Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2024

Open Access 01-12-2024 | Radiotherapy | Research

Radiotherapy-activated NBTXR3 nanoparticles promote ferroptosis through induction of lysosomal membrane permeabilization

Authors: Jordan Da Silva, Célia Bienassis, Peter Schmitt, Céline Berjaud, Mickael Guedj, Sébastien Paris

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2024

Login to get access

Abstract

Purpose

Radiotherapy-activated NBTXR3 (NBTXR3 + RT) has demonstrated superior efficacy in cancer cell destruction and tumor growth control, compared to radiotherapy (RT), in preclinical and clinical settings. Previous studies highlighted the immunomodulatory properties of NBTXR3 + RT, such as modification of tumor cell immunogenicity/adjuvanticity, producing an effective local tumor control and abscopal effect, related to an enhanced antitumor immune response. Furthermore, NBTXR3 + RT has shown potential in restoring anti-PD1 efficacy in a refractory tumor model. However, the early events leading to these results, such as NBTXR3 endocytosis, intracellular trafficking and primary biological responses induced by NBTXR3 + RT remain poorly understood.

Methods

We analyzed by transmission electron microscopy endocytosis and intracellular localization of NBTXR3 nanoparticles after endocytosis in various cell lines, in vitro and in vivo. A kinetic of NBTXR3 endocytosis and its impact on lysosomes was conducted using LysoTracker staining, and a RNAseq analysis was performed. We investigated the ability of NBTXR3 + RT to induce lysosomal membrane permeabilization (LMP) and ferroptosis by analyzing lipid peroxidation. Additionally, we evaluated the recapture by cancer cells of NBTXR3 released from dead cells.

Results

NBTXR3 nanoparticles were rapidly internalized by cells mainly through macropinocytosis and in a less extend by clathrin-dependent endocytosis. NBTXR3-containing endosomes were then fused with lysosomes. The day following NBTXR3 addition, we measured a significant increase in LysoTracker lysosome labeling intensity, in vitro as in vivo. Following RT, a significant lysosomal membrane permeabilization (LMP) was measured exclusively in cells treated with NBTXR3 + RT, while RT had no effect. The day post-irradiation, a significant increase in lipid peroxidation, a biomarker of ferroptosis, was measured with NBTXR3 + RT compared to RT. Moreover, we demonstrated that NBTXR3 nanoparticles released from dead cells can be recaptured by cancer cells.

Conclusions

Our findings provide novel insights into the early and specific biological effects induced by NBTXR3 + RT, especially LMP, not induced by RT in our models. The subsequent significant increase in lipid peroxidation partially explains the enhanced cancer cell killing capacity of NBTXR3 + RT compared to RT, potentially by promoting ferroptosis. This study improves our understanding of the cellular mechanisms underlying NBTXR3 + RT and highlights its potential as an agnostic therapeutic strategy for solid cancers treatment.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005;104(6):1129–37.PubMedCrossRef Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005;104(6):1129–37.PubMedCrossRef
2.
go back to reference Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol. 2012;9(12):688–99.PubMedCrossRef Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol. 2012;9(12):688–99.PubMedCrossRef
3.
go back to reference Harrington KJ, Billingham LJ, Brunner TB, Burnet NG, Chan CS, Hoskin P, et al. Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br J Cancer. 2011;105(5):628–39.PubMedPubMedCentralCrossRef Harrington KJ, Billingham LJ, Brunner TB, Burnet NG, Chan CS, Hoskin P, et al. Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br J Cancer. 2011;105(5):628–39.PubMedPubMedCentralCrossRef
4.
go back to reference Liauw SL, Connell PP, Weichselbaum RR. New paradigms and future challenges in radiation oncology: an update of biological targets and technology. Sci Transl Med. 2013;5(173):173sr2.PubMedPubMedCentralCrossRef Liauw SL, Connell PP, Weichselbaum RR. New paradigms and future challenges in radiation oncology: an update of biological targets and technology. Sci Transl Med. 2013;5(173):173sr2.PubMedPubMedCentralCrossRef
5.
go back to reference Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1–2):48–60.PubMedCrossRef Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1–2):48–60.PubMedCrossRef
6.
go back to reference D’Andrea MA, Reddy GK. Systemic Immunostimulatory effects of Radiation Therapy improves the outcomes of patients with advanced NSCLC receiving immunotherapy. Am J Clin Oncol. 2020;43(3):218–28.PubMedCrossRef D’Andrea MA, Reddy GK. Systemic Immunostimulatory effects of Radiation Therapy improves the outcomes of patients with advanced NSCLC receiving immunotherapy. Am J Clin Oncol. 2020;43(3):218–28.PubMedCrossRef
7.
go back to reference Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, et al. The role of ferroptosis in ionizing radiation-induced cell death and Tumor suppression. Cell Res. 2020;30(2):146–62.PubMedPubMedCentralCrossRef Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, et al. The role of ferroptosis in ionizing radiation-induced cell death and Tumor suppression. Cell Res. 2020;30(2):146–62.PubMedPubMedCentralCrossRef
8.
go back to reference Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 2019;9(12):1673–85.PubMedPubMedCentralCrossRef Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 2019;9(12):1673–85.PubMedPubMedCentralCrossRef
9.
go back to reference Bonvalot S, Le Pechoux C, De Baere T, Kantor G, Buy X, Stoeckle E, et al. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin cancer Research: Official J Am Association Cancer Res. 2017;23(4):908–17.CrossRef Bonvalot S, Le Pechoux C, De Baere T, Kantor G, Buy X, Stoeckle E, et al. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin cancer Research: Official J Am Association Cancer Res. 2017;23(4):908–17.CrossRef
10.
go back to reference Bonvalot S, Rutkowski PL, Thariat J, Carrere S, Ducassou A, Sunyach MP, et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): a multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 2019;20(8):1148–59.PubMedCrossRef Bonvalot S, Rutkowski PL, Thariat J, Carrere S, Ducassou A, Sunyach MP, et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): a multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 2019;20(8):1148–59.PubMedCrossRef
11.
go back to reference Tourneau CL, Moreno V, Salas S, Mirabel X, Calvo E, Doger B, et al. Hafnium oxide nanoparticles NBTXR3 activated by radiotherapy as a new therapeutic option for elderly/frail HNSCC patients. J Clin Oncol. 2019;37(15suppl):6069.CrossRef Tourneau CL, Moreno V, Salas S, Mirabel X, Calvo E, Doger B, et al. Hafnium oxide nanoparticles NBTXR3 activated by radiotherapy as a new therapeutic option for elderly/frail HNSCC patients. J Clin Oncol. 2019;37(15suppl):6069.CrossRef
12.
go back to reference Maggiorella L, Barouch G, Devaux C, Pottier A, Deutsch E, Bourhis J, et al. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol (London England). 2012;8(9):1167–81.CrossRef Maggiorella L, Barouch G, Devaux C, Pottier A, Deutsch E, Bourhis J, et al. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol (London England). 2012;8(9):1167–81.CrossRef
13.
go back to reference Pottier A, Borghi E, Levy L. New use of metals as nanosized radioenhancers. Anticancer Res. 2014;34(1):443–53.PubMed Pottier A, Borghi E, Levy L. New use of metals as nanosized radioenhancers. Anticancer Res. 2014;34(1):443–53.PubMed
14.
go back to reference Marill J, Anesary NM, Zhang P, Vivet S, Borghi E, Levy L, et al. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect? Radiation Oncol (London England). 2014;9: 150.CrossRef Marill J, Anesary NM, Zhang P, Vivet S, Borghi E, Levy L, et al. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect? Radiation Oncol (London England). 2014;9: 150.CrossRef
15.
go back to reference Zhang P, Marill J, Darmon A, Mohamed Anesary N, Lu B, Paris S. NBTXR3 radiotherapy-activated functionalized hafnium oxide nanoparticles show efficient antitumor effects across a large panel of human cancer models. Int J Nanomedicine. 2021;16:2761–73.PubMedPubMedCentralCrossRef Zhang P, Marill J, Darmon A, Mohamed Anesary N, Lu B, Paris S. NBTXR3 radiotherapy-activated functionalized hafnium oxide nanoparticles show efficient antitumor effects across a large panel of human cancer models. Int J Nanomedicine. 2021;16:2761–73.PubMedPubMedCentralCrossRef
16.
go back to reference Marill J, Mohamed Anesary N, Paris S. DNA damage enhancement by radiotherapy-activated hafnium oxide nanoparticles improves cGAS-STING pathway activation in human Colorectal cancer cells. Radiother Oncol. 2019. Marill J, Mohamed Anesary N, Paris S. DNA damage enhancement by radiotherapy-activated hafnium oxide nanoparticles improves cGAS-STING pathway activation in human Colorectal cancer cells. Radiother Oncol. 2019.
17.
go back to reference Darmon A, Zhang P, Marill J, Mohamed Anesary N, Da Silva J, Paris S. Radiotherapy-activated NBTXR3 nanoparticles modulate cancer cell immunogenicity and TCR repertoire. Cancer Cell Int. 2022;22(1):208.PubMedPubMedCentralCrossRef Darmon A, Zhang P, Marill J, Mohamed Anesary N, Da Silva J, Paris S. Radiotherapy-activated NBTXR3 nanoparticles modulate cancer cell immunogenicity and TCR repertoire. Cancer Cell Int. 2022;22(1):208.PubMedPubMedCentralCrossRef
18.
go back to reference Zhang P, Darmon A, Marill J, Mohamed Anesary N, Paris S. Radiotherapy-activated hafnium oxide nanoparticles produce abscopal effect in a mouse colorectal cancer model. Int J Nanomedicine. 2020;15:3843–50.PubMedPubMedCentralCrossRef Zhang P, Darmon A, Marill J, Mohamed Anesary N, Paris S. Radiotherapy-activated hafnium oxide nanoparticles produce abscopal effect in a mouse colorectal cancer model. Int J Nanomedicine. 2020;15:3843–50.PubMedPubMedCentralCrossRef
19.
go back to reference Hu Y, Paris S, Barsoumian H, Abana CO, He K, Sezen D, et al. A radioenhancing nanoparticle mediated immunoradiation improves survival and generates long-term antitumor immune memory in an anti-PD1-resistant murine Lung cancer model. J Nanobiotechnol. 2021;19(1):416.CrossRef Hu Y, Paris S, Barsoumian H, Abana CO, He K, Sezen D, et al. A radioenhancing nanoparticle mediated immunoradiation improves survival and generates long-term antitumor immune memory in an anti-PD1-resistant murine Lung cancer model. J Nanobiotechnol. 2021;19(1):416.CrossRef
20.
go back to reference Hu Y, Paris S, Barsoumian H, Abana CO, He K, Wasley M, et al. Radiation Therapy enhanced by NBTXR3 nanoparticles overcomes Anti-PD1 resistance and evokes Abscopal effects. Int J Radiat Oncol Biol Phys. 2021;111(3):647–57.PubMedCrossRef Hu Y, Paris S, Barsoumian H, Abana CO, He K, Wasley M, et al. Radiation Therapy enhanced by NBTXR3 nanoparticles overcomes Anti-PD1 resistance and evokes Abscopal effects. Int J Radiat Oncol Biol Phys. 2021;111(3):647–57.PubMedCrossRef
21.
go back to reference Hu Y, Paris S, Bertolet G, Barsoumian HB, He K, Sezen D, et al. Combining a nanoparticle-mediated immunoradiotherapy with dual blockade of LAG3 and TIGIT improves the treatment efficacy in anti-PD1 resistant Lung cancer. J Nanobiotechnol. 2022;20(1):417.CrossRef Hu Y, Paris S, Bertolet G, Barsoumian HB, He K, Sezen D, et al. Combining a nanoparticle-mediated immunoradiotherapy with dual blockade of LAG3 and TIGIT improves the treatment efficacy in anti-PD1 resistant Lung cancer. J Nanobiotechnol. 2022;20(1):417.CrossRef
22.
go back to reference Hu Y, Paris S, Bertolet G, Barsoumian HB, Wang Q, Da Silva J, et al. NBTXR3 improves the efficacy of immunoradiotherapy combining nonfucosylated anti-CTLA4 in an anti-PD1 resistant Lung cancer model. Front Immunol. 2022;13: 1022011.PubMedPubMedCentralCrossRef Hu Y, Paris S, Bertolet G, Barsoumian HB, Wang Q, Da Silva J, et al. NBTXR3 improves the efficacy of immunoradiotherapy combining nonfucosylated anti-CTLA4 in an anti-PD1 resistant Lung cancer model. Front Immunol. 2022;13: 1022011.PubMedPubMedCentralCrossRef
23.
go back to reference Hu Y, Paris S, Sahoo N, Bertolet G, Wang Q, Wang Q, et al. Nanoparticle-enhanced proton beam immunoradiotherapy drives immune activation and durable Tumor rejection. JCI. Insight. 2023;8(12):e167749. Hu Y, Paris S, Sahoo N, Bertolet G, Wang Q, Wang Q, et al. Nanoparticle-enhanced proton beam immunoradiotherapy drives immune activation and durable Tumor rejection. JCI. Insight. 2023;8(12):e167749.
24.
go back to reference Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med. 2003;197(10):1323–34.PubMedPubMedCentralCrossRef Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med. 2003;197(10):1323–34.PubMedPubMedCentralCrossRef
25.
go back to reference Cai X, Liu Y, Hu Y, Liu X, Jiang H, Yang S, et al. ROS-mediated lysosomal membrane permeabilization is involved in bupivacaine-induced death of rabbit intervertebral disc cells. Redox Biol. 2018;18:65–76.PubMedPubMedCentralCrossRef Cai X, Liu Y, Hu Y, Liu X, Jiang H, Yang S, et al. ROS-mediated lysosomal membrane permeabilization is involved in bupivacaine-induced death of rabbit intervertebral disc cells. Redox Biol. 2018;18:65–76.PubMedPubMedCentralCrossRef
27.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.PubMedPubMedCentralCrossRef Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.PubMedPubMedCentralCrossRef
28.
go back to reference Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3.PubMedCrossRef Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3.PubMedCrossRef
29.
go back to reference Benjamini Y, Hochberg Y. Controlling the false Discovery rate: a practical and powerful Approach to multiple testing. J Royal Stat Soc Ser B (Methodological). 1995;57(1):289–300. Benjamini Y, Hochberg Y. Controlling the false Discovery rate: a practical and powerful Approach to multiple testing. J Royal Stat Soc Ser B (Methodological). 1995;57(1):289–300.
30.
go back to reference Means N, Elechalawar CK, Chen WR, Bhattacharya R, Mukherjee P. Revealing macropinocytosis using nanoparticles. Mol Aspects Med. 2022;83: 100993.PubMedCrossRef Means N, Elechalawar CK, Chen WR, Bhattacharya R, Mukherjee P. Revealing macropinocytosis using nanoparticles. Mol Aspects Med. 2022;83: 100993.PubMedCrossRef
31.
go back to reference Vassie JA, Whitelock JM, Lord MS. Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon Cancer cells. Acta Biomater. 2017;50:127–41.PubMedCrossRef Vassie JA, Whitelock JM, Lord MS. Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon Cancer cells. Acta Biomater. 2017;50:127–41.PubMedCrossRef
32.
go back to reference Bourquin J, Septiadi D, Vanhecke D, Balog S, Steinmetz L, Spuch-Calvar M, et al. Reduction of nanoparticle load in cells by mitosis but Not Exocytosis. ACS Nano. 2019;13(7):7759–70.PubMedCrossRef Bourquin J, Septiadi D, Vanhecke D, Balog S, Steinmetz L, Spuch-Calvar M, et al. Reduction of nanoparticle load in cells by mitosis but Not Exocytosis. ACS Nano. 2019;13(7):7759–70.PubMedCrossRef
33.
34.
go back to reference Rasheed S, Nelson-Rees WA, Toth EM, Arnstein P, Gardner MB. Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer. 1974;33(4):1027–33.PubMedCrossRef Rasheed S, Nelson-Rees WA, Toth EM, Arnstein P, Gardner MB. Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer. 1974;33(4):1027–33.PubMedCrossRef
35.
go back to reference Petitprez A, Poindessous V, Ouaret D, Regairaz M, Bastian G, Guerin E, et al. Acquired irinotecan resistance is accompanied by stable modifications of cell cycle dynamics Independent of MSI status. Int J Oncol. 2013;42(5):1644–53.PubMedCrossRef Petitprez A, Poindessous V, Ouaret D, Regairaz M, Bastian G, Guerin E, et al. Acquired irinotecan resistance is accompanied by stable modifications of cell cycle dynamics Independent of MSI status. Int J Oncol. 2013;42(5):1644–53.PubMedCrossRef
36.
go back to reference Perzelova A, Macikova I, Mraz P, Bizik I, Steno J. Characterization of two new permanent glioma cell lines 8-MG-BA and 42-MG-BA. Neoplasma. 1998;45(1):25–9.PubMed Perzelova A, Macikova I, Mraz P, Bizik I, Steno J. Characterization of two new permanent glioma cell lines 8-MG-BA and 42-MG-BA. Neoplasma. 1998;45(1):25–9.PubMed
37.
go back to reference Chen JW, Pan W, D’Souza MP, August JT. Lysosome-associated membrane proteins: characterization of LAMP-1 of macrophage P388 and mouse embryo 3T3 cultured cells. Arch Biochem Biophys. 1985;239(2):574–86.PubMedCrossRef Chen JW, Pan W, D’Souza MP, August JT. Lysosome-associated membrane proteins: characterization of LAMP-1 of macrophage P388 and mouse embryo 3T3 cultured cells. Arch Biochem Biophys. 1985;239(2):574–86.PubMedCrossRef
38.
go back to reference Hoffmann C, Calugaru V, Borcoman E, Moreno V, Calvo E, Liem X, et al. Phase I dose-escalation study of NBTXR3 activated by intensity-modulated radiation therapy in elderly patients with locally advanced squamous cell carcinoma of the oral cavity or oropharynx. Eur J Cancer. 2021;146:135–44.PubMedCrossRef Hoffmann C, Calugaru V, Borcoman E, Moreno V, Calvo E, Liem X, et al. Phase I dose-escalation study of NBTXR3 activated by intensity-modulated radiation therapy in elderly patients with locally advanced squamous cell carcinoma of the oral cavity or oropharynx. Eur J Cancer. 2021;146:135–44.PubMedCrossRef
39.
go back to reference Gao H, Bai Y, Jia Y, Zhao Y, Kang R, Tang D, et al. Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun. 2018;503(3):1550–6.PubMedCrossRef Gao H, Bai Y, Jia Y, Zhao Y, Kang R, Tang D, et al. Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun. 2018;503(3):1550–6.PubMedCrossRef
40.
go back to reference Lee JY, Kim WK, Bae KH, Lee SC, Lee EW. Lipid Metabolism and Ferroptosis. Biology (Basel). 2021;10(3):184.PubMed Lee JY, Kim WK, Bae KH, Lee SC, Lee EW. Lipid Metabolism and Ferroptosis. Biology (Basel). 2021;10(3):184.PubMed
41.
go back to reference Pearson AN, Carmicheal J, Jiang L, Lei YL, Green MD. Contribution of lipid oxidation and ferroptosis to Radiotherapy Efficacy. Int J Mol Sci. 2021;22:22.CrossRef Pearson AN, Carmicheal J, Jiang L, Lei YL, Green MD. Contribution of lipid oxidation and ferroptosis to Radiotherapy Efficacy. Int J Mol Sci. 2021;22:22.CrossRef
42.
go back to reference Bonvalot S, Rutkowski PL, Thariat J, Carrere S, Ducassou A, Sunyach MP, et al. Final safety and health-related quality of LIfe results of the Phase 2/3 Act.In.Sarc Study with Preoperative NBTXR3 Plus Radiation Therapy Versus Radiation Therapy in locally advanced soft-tissue sarcoma. Int J Radiat Oncol Biol Phys. 2022;114(3):422–32.PubMedCrossRef Bonvalot S, Rutkowski PL, Thariat J, Carrere S, Ducassou A, Sunyach MP, et al. Final safety and health-related quality of LIfe results of the Phase 2/3 Act.In.Sarc Study with Preoperative NBTXR3 Plus Radiation Therapy Versus Radiation Therapy in locally advanced soft-tissue sarcoma. Int J Radiat Oncol Biol Phys. 2022;114(3):422–32.PubMedCrossRef
43.
go back to reference Wang SH, Lee CW, Chiou A, Wei PK. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnol. 2010;8: 33.CrossRef Wang SH, Lee CW, Chiou A, Wei PK. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnol. 2010;8: 33.CrossRef
44.
go back to reference Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, et al. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano. 2011;5(11):8629–39.PubMedCrossRef Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, et al. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano. 2011;5(11):8629–39.PubMedCrossRef
45.
go back to reference Tejeda-Munoz N, Albrecht LV, Bui MH, De Robertis EM. Wnt canonical pathway activates macropinocytosis and lysosomal degradation of extracellular proteins. Proc Natl Acad Sci U S A. 2019;116(21):10402–11.PubMedPubMedCentralCrossRef Tejeda-Munoz N, Albrecht LV, Bui MH, De Robertis EM. Wnt canonical pathway activates macropinocytosis and lysosomal degradation of extracellular proteins. Proc Natl Acad Sci U S A. 2019;116(21):10402–11.PubMedPubMedCentralCrossRef
46.
go back to reference Torii S, Shintoku R, Kubota C, Yaegashi M, Torii R, Sasaki M, et al. An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem J. 2016;473(6):769–77.PubMedCrossRef Torii S, Shintoku R, Kubota C, Yaegashi M, Torii R, Sasaki M, et al. An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem J. 2016;473(6):769–77.PubMedCrossRef
47.
go back to reference Wang F, Gomez-Sintes R, Boya P. Lysosomal membrane permeabilization and cell death. Traffic. 2018;19(12):918–31.PubMedCrossRef Wang F, Gomez-Sintes R, Boya P. Lysosomal membrane permeabilization and cell death. Traffic. 2018;19(12):918–31.PubMedCrossRef
48.
go back to reference Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T, Ravichandran KS, et al. Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun. 2022;13(1):3676.PubMedPubMedCentralCrossRef Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T, Ravichandran KS, et al. Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun. 2022;13(1):3676.PubMedPubMedCentralCrossRef
49.
go back to reference Wan C, Sun Y, Tian Y, Lu L, Dai X, Meng J, et al. Irradiated tumor cell-derived microparticles mediate tumor eradication via cell killing and immune reprogramming. Sci Adv. 2020;6(13): eaay9789.PubMedPubMedCentralCrossRef Wan C, Sun Y, Tian Y, Lu L, Dai X, Meng J, et al. Irradiated tumor cell-derived microparticles mediate tumor eradication via cell killing and immune reprogramming. Sci Adv. 2020;6(13): eaay9789.PubMedPubMedCentralCrossRef
50.
go back to reference Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18(5):280–96.PubMedCrossRef Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18(5):280–96.PubMedCrossRef
51.
go back to reference Wang W, Green M, Choi JE, Gijon M, Kennedy PD, Johnson JK, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569(7755):270–4.PubMedPubMedCentralCrossRef Wang W, Green M, Choi JE, Gijon M, Kennedy PD, Johnson JK, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569(7755):270–4.PubMedPubMedCentralCrossRef
52.
go back to reference Yuan Y, Cao W, Zhou H, Qian H, Wang H. CLTRN, Regulated by NRF1/RAN/DLD protein complex, enhances radiation sensitivity of hepatocellular carcinoma cells through ferroptosis pathway. Int J Radiat Oncol Biol Phys. 2021;110(3):859–71.PubMedCrossRef Yuan Y, Cao W, Zhou H, Qian H, Wang H. CLTRN, Regulated by NRF1/RAN/DLD protein complex, enhances radiation sensitivity of hepatocellular carcinoma cells through ferroptosis pathway. Int J Radiat Oncol Biol Phys. 2021;110(3):859–71.PubMedCrossRef
53.
go back to reference Dai X, Zhang J, Bao X, Guo Y, Jin Y, Yang C, et al. Induction of tumor ferroptosis-dependent immunity via an injectable attractive pickering emulsion gel. Adv Mater. 2023;35:e2303542.PubMedCrossRef Dai X, Zhang J, Bao X, Guo Y, Jin Y, Yang C, et al. Induction of tumor ferroptosis-dependent immunity via an injectable attractive pickering emulsion gel. Adv Mater. 2023;35:e2303542.PubMedCrossRef
55.
go back to reference Liu W, Chen H, Zhu Z, Liu Z, Ma C, Lee YJ, et al. Ferroptosis inducer improves the efficacy of oncolytic virus-mediated cancer immunotherapy. Biomedicines. 2022;10(6):1425.PubMedPubMedCentralCrossRef Liu W, Chen H, Zhu Z, Liu Z, Ma C, Lee YJ, et al. Ferroptosis inducer improves the efficacy of oncolytic virus-mediated cancer immunotherapy. Biomedicines. 2022;10(6):1425.PubMedPubMedCentralCrossRef
56.
go back to reference Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze MT, et al. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol. 2015;2(4): e1054549.PubMedPubMedCentralCrossRef Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze MT, et al. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol. 2015;2(4): e1054549.PubMedPubMedCentralCrossRef
57.
go back to reference Kuang F, Liu J, Li C, Kang R, Tang D. Cathepsin B is a mediator of organelle-specific initiation of ferroptosis. Biochem Biophys Res Commun. 2020;533(4):1464–9.PubMedCrossRef Kuang F, Liu J, Li C, Kang R, Tang D. Cathepsin B is a mediator of organelle-specific initiation of ferroptosis. Biochem Biophys Res Commun. 2020;533(4):1464–9.PubMedCrossRef
58.
go back to reference Villagomez-Bernabe B, Currell FJ. Physical Radiation Enhancement effects around clinically relevant clusters of nanoagents in biological systems. Sci Rep. 2019;9(1):8156.PubMedPubMedCentralCrossRef Villagomez-Bernabe B, Currell FJ. Physical Radiation Enhancement effects around clinically relevant clusters of nanoagents in biological systems. Sci Rep. 2019;9(1):8156.PubMedPubMedCentralCrossRef
Metadata
Title
Radiotherapy-activated NBTXR3 nanoparticles promote ferroptosis through induction of lysosomal membrane permeabilization
Authors
Jordan Da Silva
Célia Bienassis
Peter Schmitt
Céline Berjaud
Mickael Guedj
Sébastien Paris
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Radiotherapy
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2024
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-023-02938-0

Other articles of this Issue 1/2024

Journal of Experimental & Clinical Cancer Research 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine