Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2014

01-08-2014 | Preclinical study

RANKL expression in normal and malignant breast tissue responds to progesterone and is up-regulated during the luteal phase

Authors: Hong Hu, Jun Wang, Akash Gupta, Ali Shidfar, Daniel Branstetter, Oukseub Lee, David Ivancic, Megan Sullivan, Robert T. Chatterton Jr., William C. Dougall, Seema A. Khan

Published in: Breast Cancer Research and Treatment | Issue 3/2014

Login to get access

Abstract

The receptor activator of nuclear factor-κB ligand (RANKL) acts as a paracrine factor in progesterone-induced mammary epithelial proliferation and tumorigenesis. This evidence comes mainly from mouse models. Our aim was to examine whether RANKL expression in human normal and malignant breast is under the control of progesterone throughout the menstrual cycle. Breast epithelial samples were obtained by random fine needle aspiration (rFNA) of the contralateral unaffected breasts (CUB) of 18 breast cancer patients, with simultaneous serum hormone measurements. Genes correlated with serum progesterone levels were identified through Illumina microarray analysis. Validation was performed using qRT-PCR in rFNA samples from CUB of an additional 53 women and using immunohistochemistry in tissue microarrays of 61 breast cancer samples. Expression of RANKL, DIO2, and MYBPC1 was correlated with serum progesterone in CUB, and was significantly higher in luteal phase. RANKL and MYBPC1 mRNA expression were highly correlated between CUB and matched tumor samples. RANKL protein expression was also significantly increased in the luteal phase and highly correlated with serum progesterone levels in cancer samples, especially in hormone receptor positive tumors. The regulatory effects of progesterone on the expression of RANKL, DIO2, and MYBPC1 were confirmed in three-dimensional cultures of normal breast organoids. In normal breast and in breast cancer, RANKL mRNA and protein expression fluctuate with serum progesterone with highest levels in the luteal phase, suggesting that RANKL is a modulator of progesterone signaling in normal and malignant breast tissue and a potential biomarker of progesterone action and blockade.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Schramek D, Sigl V, Penninger JM (2011) RANKL and RANK in sex hormone-induced breast cancer and breast cancer metastasis. Trends Endocrinol Metab 22:188–194PubMedCrossRef Schramek D, Sigl V, Penninger JM (2011) RANKL and RANK in sex hormone-induced breast cancer and breast cancer metastasis. Trends Endocrinol Metab 22:188–194PubMedCrossRef
3.
4.
go back to reference Beleut M, Rajaram RD, Caikovski M, Ayyanan A, Germano D, Schneider P et al (2010) Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc Natl Acad Sci USA 107:2989–2994PubMedCentralPubMedCrossRef Beleut M, Rajaram RD, Caikovski M, Ayyanan A, Germano D, Schneider P et al (2010) Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc Natl Acad Sci USA 107:2989–2994PubMedCentralPubMedCrossRef
5.
go back to reference Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R et al (2010) RANK ligand mediates progestin induced mammary epithelial proliferation and carcinogenesis. Nature 468:103–107PubMedCrossRef Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R et al (2010) RANK ligand mediates progestin induced mammary epithelial proliferation and carcinogenesis. Nature 468:103–107PubMedCrossRef
6.
go back to reference Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ et al (2010) Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468:98–102PubMedCentralPubMedCrossRef Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ et al (2010) Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468:98–102PubMedCentralPubMedCrossRef
7.
go back to reference Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL et al (2010) Progesterone induces adult mammary stem cell expansion. Nature 465:803–807PubMedCrossRef Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL et al (2010) Progesterone induces adult mammary stem cell expansion. Nature 465:803–807PubMedCrossRef
8.
go back to reference Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER et al (2010) Control of mammary stem cell function by steroid hormone signaling. Nature 465:798–802PubMedCrossRef Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER et al (2010) Control of mammary stem cell function by steroid hormone signaling. Nature 465:798–802PubMedCrossRef
9.
go back to reference Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM et al (2011) Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470:548–553PubMedCentralPubMedCrossRef Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM et al (2011) Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470:548–553PubMedCentralPubMedCrossRef
10.
go back to reference Beral V (2003) Breast cancer and hormone-replacement therapy in the million women study. Lancet 362:419–427PubMedCrossRef Beral V (2003) Breast cancer and hormone-replacement therapy in the million women study. Lancet 362:419–427PubMedCrossRef
11.
go back to reference Lee S, Kolonel L, Wilkens L, Wan P, Henderson B, Pike M (2006) Postmenopausal hormone therapy and breast cancer risk: the Multiethnic Cohort. Int J Cancer 118:1285–1291PubMedCrossRef Lee S, Kolonel L, Wilkens L, Wan P, Henderson B, Pike M (2006) Postmenopausal hormone therapy and breast cancer risk: the Multiethnic Cohort. Int J Cancer 118:1285–1291PubMedCrossRef
12.
go back to reference Chlebowski RT, Anderson GL, Gass M, Lane DS, Aragaki AK, Kuller LH et al (2010) Estrogen plus progestin and breast cancer incidence and mortality in postmenopausal women. JAMA 304:1684–1692PubMedCrossRef Chlebowski RT, Anderson GL, Gass M, Lane DS, Aragaki AK, Kuller LH et al (2010) Estrogen plus progestin and breast cancer incidence and mortality in postmenopausal women. JAMA 304:1684–1692PubMedCrossRef
13.
go back to reference Ferguson DJ, Anderson TJ (1981) Morphological evaluation of cell turnover in relation to the menstrual cycle in the ‘resting’ human breast. Br J Cancer 44:177–181PubMedCentralPubMedCrossRef Ferguson DJ, Anderson TJ (1981) Morphological evaluation of cell turnover in relation to the menstrual cycle in the ‘resting’ human breast. Br J Cancer 44:177–181PubMedCentralPubMedCrossRef
14.
go back to reference Ferguson DJ (1988) An ultrastructural study of mitosis and cytokinesis in normal ‘resting’ human breast. Cell Tissue Res 252:581–587PubMedCrossRef Ferguson DJ (1988) An ultrastructural study of mitosis and cytokinesis in normal ‘resting’ human breast. Cell Tissue Res 252:581–587PubMedCrossRef
15.
go back to reference Anderson TJ, Battersby S, King RJ, McPherson K, Going JJ (1989) Oral contraceptive use influences resting breast proliferation. Hum Pathol 20:1139–1144PubMedCrossRef Anderson TJ, Battersby S, King RJ, McPherson K, Going JJ (1989) Oral contraceptive use influences resting breast proliferation. Hum Pathol 20:1139–1144PubMedCrossRef
16.
go back to reference Anderson TJ, Ferguson DJ, Raab GM (1982) Cell turnover in the ‘resting’ human breast: influence of parity, contraceptive pill, age and laterality. Br J Cancer 46:376–382PubMedCentralPubMedCrossRef Anderson TJ, Ferguson DJ, Raab GM (1982) Cell turnover in the ‘resting’ human breast: influence of parity, contraceptive pill, age and laterality. Br J Cancer 46:376–382PubMedCentralPubMedCrossRef
17.
go back to reference Going JJ, Anderson TJ, Battersby S, MacIntyre CC (1988) Proliferative and secretory activity in human breast during natural and artificial menstrual cycles. Am J Pathol 130:193–204PubMedCentralPubMed Going JJ, Anderson TJ, Battersby S, MacIntyre CC (1988) Proliferative and secretory activity in human breast during natural and artificial menstrual cycles. Am J Pathol 130:193–204PubMedCentralPubMed
18.
go back to reference Potten CS, Watson RJ, Williams GT, Tickle S, Roberts SA, Harris M et al (1988) The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br J Cancer 58:163–170PubMedCentralPubMedCrossRef Potten CS, Watson RJ, Williams GT, Tickle S, Roberts SA, Harris M et al (1988) The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br J Cancer 58:163–170PubMedCentralPubMedCrossRef
19.
go back to reference Bai M, Agnatis NJ, Kamina S, Demou A, Zagorianakou P, Katsaraki A et al (2001) In vivo cell kinetics in breast carcinogenesis. Breast Cancer Res 3:276–283PubMedCentralPubMedCrossRef Bai M, Agnatis NJ, Kamina S, Demou A, Zagorianakou P, Katsaraki A et al (2001) In vivo cell kinetics in breast carcinogenesis. Breast Cancer Res 3:276–283PubMedCentralPubMedCrossRef
20.
go back to reference Feuerhake F, Sigg W, Höfter EA, Unterberger P, Welsch U (2003) Cell proliferation, apoptosis, and expression of Bcl-2 and Bax in non-lactating human breast epithelium in relation to the menstrual cycle and reproductive history. Breast Cancer Res Treat 77:37–48PubMedCrossRef Feuerhake F, Sigg W, Höfter EA, Unterberger P, Welsch U (2003) Cell proliferation, apoptosis, and expression of Bcl-2 and Bax in non-lactating human breast epithelium in relation to the menstrual cycle and reproductive history. Breast Cancer Res Treat 77:37–48PubMedCrossRef
21.
go back to reference Capuco AV, Ellis S, Wood DL, Akers RM, Garrett W (2002) Postnatal mammary ductal growth: three-dimensional imaging of cell proliferation, effects of estrogen treatment, and expression of steroid receptors in prepubertal calves. Tissue Cell 34:143–154PubMedCrossRef Capuco AV, Ellis S, Wood DL, Akers RM, Garrett W (2002) Postnatal mammary ductal growth: three-dimensional imaging of cell proliferation, effects of estrogen treatment, and expression of steroid receptors in prepubertal calves. Tissue Cell 34:143–154PubMedCrossRef
22.
go back to reference Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991PubMed Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991PubMed
23.
go back to reference Russo J, Ao X, Grill C, Russo IH (1999) Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat 53:217–227PubMedCrossRef Russo J, Ao X, Grill C, Russo IH (1999) Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat 53:217–227PubMedCrossRef
24.
go back to reference Seagroves TN, Lydon JP, Hovey RC, Vonderhaar BK, Rosen JM (2000) C/EBPbeta (CCAAT/enhancer binding protein) controls cell fate determination during mammary gland development. Mol Endocrinol 14:359–368PubMed Seagroves TN, Lydon JP, Hovey RC, Vonderhaar BK, Rosen JM (2000) C/EBPbeta (CCAAT/enhancer binding protein) controls cell fate determination during mammary gland development. Mol Endocrinol 14:359–368PubMed
25.
26.
go back to reference Graham JD, Mote PA, Salagame U, van Dijk JH, Balleine RL, Huschtscha LI et al (2009) DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology 150:3318–3326PubMedCentralPubMedCrossRef Graham JD, Mote PA, Salagame U, van Dijk JH, Balleine RL, Huschtscha LI et al (2009) DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology 150:3318–3326PubMedCentralPubMedCrossRef
27.
go back to reference Tanos T, Sflomos G, Echeverria PC, Ayyanan A, Gutierrez M, Delaloye JF et al (2013) Progesterone/RANKL is a major regulatory axis in the human breast. Sci Transl Med 5(182):182ra55PubMedCrossRef Tanos T, Sflomos G, Echeverria PC, Ayyanan A, Gutierrez M, Delaloye JF et al (2013) Progesterone/RANKL is a major regulatory axis in the human breast. Sci Transl Med 5(182):182ra55PubMedCrossRef
28.
go back to reference Ramakrishnan R, Khan SA, Badve S (2002) Morphological changes in breast tissue with menstrual cycle. Mod Pathol 15:1348–1356PubMedCrossRef Ramakrishnan R, Khan SA, Badve S (2002) Morphological changes in breast tissue with menstrual cycle. Mod Pathol 15:1348–1356PubMedCrossRef
29.
go back to reference Khan SA, Rogers MA, Khurana KK, Meguid MM, Numann PJ (1998) Estrogen receptor expression in benign breast epithelium and breast cancer risk. J Natl Cancer Inst 90:37–42PubMedCrossRef Khan SA, Rogers MA, Khurana KK, Meguid MM, Numann PJ (1998) Estrogen receptor expression in benign breast epithelium and breast cancer risk. J Natl Cancer Inst 90:37–42PubMedCrossRef
30.
go back to reference Lee O, Helenowski IB, Chatterton RT, Jovanovic B, Khan SA (2012) Prediction of menopausal status from estrogen-related gene expression in benign breast tissue. Breast Cancer Res Treat 131:1067–1076PubMedCrossRef Lee O, Helenowski IB, Chatterton RT, Jovanovic B, Khan SA (2012) Prediction of menopausal status from estrogen-related gene expression in benign breast tissue. Breast Cancer Res Treat 131:1067–1076PubMedCrossRef
31.
go back to reference Wang J, Gupta A, Hu H, Chatterton RT, Clevenger CV, Khan SA (2013) Comment on “Progesterone/RANKL is a major regulatory axis in the human breast. Sci Transl Med 5(215):215le4PubMedCrossRef Wang J, Gupta A, Hu H, Chatterton RT, Clevenger CV, Khan SA (2013) Comment on “Progesterone/RANKL is a major regulatory axis in the human breast. Sci Transl Med 5(215):215le4PubMedCrossRef
32.
go back to reference Wang J, Scholtens D, Holko M, Ivancic D, Lee O, Hu H et al (2013) Lipid metabolism genes in contralateral unaffected breast and estrogen receptor status of breast cancer. Cancer Prev Res 6:321–330CrossRef Wang J, Scholtens D, Holko M, Ivancic D, Lee O, Hu H et al (2013) Lipid metabolism genes in contralateral unaffected breast and estrogen receptor status of breast cancer. Cancer Prev Res 6:321–330CrossRef
33.
go back to reference Fabian CJ, Kimler BF, Zalles CM, Klemp JR, Kamel S, Zeiger S et al (2000) Short-term breast cancer prediction by random periareolar fine-needle aspiration cytology and the Gail risk model. J Natl Cancer Inst 92:1217–1227PubMedCrossRef Fabian CJ, Kimler BF, Zalles CM, Klemp JR, Kamel S, Zeiger S et al (2000) Short-term breast cancer prediction by random periareolar fine-needle aspiration cytology and the Gail risk model. J Natl Cancer Inst 92:1217–1227PubMedCrossRef
34.
go back to reference Chatterton RT, Khan SA, Heinz R, Ivancic D, Lee O (2010) Patterns of sex steroid hormones in nipple aspirate fluid during the menstrual cycle and after menopause in relation to serum concentrations. Cancer Epidemiol Biomark Prev 19:275–279CrossRef Chatterton RT, Khan SA, Heinz R, Ivancic D, Lee O (2010) Patterns of sex steroid hormones in nipple aspirate fluid during the menstrual cycle and after menopause in relation to serum concentrations. Cancer Epidemiol Biomark Prev 19:275–279CrossRef
35.
go back to reference Burger HG, Dudley EC, Robertson DM, Dennerstein L (2002) Hormonal changes in the menopause transition. Recent Prog Horm Res 57:257–275PubMedCrossRef Burger HG, Dudley EC, Robertson DM, Dennerstein L (2002) Hormonal changes in the menopause transition. Recent Prog Horm Res 57:257–275PubMedCrossRef
36.
go back to reference Stricker R, Eberhart R, Chevailler MC, Quinn FA, Bischof P, Stricker R (2006) Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer. Clin Chem Lab Med 44:883–887PubMedCrossRef Stricker R, Eberhart R, Chevailler MC, Quinn FA, Bischof P, Stricker R (2006) Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer. Clin Chem Lab Med 44:883–887PubMedCrossRef
37.
go back to reference Wood CE, Branstetter D, Jacob AP, Cline JM, Register TC, Rohrbach K et al (2013) Progestin effects on cell proliferation pathways in the postmenopausal mammary gland. Breast Cancer Res 15:R62PubMedCentralPubMedCrossRef Wood CE, Branstetter D, Jacob AP, Cline JM, Register TC, Rohrbach K et al (2013) Progestin effects on cell proliferation pathways in the postmenopausal mammary gland. Breast Cancer Res 15:R62PubMedCentralPubMedCrossRef
38.
go back to reference Brisken C (2013) Progesterone signalling in breast cancer: a neglected hormone coming into the limelight. Nat Rev Cancer 13:385–396PubMedCrossRef Brisken C (2013) Progesterone signalling in breast cancer: a neglected hormone coming into the limelight. Nat Rev Cancer 13:385–396PubMedCrossRef
39.
go back to reference Jankowitz RC, McGuire KP, Davidson NE (2013) Optimal systemic therapy for premenopausal women with hormone receptor-positive breast cancer. Breast 22:S165–S170PubMedCrossRef Jankowitz RC, McGuire KP, Davidson NE (2013) Optimal systemic therapy for premenopausal women with hormone receptor-positive breast cancer. Breast 22:S165–S170PubMedCrossRef
40.
go back to reference Casula S, Bianco AC (2012) Thyroid hormone deiodinases and cancer. Front Endocrinol 3:74CrossRef Casula S, Bianco AC (2012) Thyroid hormone deiodinases and cancer. Front Endocrinol 3:74CrossRef
41.
go back to reference Debski MG, Pachucki J, Ambroziak M, Olszewski W, Bar-Andziak E (2007) Human breast cancer tissue expresses high level of type 1 5-deiodinase. Thyroid 17:3–10PubMedCrossRef Debski MG, Pachucki J, Ambroziak M, Olszewski W, Bar-Andziak E (2007) Human breast cancer tissue expresses high level of type 1 5-deiodinase. Thyroid 17:3–10PubMedCrossRef
42.
go back to reference Dentice M, Luongo C, Huang S, Ambrosio R, Elefante A, Mirebeau-Prunier D et al (2007) Sonic hedgehog-induced type3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proc Natl Acad Sci USA 104:14466–14471PubMedCentralPubMedCrossRef Dentice M, Luongo C, Huang S, Ambrosio R, Elefante A, Mirebeau-Prunier D et al (2007) Sonic hedgehog-induced type3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proc Natl Acad Sci USA 104:14466–14471PubMedCentralPubMedCrossRef
43.
go back to reference Chen Z, Zhao TJ, Li J, Gao YS, Meng FG, Yan YB et al (2011) Slow skeletal muscle myosin-binding protein-C (MyBPC1) mediates recruitment of muscle-type creatine kinase (CK) to myosin. Biochem J 436:437–445PubMedCrossRef Chen Z, Zhao TJ, Li J, Gao YS, Meng FG, Yan YB et al (2011) Slow skeletal muscle myosin-binding protein-C (MyBPC1) mediates recruitment of muscle-type creatine kinase (CK) to myosin. Biochem J 436:437–445PubMedCrossRef
Metadata
Title
RANKL expression in normal and malignant breast tissue responds to progesterone and is up-regulated during the luteal phase
Authors
Hong Hu
Jun Wang
Akash Gupta
Ali Shidfar
Daniel Branstetter
Oukseub Lee
David Ivancic
Megan Sullivan
Robert T. Chatterton Jr.
William C. Dougall
Seema A. Khan
Publication date
01-08-2014
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2014
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-014-3049-9

Other articles of this Issue 3/2014

Breast Cancer Research and Treatment 3/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine