnooz CC, Horstink MW, Tijssen MA, van de Warrenburg BP: Paramedical treatment in primary dystonia: a systematic review. Mov Disord 2009, 24: 2187-2198. 10.1002/mds.22608CrossRefPubMed
21.
go back to reference Ozelius L, Kramer PL, Moskowitz CB, Kwiatkowski DJ, Brin MF, Bressman SB, Schuback DE, Falk CT, Risch N, de Leon D: Human gene for torsion dystonia located on chromosome 9q32-q34. Neuron 1989, 2: 1427-1434. 10.1016/0896-6273(89)90188-8CrossRefPubMed Ozelius L, Kramer PL, Moskowitz CB, Kwiatkowski DJ, Brin MF, Bressman SB, Schuback DE, Falk CT, Risch N, de Leon D: Human gene for torsion dystonia located on chromosome 9q32-q34. Neuron 1989, 2: 1427-1434. 10.1016/0896-6273(89)90188-8CrossRefPubMed
22.
go back to reference Conditt MA, Gandolfo F, Mussa-Ivaldi FA: The motor system does not learn the dynamics of the arm by rote memorization of past experience. J Neurophysiol 1997, 78: 554-560.PubMed Conditt MA, Gandolfo F, Mussa-Ivaldi FA: The motor system does not learn the dynamics of the arm by rote memorization of past experience. J Neurophysiol 1997, 78: 554-560.PubMed
23.
go back to reference Rosenkranz K, Kacar A, Rothwell JC: Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. J Neurosci 2007, 27: 12058-12066. 10.1523/JNEUROSCI.2663-07.2007CrossRefPubMed Rosenkranz K, Kacar A, Rothwell JC: Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. J Neurosci 2007, 27: 12058-12066. 10.1523/JNEUROSCI.2663-07.2007CrossRefPubMed
24.
go back to reference Izawa J, Rane T, Donchin O, Shadmehr R: Motor adaptation as a process of reoptimization. J Neurosci 2008, 28: 2883-2891. 10.1523/JNEUROSCI.5359-07.2008PubMedCentralCrossRefPubMed Izawa J, Rane T, Donchin O, Shadmehr R: Motor adaptation as a process of reoptimization. J Neurosci 2008, 28: 2883-2891. 10.1523/JNEUROSCI.5359-07.2008PubMedCentralCrossRefPubMed
25.
go back to reference Burdet E, Osu R, Franklin DW, Milner TE, Kawato M: The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 2001, 414: 446-449. 10.1038/35106566CrossRefPubMed Burdet E, Osu R, Franklin DW, Milner TE, Kawato M: The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 2001, 414: 446-449. 10.1038/35106566CrossRefPubMed
26.
go back to reference Shadmehr R, Smith MA, Krakauer JW: Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 2010, 33: 89-108. 10.1146/annurev-neuro-060909-153135CrossRefPubMed Shadmehr R, Smith MA, Krakauer JW: Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 2010, 33: 89-108. 10.1146/annurev-neuro-060909-153135CrossRefPubMed
27.
go back to reference Rossetti Y, Rode G, Pisella L, Farné A, Li L, Boisson D, Perenin MT: Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature 1998, 395: 166-169. 10.1038/25988CrossRefPubMed Rossetti Y, Rode G, Pisella L, Farné A, Li L, Boisson D, Perenin MT: Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature 1998, 395: 166-169. 10.1038/25988CrossRefPubMed
28.
go back to reference Ambrosini E, Ferrante S, Schauer T, Ferrigno G, Molteni F, Pedrocchi A: Design of a symmetry controller for cycling induced by electrical stimulation - Preliminary results on post-acute stroke patients. Artificial Organs 2010, 34: 663-667.PubMed Ambrosini E, Ferrante S, Schauer T, Ferrigno G, Molteni F, Pedrocchi A: Design of a symmetry controller for cycling induced by electrical stimulation - Preliminary results on post-acute stroke patients. Artificial Organs 2010, 34: 663-667.PubMed
29.
go back to reference Ferrante S, Ambrosini E, Ravelli P, Guanziroli E, Molteni F, Ferrigno G, Pedrocchi A: A biofeedback cycling training to improve locomotion: a case series study based on gait pattern classification of 153 chronic stroke patients. J Neuroeng Rehabil 2011, 8: 47. 10.1186/1743-0003-8-47PubMedCentralCrossRefPubMed Ferrante S, Ambrosini E, Ravelli P, Guanziroli E, Molteni F, Ferrigno G, Pedrocchi A: A biofeedback cycling training to improve locomotion: a case series study based on gait pattern classification of 153 chronic stroke patients. J Neuroeng Rehabil 2011, 8: 47. 10.1186/1743-0003-8-47PubMedCentralCrossRefPubMed
30.
go back to reference Ambrosini E, Ferrante S, Ferrigno G, Molteni F, Pedrocchi A: Cycling induced by electrical stimulation improves muscle activation and symmetry during pedaling in hemiparetic patients. IEEE Trans Neural Syst Rehabil Eng 2012,20(3):320-30.CrossRefPubMed Ambrosini E, Ferrante S, Ferrigno G, Molteni F, Pedrocchi A: Cycling induced by electrical stimulation improves muscle activation and symmetry during pedaling in hemiparetic patients. IEEE Trans Neural Syst Rehabil Eng 2012,20(3):320-30.CrossRefPubMed
31.
go back to reference Cramer SC: Functional magnetic resonance imaging in stroke recovery. Phys Med Rehabil Clin N Am 2003, 14: s47-s55. 10.1016/S1047-9651(02)00053-0CrossRefPubMed Cramer SC: Functional magnetic resonance imaging in stroke recovery. Phys Med Rehabil Clin N Am 2003, 14: s47-s55. 10.1016/S1047-9651(02)00053-0CrossRefPubMed
32.
go back to reference Ambrosini E, Ferrante S, Pedrocchi A, Ferrigno G, Molteni F: Cycling Induced by Functional Electrical Stimulation in Post-Acute Hemiparetic Patients: a Randomized Controlled Trial. Stroke 2011, 42: 1068-1073. 10.1161/STROKEAHA.110.599068CrossRefPubMed Ambrosini E, Ferrante S, Pedrocchi A, Ferrigno G, Molteni F: Cycling Induced by Functional Electrical Stimulation in Post-Acute Hemiparetic Patients: a Randomized Controlled Trial. Stroke 2011, 42: 1068-1073. 10.1161/STROKEAHA.110.599068CrossRefPubMed
33.
go back to reference Casellato C, Ferrante S, Volonterio N, Ferrigno G, Baselli G, Frattini T, Martegani A, Molteni F, Pedrocchi A: Simultaneous Measurements of Kinematics and fMRI: Compatibility Assessment and Case Report on Recovery Evaluation of one Stroke Patient. J Neuroeng Rehabil 2010, 7: 49. 10.1186/1743-0003-7-49PubMedCentralCrossRefPubMed Casellato C, Ferrante S, Volonterio N, Ferrigno G, Baselli G, Frattini T, Martegani A, Molteni F, Pedrocchi A: Simultaneous Measurements of Kinematics and fMRI: Compatibility Assessment and Case Report on Recovery Evaluation of one Stroke Patient. J Neuroeng Rehabil 2010, 7: 49. 10.1186/1743-0003-7-49PubMedCentralCrossRefPubMed
34.
go back to reference Gandolla M, Ferrante S, Casellato C, Ferrigno G, Molteni F, Martegani A, Frattini T, Pedrocchi A: fMRI brain mapping during motion capture and FES induced motor tasks: Signal to Noise Ratio assessment. Med Eng Phys 2011, 33: 1027-1032. 10.1016/j.medengphy.2011.04.005CrossRefPubMed Gandolla M, Ferrante S, Casellato C, Ferrigno G, Molteni F, Martegani A, Frattini T, Pedrocchi A: fMRI brain mapping during motion capture and FES induced motor tasks: Signal to Noise Ratio assessment. Med Eng Phys 2011, 33: 1027-1032. 10.1016/j.medengphy.2011.04.005CrossRefPubMed
35.
go back to reference Reinkensmeyer DJ, Emken JL, Cramer SC: Robotics, motor learning, and neurologic recovery. Annu Rev Biomed Eng 2004, 6: 497-525. 10.1146/annurev.bioeng.6.040803.140223CrossRefPubMed Reinkensmeyer DJ, Emken JL, Cramer SC: Robotics, motor learning, and neurologic recovery. Annu Rev Biomed Eng 2004, 6: 497-525. 10.1146/annurev.bioeng.6.040803.140223CrossRefPubMed
36.
go back to reference Casellato C, Pedrocchi A, Garrido JA, Luque NR, Ferrigno G, DD’Angelo E, Ros E: An integrated motor control loop of a human-like robotic arm: feedforward, feedback and cerebellum-based learning. In Proceedings of the 4th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob):24-27 June 2012. 2012, 562-567.CrossRef Casellato C, Pedrocchi A, Garrido JA, Luque NR, Ferrigno G, DD’Angelo E, Ros E: An integrated motor control loop of a human-like robotic arm: feedforward, feedback and cerebellum-based learning. In Proceedings of the 4th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob):24-27 June 2012. 2012, 562-567.CrossRef
37.
go back to reference van der Kamp W, Berardelli A, Rothwell JC, Thompson PD, Day BL, Marsden CD: Rapid elbow movements in patients with torsion dystonia. J Neurol Neurosurg Psychiatry 1989, 52: 1043-1049. 10.1136/jnnp.52.9.1043PubMedCentralCrossRefPubMed van der Kamp W, Berardelli A, Rothwell JC, Thompson PD, Day BL, Marsden CD: Rapid elbow movements in patients with torsion dystonia. J Neurol Neurosurg Psychiatry 1989, 52: 1043-1049. 10.1136/jnnp.52.9.1043PubMedCentralCrossRefPubMed
38.
go back to reference Lee D, Port NL, Kruse W, Georgopoulos AP: Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex. J Neurosci 1998, 18: 1161-1171.PubMed Lee D, Port NL, Kruse W, Georgopoulos AP: Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex. J Neurosci 1998, 18: 1161-1171.PubMed
39.
go back to reference Jones KE, Hamilton AF, Wolpert DM: Sources of signal-dependent noise during isometric force production. J Neurophysiol 2002, 88: 1533-1544.CrossRefPubMed Jones KE, Hamilton AF, Wolpert DM: Sources of signal-dependent noise during isometric force production. J Neurophysiol 2002, 88: 1533-1544.CrossRefPubMed
40.
go back to reference Takahashi CD, Nemet D, Rose-Gottron CM, Larson JK, Cooper DM, Reinkensmeyer D: Neuromotor noise limits motor performance, but not motor adaptation, in children. J Neurophysiol 2003, 90: 703-711. 10.1152/jn.01173.2002CrossRefPubMed Takahashi CD, Nemet D, Rose-Gottron CM, Larson JK, Cooper DM, Reinkensmeyer D: Neuromotor noise limits motor performance, but not motor adaptation, in children. J Neurophysiol 2003, 90: 703-711. 10.1152/jn.01173.2002CrossRefPubMed
Metadata
Title
Error-enhancing robot therapy to induce motor control improvement in childhood onset primary dystonia
Authors
Claudia Casellato
Alessandra Pedrocchi
Giovanna Zorzi
Giorgio Rizzi
Giancarlo Ferrigno
Nardo Nardocci
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2012
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-9-46

Other articles of this Issue 1/2012

Journal of NeuroEngineering and Rehabilitation 1/2012 Go to the issue