Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2014

Open Access 01-12-2014 | Research

Effect of explicit visual feedback distortion on human gait

Authors: Seung-Jae Kim, Dieudonne Mugisha

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2014

Login to get access

Abstract

Background

Gait rehabilitation often utilizes correction of stepping movements, and visual feedback is one of the interactive forms that can be used for rehabilitation. We presented a paradigm called visual feedback distortion in which we manipulated the visual representation of step length. Our previous work showed that an implicit distortion of visual feedback of step length entails unintentional modulations in the subjects’ gait spatial pattern. Even in the presence of cognitive load through a distraction task, distortion of visual feedback still induced modulation of gait step length. In the current study, subjects were aware of the imposed distortion of visual feedback and they were instructed to maintain their natural gait symmetric pattern during trials. We then studied whether such an explicit “visual feedback distortion” would still influence gait spatial pattern.

Methods

Nine healthy subjects participated in the treadmill walking trial. The step length was defined as the distance between each foot. The on-line visual feedback showing right and left step length information as bar graphs was displayed on a computer screen. When distorting the visual feedback, the height of the bar for only one side was manipulated, so that subjects perceived their step length as being asymmetric. Actual step lengths were measured during trial and analyzed to see the effects of visual feedback distortion.

Results

Our results showed that a gradual distortion of visual feedback systematically modulated gait step length away from symmetry even at the expense of an opposing apparent task goal. It was also observed that the amount of induced gait modulation was reduced during the explicit condition compared to the implicit condition where subjects were not aware of distortion.

Conclusions

Our study demonstrated that although the visual feedback display used in this study did not alter visual space or evoke illusions of motion, perturbation of visual information about subjects’ movement can cause unintentional motor functions. This suggests that the effect of visual feedback distortion is spontaneous and a gait training involving the visual distortion paradigm may provide an effective way to help subjects correct gait patterns by driving implicit motor functions, thereby bringing benefits to rehabilitation.
Literature
1.
go back to reference Schmidt H, Werner C, Bernhardt R, Hesse S, Kruger J: Gait rehabilitation machines based on programmable footplates. J Neuroeng Rehabil 2007, 4: 2. 10.1186/1743-0003-4-2CrossRefPubMedPubMedCentral Schmidt H, Werner C, Bernhardt R, Hesse S, Kruger J: Gait rehabilitation machines based on programmable footplates. J Neuroeng Rehabil 2007, 4: 2. 10.1186/1743-0003-4-2CrossRefPubMedPubMedCentral
2.
go back to reference Dietz V, Harkema SJ: Locomotor activity in spinal cord-injured persons. J Appl Physiol 2004, 96: 1954-1960. 10.1152/japplphysiol.00942.2003CrossRefPubMed Dietz V, Harkema SJ: Locomotor activity in spinal cord-injured persons. J Appl Physiol 2004, 96: 1954-1960. 10.1152/japplphysiol.00942.2003CrossRefPubMed
3.
go back to reference Goldshmit Y, Lythgo N, Galea MP, Turnley AM: Treadmill training after spinal cord hemisection in mice promotes axonal sprouting and synapse formation and improves motor recovery. J Neurotrauma 2008, 25: 449-465. 10.1089/neu.2007.0392CrossRefPubMed Goldshmit Y, Lythgo N, Galea MP, Turnley AM: Treadmill training after spinal cord hemisection in mice promotes axonal sprouting and synapse formation and improves motor recovery. J Neurotrauma 2008, 25: 449-465. 10.1089/neu.2007.0392CrossRefPubMed
4.
go back to reference Plummer P, Behrman AL, Duncan PW, Spigel P, Saracino D, Martin J, Fox E, Thigpen M, Kautz SA: Effects of stroke severity and training duration on locomotor recovery after stroke: a pilot study. Neurorehabil Neural Repair 2007, 21: 137-151. 10.1177/1545968306295559CrossRefPubMed Plummer P, Behrman AL, Duncan PW, Spigel P, Saracino D, Martin J, Fox E, Thigpen M, Kautz SA: Effects of stroke severity and training duration on locomotor recovery after stroke: a pilot study. Neurorehabil Neural Repair 2007, 21: 137-151. 10.1177/1545968306295559CrossRefPubMed
5.
go back to reference Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 2008, 39: 1786-1792. 10.1161/STROKEAHA.107.504779CrossRefPubMed Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 2008, 39: 1786-1792. 10.1161/STROKEAHA.107.504779CrossRefPubMed
6.
go back to reference Krebs HI, Volpe BT, Aisen ML, Hogan N: Increasing productivity and quality of care: robot-aided neuro-rehabilitation. J Rehabil Res Dev 2000, 37: 639-652.PubMed Krebs HI, Volpe BT, Aisen ML, Hogan N: Increasing productivity and quality of care: robot-aided neuro-rehabilitation. J Rehabil Res Dev 2000, 37: 639-652.PubMed
7.
go back to reference Winstein CJ: Knowledge of results and motor learning–implications for physical therapy. Phys Ther 1991, 71: 140-149.PubMed Winstein CJ: Knowledge of results and motor learning–implications for physical therapy. Phys Ther 1991, 71: 140-149.PubMed
8.
go back to reference Young DE, Schmidt RA: Augmented kinematic feedback for motor learning. J Mot Behav 1992, 24: 261-273. 10.1080/00222895.1992.9941621CrossRefPubMed Young DE, Schmidt RA: Augmented kinematic feedback for motor learning. J Mot Behav 1992, 24: 261-273. 10.1080/00222895.1992.9941621CrossRefPubMed
9.
go back to reference Thikey H, Grealy M, van Wijck F, Barber M, Rowe P: Augmented visual feedback of movement performance to enhance walking recovery after stroke: study protocol for a pilot randomised controlled trial. Trials 2012, 13: 163. 10.1186/1745-6215-13-163CrossRefPubMedPubMedCentral Thikey H, Grealy M, van Wijck F, Barber M, Rowe P: Augmented visual feedback of movement performance to enhance walking recovery after stroke: study protocol for a pilot randomised controlled trial. Trials 2012, 13: 163. 10.1186/1745-6215-13-163CrossRefPubMedPubMedCentral
10.
go back to reference Brewer BR, Klatzky R, Matsuoka Y: Visual feedback distortion in a robotic environment for hand rehabilitation. Brain Res Bull 2008, 75: 804-813. 10.1016/j.brainresbull.2008.01.006CrossRefPubMed Brewer BR, Klatzky R, Matsuoka Y: Visual feedback distortion in a robotic environment for hand rehabilitation. Brain Res Bull 2008, 75: 804-813. 10.1016/j.brainresbull.2008.01.006CrossRefPubMed
11.
12.
go back to reference Patla AE: How is human gait controlled by vision? Ecol Psychol 1998,10(3–4):287-302.CrossRef Patla AE: How is human gait controlled by vision? Ecol Psychol 1998,10(3–4):287-302.CrossRef
13.
go back to reference Pailhous J, Ferrandez AM, Fluckiger M, Baumberger B: Unintentional modulations of human gait by optical flow. Behav Brain Res 1990, 38: 275-281. 10.1016/0166-4328(90)90181-DCrossRefPubMed Pailhous J, Ferrandez AM, Fluckiger M, Baumberger B: Unintentional modulations of human gait by optical flow. Behav Brain Res 1990, 38: 275-281. 10.1016/0166-4328(90)90181-DCrossRefPubMed
14.
go back to reference Prokop T, Schubert M, Berger W: Visual influence on human locomotion. Modulation to changes in optic flow. Exp Brain Res 1997, 114: 63-70. 10.1007/PL00005624CrossRefPubMed Prokop T, Schubert M, Berger W: Visual influence on human locomotion. Modulation to changes in optic flow. Exp Brain Res 1997, 114: 63-70. 10.1007/PL00005624CrossRefPubMed
15.
go back to reference Rossignol S: Visuomotor regulation of locomotion. Can J Physiol Pharmacol 1996, 74: 418-425. 10.1139/y96-041CrossRefPubMed Rossignol S: Visuomotor regulation of locomotion. Can J Physiol Pharmacol 1996, 74: 418-425. 10.1139/y96-041CrossRefPubMed
16.
go back to reference Sadeghi H, Allard P, Prince F, Labelle H: Symmetry and limb dominance in able-bodied gait: a review. Gait Posture 2000, 12: 34-45. 10.1016/S0966-6362(00)00070-9CrossRefPubMed Sadeghi H, Allard P, Prince F, Labelle H: Symmetry and limb dominance in able-bodied gait: a review. Gait Posture 2000, 12: 34-45. 10.1016/S0966-6362(00)00070-9CrossRefPubMed
17.
go back to reference Rossignol S, Dubuc R, Gossard JP: Dynamic sensorimotor interactions in locomotion. Physiol Rev 2006, 86: 89-154. 10.1152/physrev.00028.2005CrossRefPubMed Rossignol S, Dubuc R, Gossard JP: Dynamic sensorimotor interactions in locomotion. Physiol Rev 2006, 86: 89-154. 10.1152/physrev.00028.2005CrossRefPubMed
18.
go back to reference Andersson O, Forssberg H, Grillner S, Wallen P: Peripheral feedback mechanisms acting on the central pattern generators for locomotion in fish and cat. Can J Physiol Pharmacol 1981, 59: 713-726. 10.1139/y81-108CrossRefPubMed Andersson O, Forssberg H, Grillner S, Wallen P: Peripheral feedback mechanisms acting on the central pattern generators for locomotion in fish and cat. Can J Physiol Pharmacol 1981, 59: 713-726. 10.1139/y81-108CrossRefPubMed
19.
go back to reference Varraine E, Bonnard M, Pailhous J: Interaction between different sensory cues in the control of human gait. Exp Brain Res 2002, 142: 374-384. 10.1007/s00221-001-0934-3CrossRefPubMed Varraine E, Bonnard M, Pailhous J: Interaction between different sensory cues in the control of human gait. Exp Brain Res 2002, 142: 374-384. 10.1007/s00221-001-0934-3CrossRefPubMed
20.
go back to reference Lamontagne A, Fung J, McFadyen BJ, Faubert J: Modulation of walking speed by changing optic flow in persons with stroke. J Neuroeng Rehabil 2007, 4: 22. 10.1186/1743-0003-4-22CrossRefPubMedPubMedCentral Lamontagne A, Fung J, McFadyen BJ, Faubert J: Modulation of walking speed by changing optic flow in persons with stroke. J Neuroeng Rehabil 2007, 4: 22. 10.1186/1743-0003-4-22CrossRefPubMedPubMedCentral
21.
go back to reference Bedford FL: Keeping perception accurate. Trends Cogn Sci 1999, 3: 4-11. 10.1016/S1364-6613(98)01266-2CrossRefPubMed Bedford FL: Keeping perception accurate. Trends Cogn Sci 1999, 3: 4-11. 10.1016/S1364-6613(98)01266-2CrossRefPubMed
22.
go back to reference Mazzoni P, Krakauer JW: An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 2006, 26: 3642-3645. 10.1523/JNEUROSCI.5317-05.2006CrossRefPubMed Mazzoni P, Krakauer JW: An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 2006, 26: 3642-3645. 10.1523/JNEUROSCI.5317-05.2006CrossRefPubMed
23.
go back to reference Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM: Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? Eur J Neurosci 2005, 22: 1248-1256. 10.1111/j.1460-9568.2005.04298.xCrossRefPubMed Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM: Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? Eur J Neurosci 2005, 22: 1248-1256. 10.1111/j.1460-9568.2005.04298.xCrossRefPubMed
24.
go back to reference Malone LA, Bastian AJ: Thinking about walking: effects of conscious correction versus distraction on locomotor adaptation. J Neurophysiol 2010, 103: 1954-1962. 10.1152/jn.00832.2009CrossRefPubMedPubMedCentral Malone LA, Bastian AJ: Thinking about walking: effects of conscious correction versus distraction on locomotor adaptation. J Neurophysiol 2010, 103: 1954-1962. 10.1152/jn.00832.2009CrossRefPubMedPubMedCentral
Metadata
Title
Effect of explicit visual feedback distortion on human gait
Authors
Seung-Jae Kim
Dieudonne Mugisha
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2014
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-11-74

Other articles of this Issue 1/2014

Journal of NeuroEngineering and Rehabilitation 1/2014 Go to the issue