Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2015

Open Access 01-12-2015 | Methodology

Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept

Authors: Meyke Roosink, Nicolas Robitaille, Bradford J McFadyen, Luc J Hébert, Philip L Jackson, Laurent J Bouyer, Catherine Mercier

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2015

Login to get access

Abstract

Background

Virtual reality (VR) provides interactive multimodal sensory stimuli and biofeedback, and can be a powerful tool for physical and cognitive rehabilitation. However, existing systems have generally not implemented realistic full-body avatars and/or a scaling of visual movement feedback. We developed a “virtual mirror” that displays a realistic full-body avatar that responds to full-body movements in all movement planes in real-time, and that allows for the scaling of visual feedback on movements in real-time. The primary objective of this proof-of-concept study was to assess the ability of healthy subjects to detect scaled feedback on trunk flexion movements.

Methods

The “virtual mirror” was developed by integrating motion capture, virtual reality and projection systems. A protocol was developed to provide both augmented and reduced feedback on trunk flexion movements while sitting and standing. The task required reliance on both visual and proprioceptive feedback. The ability to detect scaled feedback was assessed in healthy subjects (n = 10) using a two-alternative forced choice paradigm. Additionally, immersion in the VR environment and task adherence (flexion angles, velocity, and fluency) were assessed.

Results

The ability to detect scaled feedback could be modelled using a sigmoid curve with a high goodness of fit (R2 range 89-98%). The point of subjective equivalence was not significantly different from 0 (i.e. not shifted), indicating an unbiased perception. The just noticeable difference was 0.035 ± 0.007, indicating that subjects were able to discriminate different scaling levels consistently. VR immersion was reported to be good, despite some perceived delays between movements and VR projections. Movement kinematic analysis confirmed task adherence.

Conclusions

The new “virtual mirror” extends existing VR systems for motor and pain rehabilitation by enabling the use of realistic full-body avatars and scaled feedback. Proof-of-concept was demonstrated for the assessment of body perception during active movement in healthy controls. The next step will be to apply this system to assessment of body perception disturbances in patients with chronic pain.
Literature
1.
go back to reference Sumitani M, Miyauchi S, McCabe CS, Shibata M, Maeda L, Saitoh Y, et al.: Mirror visual feedback alleviates deafferentation pain, depending on qualitative aspects of the pain: A preliminary report. Rheumatology 2008, 47:1038–43. 10.1093/rheumatology/ken170CrossRefPubMed Sumitani M, Miyauchi S, McCabe CS, Shibata M, Maeda L, Saitoh Y, et al.: Mirror visual feedback alleviates deafferentation pain, depending on qualitative aspects of the pain: A preliminary report. Rheumatology 2008, 47:1038–43. 10.1093/rheumatology/ken170CrossRefPubMed
2.
go back to reference Jeannerod M: Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 2001, 14:S103–9. 10.1006/nimg.2001.0832CrossRefPubMed Jeannerod M: Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 2001, 14:S103–9. 10.1006/nimg.2001.0832CrossRefPubMed
3.
go back to reference Kizony R, Katz N, Weiss PL: Adapting an immersive virtual reality system for rehabilitation. J Vis Comput Anim 2003, 14:261–8. 10.1002/vis.323CrossRef Kizony R, Katz N, Weiss PL: Adapting an immersive virtual reality system for rehabilitation. J Vis Comput Anim 2003, 14:261–8. 10.1002/vis.323CrossRef
4.
go back to reference Kizony R, Raz L, Katz N, Weingarden H, Tamar Weiss PL: Video-capture virtual reality system for patients with paraplegic spinal cord injury. J Rehabil Res Dev 2005, 42:595–607. 10.1682/JRRD.2005.01.0023CrossRefPubMed Kizony R, Raz L, Katz N, Weingarden H, Tamar Weiss PL: Video-capture virtual reality system for patients with paraplegic spinal cord injury. J Rehabil Res Dev 2005, 42:595–607. 10.1682/JRRD.2005.01.0023CrossRefPubMed
5.
go back to reference Zimmerli L, Jacky M, Lünenburger L, Riener R, Bolliger M: Increasing patient engagement during virtual reality-based motor rehabilitation. Arch Phys Med Rehabil 2013, 94:1737–46. 10.1016/j.apmr.2013.01.029CrossRefPubMed Zimmerli L, Jacky M, Lünenburger L, Riener R, Bolliger M: Increasing patient engagement during virtual reality-based motor rehabilitation. Arch Phys Med Rehabil 2013, 94:1737–46. 10.1016/j.apmr.2013.01.029CrossRefPubMed
6.
go back to reference Malloy KM, Milling LS: The effectiveness of virtual reality distraction for pain reduction: A systematic review. Clin Psychol Rev 2010, 30:1011–18. 10.1016/j.cpr.2010.07.001CrossRefPubMed Malloy KM, Milling LS: The effectiveness of virtual reality distraction for pain reduction: A systematic review. Clin Psychol Rev 2010, 30:1011–18. 10.1016/j.cpr.2010.07.001CrossRefPubMed
7.
go back to reference Fung J, Richards CL, Malouin F, McFadyen BJ, Lamontagne A: A treadmill and motion coupled virtual reality system for gait training post-stroke. Cyberpsychol Behav 2006, 9:157–62. 10.1089/cpb.2006.9.157CrossRefPubMed Fung J, Richards CL, Malouin F, McFadyen BJ, Lamontagne A: A treadmill and motion coupled virtual reality system for gait training post-stroke. Cyberpsychol Behav 2006, 9:157–62. 10.1089/cpb.2006.9.157CrossRefPubMed
8.
go back to reference Goble DJ, Cone BL, Fling BW: Using the Wii Fit as a tool for balance assessment and neurorehabilitation: The first half decade of “wii-search”. J Neuroeng Rehabil 2014, 11:12. 10.1186/1743-0003-11-12CrossRefPubMedCentralPubMed Goble DJ, Cone BL, Fling BW: Using the Wii Fit as a tool for balance assessment and neurorehabilitation: The first half decade of “wii-search”. J Neuroeng Rehabil 2014, 11:12. 10.1186/1743-0003-11-12CrossRefPubMedCentralPubMed
9.
go back to reference Hoffman HG, Patterson DR, Carrougher GJ, Sharar SR: Effectiveness of virtual reality-based pain control with multiple treatments. Clin J Pain 2001, 17:229–35. 10.1097/00002508-200109000-00007CrossRefPubMed Hoffman HG, Patterson DR, Carrougher GJ, Sharar SR: Effectiveness of virtual reality-based pain control with multiple treatments. Clin J Pain 2001, 17:229–35. 10.1097/00002508-200109000-00007CrossRefPubMed
10.
go back to reference Cole J, Crowle S, Austwick G, Henderson Slater D: Exploratory findings with virtual reality for phantom limb pain; From stump motion to agency and analgesia. Disabil Rehabil 2009, 31:846–54. 10.1080/09638280802355197CrossRefPubMed Cole J, Crowle S, Austwick G, Henderson Slater D: Exploratory findings with virtual reality for phantom limb pain; From stump motion to agency and analgesia. Disabil Rehabil 2009, 31:846–54. 10.1080/09638280802355197CrossRefPubMed
11.
go back to reference Murray CD, Pettifer S, Howard T, Patchick EL, Caillette F, Kulkarni J, et al.: The treatment of phantom limb pain using immersive virtual reality: Three case studies. Disabil Rehabil 2007, 29:1465–9. 10.1080/09638280601107385CrossRefPubMed Murray CD, Pettifer S, Howard T, Patchick EL, Caillette F, Kulkarni J, et al.: The treatment of phantom limb pain using immersive virtual reality: Three case studies. Disabil Rehabil 2007, 29:1465–9. 10.1080/09638280601107385CrossRefPubMed
12.
go back to reference Resnik L, Etter K, Klinger SL, Kambe C: Using virtual reality environment to facilitate training with advanced upper-limb prosthesis. J Rehabil Res Dev 2011, 48:707–18. 10.1682/JRRD.2010.07.0127CrossRefPubMed Resnik L, Etter K, Klinger SL, Kambe C: Using virtual reality environment to facilitate training with advanced upper-limb prosthesis. J Rehabil Res Dev 2011, 48:707–18. 10.1682/JRRD.2010.07.0127CrossRefPubMed
13.
go back to reference Koritnik T, Koenig A, Bajd T, Riener R, Munih M: Comparison of visual and haptic feedback during training of lower extremities. Gait Posture 2010, 32:540–6. 10.1016/j.gaitpost.2010.07.017CrossRefPubMed Koritnik T, Koenig A, Bajd T, Riener R, Munih M: Comparison of visual and haptic feedback during training of lower extremities. Gait Posture 2010, 32:540–6. 10.1016/j.gaitpost.2010.07.017CrossRefPubMed
14.
go back to reference Barton GJ, De Asha AR, van Loon EC, Geijtenbeek T, Robinson MA: Manipulation of visual biofeedback during gait with a time delayed adaptive Virtual Mirror Box. J Neuroeng Rehabil 2014, 11:101. 10.1186/1743-0003-11-101CrossRefPubMedCentralPubMed Barton GJ, De Asha AR, van Loon EC, Geijtenbeek T, Robinson MA: Manipulation of visual biofeedback during gait with a time delayed adaptive Virtual Mirror Box. J Neuroeng Rehabil 2014, 11:101. 10.1186/1743-0003-11-101CrossRefPubMedCentralPubMed
15.
go back to reference Kim JH, Jang SH, Kim CS, Jung JH, You JH: Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind, randomized controlled study. Am J Phys Med Rehabil 2009, 88:693–701. 10.1097/PHM.0b013e3181b33350CrossRefPubMed Kim JH, Jang SH, Kim CS, Jung JH, You JH: Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind, randomized controlled study. Am J Phys Med Rehabil 2009, 88:693–701. 10.1097/PHM.0b013e3181b33350CrossRefPubMed
16.
go back to reference Pompeu JE, Arduini LA, Botelho AR, Fonseca MBF, Pompeu SMAA, Torriani-Pasin C, et al.: Feasibility, safety and outcomes of playing Kinect Adventures!™ for people with Parkinson’s disease: a pilot study. Physiotherapy (United Kingdom) 2014, 100:162–8. Pompeu JE, Arduini LA, Botelho AR, Fonseca MBF, Pompeu SMAA, Torriani-Pasin C, et al.: Feasibility, safety and outcomes of playing Kinect Adventures!™ for people with Parkinson’s disease: a pilot study. Physiotherapy (United Kingdom) 2014, 100:162–8.
17.
go back to reference Sarig-Bahat H, Weiss PL, Laufer Y: Neck pain assessment in a virtual environment. Spine 2010, 35:E105–12. 10.1097/BRS.0b013e3181b79358CrossRefPubMed Sarig-Bahat H, Weiss PL, Laufer Y: Neck pain assessment in a virtual environment. Spine 2010, 35:E105–12. 10.1097/BRS.0b013e3181b79358CrossRefPubMed
19.
go back to reference Lin Q, Rieser J, Bodenheimer B: Stepping over and ducking under: The influence of an avatar on locomotion in an HMD-based immersive virtual environment. In Proceedings of the ACM Symposium on Applied Perception; 3–4 August 2012; Santa Monica. Edited by: Khooshabeh P, Harders M. New York: ACM; 2012:7–10. Lin Q, Rieser J, Bodenheimer B: Stepping over and ducking under: The influence of an avatar on locomotion in an HMD-based immersive virtual environment. In Proceedings of the ACM Symposium on Applied Perception; 3–4 August 2012; Santa Monica. Edited by: Khooshabeh P, Harders M. New York: ACM; 2012:7–10.
20.
go back to reference Bernardi NF, Marino BF, Maravita A, Castelnuovo G, Tebano R, Bricolo E: Grasping in wonderland: Altering the visual size of the body recalibrates the body schema. Exp Brain Res 2013, 226:585–94. 10.1007/s00221-013-3467-7CrossRefPubMed Bernardi NF, Marino BF, Maravita A, Castelnuovo G, Tebano R, Bricolo E: Grasping in wonderland: Altering the visual size of the body recalibrates the body schema. Exp Brain Res 2013, 226:585–94. 10.1007/s00221-013-3467-7CrossRefPubMed
21.
go back to reference Ramachandran VS, Brang D, McGeoch PD: Size reduction using mirror visual feedback (MVF) reduces phantom pain. Neurocase 2009, 15:357–60. 10.1080/13554790903081767CrossRefPubMed Ramachandran VS, Brang D, McGeoch PD: Size reduction using mirror visual feedback (MVF) reduces phantom pain. Neurocase 2009, 15:357–60. 10.1080/13554790903081767CrossRefPubMed
22.
go back to reference Osumi M, Imai R, Ueta K, Nakano H, Nobusako S, Morioka S: Factors associated with the modulation of pain by visual distortion of body size. Front Hum Neurosci 2014, 8:137.CrossRefPubMedCentralPubMed Osumi M, Imai R, Ueta K, Nakano H, Nobusako S, Morioka S: Factors associated with the modulation of pain by visual distortion of body size. Front Hum Neurosci 2014, 8:137.CrossRefPubMedCentralPubMed
23.
go back to reference Moseley GL, Gallace A, Spence C: Bodily illusions in health and disease: physiological and clinical perspectives and the concept of a cortical ‘body matrix’. Neurosci Biobehav Rev 2012, 36:34–46. 10.1016/j.neubiorev.2011.03.013CrossRefPubMed Moseley GL, Gallace A, Spence C: Bodily illusions in health and disease: physiological and clinical perspectives and the concept of a cortical ‘body matrix’. Neurosci Biobehav Rev 2012, 36:34–46. 10.1016/j.neubiorev.2011.03.013CrossRefPubMed
24.
go back to reference Dunn F, Perberry I: 3D math primer for graphics and game development. Sudbury, MS, USA: Jones & Bartlett Learning; 2002. Dunn F, Perberry I: 3D math primer for graphics and game development. Sudbury, MS, USA: Jones & Bartlett Learning; 2002.
25.
go back to reference Witmer BG, Singer MJ: Measuring presence in virtual environments: A presence questionnaire. Presence-Teleop Virtual 1998, 7:225–40. 10.1162/105474698565686CrossRef Witmer BG, Singer MJ: Measuring presence in virtual environments: A presence questionnaire. Presence-Teleop Virtual 1998, 7:225–40. 10.1162/105474698565686CrossRef
26.
go back to reference de Lussanet MHE, Behrendt F, Puta C, Schulte TL, Lappe M, Weiss T, et al.: Impaired visual perception of hurtful actions in patients with chronic low back pain. Hum Mov Sci 2013, 32:938–53. 10.1016/j.humov.2013.05.002CrossRefPubMed de Lussanet MHE, Behrendt F, Puta C, Schulte TL, Lappe M, Weiss T, et al.: Impaired visual perception of hurtful actions in patients with chronic low back pain. Hum Mov Sci 2013, 32:938–53. 10.1016/j.humov.2013.05.002CrossRefPubMed
27.
go back to reference Mann L, Kleinpaul JF, Pereira Moro AR, Mota CB, Carpes FP: Effect of low back pain on postural stability in younger women: Influence of visual deprivation. J Bodyw Mov Ther 2010, 14:361–6. 10.1016/j.jbmt.2009.06.007CrossRefPubMed Mann L, Kleinpaul JF, Pereira Moro AR, Mota CB, Carpes FP: Effect of low back pain on postural stability in younger women: Influence of visual deprivation. J Bodyw Mov Ther 2010, 14:361–6. 10.1016/j.jbmt.2009.06.007CrossRefPubMed
28.
go back to reference Wand BM, Keeves J, Bourgoin C, George PJ, Smith AJ, O’Connell NE, et al.: Mislocalization of sensory information in people with chronic low back pain: A preliminary investigation. Clin J Pain 2013, 29:737–43. 10.1097/AJP.0b013e318274b320CrossRefPubMed Wand BM, Keeves J, Bourgoin C, George PJ, Smith AJ, O’Connell NE, et al.: Mislocalization of sensory information in people with chronic low back pain: A preliminary investigation. Clin J Pain 2013, 29:737–43. 10.1097/AJP.0b013e318274b320CrossRefPubMed
29.
go back to reference Moseley GL, Flor H: Targeting cortical representations in the treatment of chronic pain: a review. Neurorehabil Neural Repair 2012, 26:646–52. 10.1177/1545968311433209CrossRefPubMed Moseley GL, Flor H: Targeting cortical representations in the treatment of chronic pain: a review. Neurorehabil Neural Repair 2012, 26:646–52. 10.1177/1545968311433209CrossRefPubMed
30.
go back to reference McCabe CS, Haigh RC, Blake DR: Mirror visual feedback for the treatment of complex regional pain syndrome (Type 1). Curr Pain Headache Rep 2008, 12:103–7. 10.1007/s11916-008-0020-7CrossRefPubMed McCabe CS, Haigh RC, Blake DR: Mirror visual feedback for the treatment of complex regional pain syndrome (Type 1). Curr Pain Headache Rep 2008, 12:103–7. 10.1007/s11916-008-0020-7CrossRefPubMed
31.
go back to reference McCabe CS, Cohen H, Hall J, Lewis J, Rodham K, Harris N: Somatosensory conflicts in complex regional pain syndrome type 1 and fibromyalgia syndrome. Curr Rheumatol Rep 2009, 11:461–5. 10.1007/s11926-009-0067-4CrossRefPubMed McCabe CS, Cohen H, Hall J, Lewis J, Rodham K, Harris N: Somatosensory conflicts in complex regional pain syndrome type 1 and fibromyalgia syndrome. Curr Rheumatol Rep 2009, 11:461–5. 10.1007/s11926-009-0067-4CrossRefPubMed
32.
go back to reference Opris D, Pintea S, Garcia-Palacios A, Botella C, Szamoskozi S, David D: Virtual reality exposure therapy in anxiety disorders: a quantitative meta-analysis. Depress Anxiety 2012, 29:85–93. 10.1002/da.20910CrossRefPubMed Opris D, Pintea S, Garcia-Palacios A, Botella C, Szamoskozi S, David D: Virtual reality exposure therapy in anxiety disorders: a quantitative meta-analysis. Depress Anxiety 2012, 29:85–93. 10.1002/da.20910CrossRefPubMed
33.
go back to reference Coelho CM, Santos JA, Silva C, Wallis G, Tichon J, Hine TJ: The role of self-motion in acrophobia treatment. Cyberpsychol Behav 2008, 11:723–5. 10.1089/cpb.2008.0023CrossRefPubMed Coelho CM, Santos JA, Silva C, Wallis G, Tichon J, Hine TJ: The role of self-motion in acrophobia treatment. Cyberpsychol Behav 2008, 11:723–5. 10.1089/cpb.2008.0023CrossRefPubMed
34.
go back to reference Vlaeyen JW, de Jong J, Geilen M, Heuts PH, van Breukelen G: Graded exposure in vivo in the treatment of pain-related fear: a replicated single-case experimental design in four patients with chronic low back pain. Behav Res Ther 2001, 39:151–66. 10.1016/S0005-7967(99)00174-6CrossRefPubMed Vlaeyen JW, de Jong J, Geilen M, Heuts PH, van Breukelen G: Graded exposure in vivo in the treatment of pain-related fear: a replicated single-case experimental design in four patients with chronic low back pain. Behav Res Ther 2001, 39:151–66. 10.1016/S0005-7967(99)00174-6CrossRefPubMed
Metadata
Title
Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept
Authors
Meyke Roosink
Nicolas Robitaille
Bradford J McFadyen
Luc J Hébert
Philip L Jackson
Laurent J Bouyer
Catherine Mercier
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2015
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-12-2

Other articles of this Issue 1/2015

Journal of NeuroEngineering and Rehabilitation 1/2015 Go to the issue