Skip to main content
Top
Published in: International Journal of Clinical Oncology 5/2020

Open Access 01-05-2020 | Radiotherapy | Invited Review Article

Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment

Authors: Hiro Sato, Noriyuki Okonogi, Takashi Nakano

Published in: International Journal of Clinical Oncology | Issue 5/2020

Login to get access

Abstract

Significant technological advances in radiotherapy have been made in the past few decades. High-precision radiotherapy has recently become popular and is contributing to improvements in the local control of the irradiated target lesions and the reduction of adverse effects. Accordingly, for long-term survival, the importance of systemic cancer control, including at non-irradiated sites, is growing. Toward this challenge, the treatment methods in which anti-PD-1/PD-L1 antibodies that exert systemic effects by restoring anti-tumour immunity are combined with radiotherapy has attracted attention in recent years. Previous studies have reported the activation of anti-tumour immunity by radiotherapy, which simultaneously elevates PD-L1 expression, suggesting a potential for combination therapy. Radiotherapy induces so-called ‘immunogenic cell death’, which involves cell surface translocation of calreticulin and extracellular release of high-mobility group protein box 1 (HMGB-1) and adenosine-5′-triphosphate (ATP). Furthermore, radiotherapy causes immune activation via MHC class I upregulation and cGAS–STING pathway. In contrast, induction of immunosuppressive lymphocytes and the release of immunosuppressive cytokines and chemokines by radiotherapy contribute to immunosuppressive reactions. In this article, we review immune responses induced by radiotherapy as well as previous reports to support the rationale of combination of radiotherapy and anti-PD-1/PD-L1 antibodies. A number of preclinical and clinical studies have shown the efficacy of radiotherapy combined with immune checkpoint inhibition, hence combination therapy is considered to be an important future strategy for cancer treatment.
Literature
1.
go back to reference Chetty IJ, Martel MK, Jaffray DA et al (2015) Technology for innovation in radiation oncology. Int J Radiat Oncol Biol Phys 93:485–492PubMedPubMedCentral Chetty IJ, Martel MK, Jaffray DA et al (2015) Technology for innovation in radiation oncology. Int J Radiat Oncol Biol Phys 93:485–492PubMedPubMedCentral
2.
go back to reference Iwai Y, Ishida M, Tanaka Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297PubMedPubMedCentral Iwai Y, Ishida M, Tanaka Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297PubMedPubMedCentral
3.
go back to reference Iwai Y, Terawaki S, Honjo T (2005) PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol 17:133–144PubMed Iwai Y, Terawaki S, Honjo T (2005) PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol 17:133–144PubMed
4.
go back to reference Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813PubMedPubMedCentral Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813PubMedPubMedCentral
5.
go back to reference Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330PubMed Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330PubMed
6.
go back to reference Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532PubMed Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532PubMed
7.
go back to reference Schachter J, Ribas A, Long GV et al (2017) Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet 390:1853–1862PubMed Schachter J, Ribas A, Long GV et al (2017) Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet 390:1853–1862PubMed
8.
go back to reference Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639PubMedPubMedCentral Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639PubMedPubMedCentral
9.
go back to reference Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135PubMedPubMedCentral Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135PubMedPubMedCentral
10.
go back to reference Reck M, Rodriguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:1823–1833PubMed Reck M, Rodriguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:1823–1833PubMed
11.
go back to reference Ferris RL, Blumenschein G, Fayette J et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867PubMedPubMedCentral Ferris RL, Blumenschein G, Fayette J et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867PubMedPubMedCentral
12.
go back to reference Rittmeyer A, Barlesi F, Waterkamp D et al (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389:255–265PubMed Rittmeyer A, Barlesi F, Waterkamp D et al (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389:255–265PubMed
13.
go back to reference Golden EB, Frances D, Pellicciotta I et al (2014) Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3:28518 Golden EB, Frances D, Pellicciotta I et al (2014) Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3:28518
14.
go back to reference Rodriguez-Ruiz ME, Rodriguez I, Leaman O et al (2019) Immune mechanisms mediating abscopal effects in radioimmunotherapy. Pharmacol Ther 196:195–203PubMed Rodriguez-Ruiz ME, Rodriguez I, Leaman O et al (2019) Immune mechanisms mediating abscopal effects in radioimmunotherapy. Pharmacol Ther 196:195–203PubMed
15.
go back to reference Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61PubMed Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61PubMed
16.
go back to reference Yamazaki T, Hannani D, Poirier-Colame V et al (2014) Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 21:69–78PubMed Yamazaki T, Hannani D, Poirier-Colame V et al (2014) Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 21:69–78PubMed
17.
go back to reference Messmer D, Yang H, Telusma G et al (2004) High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol 173:307–313PubMed Messmer D, Yang H, Telusma G et al (2004) High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol 173:307–313PubMed
18.
go back to reference Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059PubMed Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059PubMed
19.
go back to reference Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384PubMed Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384PubMed
20.
go back to reference Gameiro SR, Jammeh ML, Wattenberg MM et al (2014) Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 5:403–416PubMed Gameiro SR, Jammeh ML, Wattenberg MM et al (2014) Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 5:403–416PubMed
21.
go back to reference Huang Y, Dong Y, Zhao J et al (2019) Comparison of the effects of photon, proton and carbon-ion radiation on the ecto-calreticulin exposure in various tumor cell lines. Ann Transl Med 7:542PubMedPubMedCentral Huang Y, Dong Y, Zhao J et al (2019) Comparison of the effects of photon, proton and carbon-ion radiation on the ecto-calreticulin exposure in various tumor cell lines. Ann Transl Med 7:542PubMedPubMedCentral
22.
go back to reference Yoshimoto Y, Oike T, Okonogi N et al (2015) Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation. J Radiat Res 56:509–514PubMedPubMedCentral Yoshimoto Y, Oike T, Okonogi N et al (2015) Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation. J Radiat Res 56:509–514PubMedPubMedCentral
23.
go back to reference Onishi M, Okonogi N, Oike T et al (2018) High linear energy transfer carbon-ion irradiation increases the release of the immune mediator high mobility group box 1 from human cancer cells. J Radiat Res 59:541–546PubMedPubMedCentral Onishi M, Okonogi N, Oike T et al (2018) High linear energy transfer carbon-ion irradiation increases the release of the immune mediator high mobility group box 1 from human cancer cells. J Radiat Res 59:541–546PubMedPubMedCentral
24.
go back to reference Ma YT, Kepp O, Ghiringhelli F et al (2010) Chemotherapy and radiotherapy: Cryptic anticancer vaccines. Semin Immunol 22:113–124PubMed Ma YT, Kepp O, Ghiringhelli F et al (2010) Chemotherapy and radiotherapy: Cryptic anticancer vaccines. Semin Immunol 22:113–124PubMed
25.
go back to reference Deng L, Liang H, Xu M et al (2014) STING-dependent cytosolic DNA Sensing promotes radiation-induced Type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41:843–852PubMedPubMedCentral Deng L, Liang H, Xu M et al (2014) STING-dependent cytosolic DNA Sensing promotes radiation-induced Type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41:843–852PubMedPubMedCentral
26.
go back to reference Wu JX, Sun LJ, Chen X et al (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–830PubMed Wu JX, Sun LJ, Chen X et al (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–830PubMed
27.
go back to reference Sun LJ, Wu JX, Du FH et al (2013) Cyclic GMP-AMP synthase is a cytosolic dna sensor that activates the Type I interferon pathway. Science 339:786–791PubMed Sun LJ, Wu JX, Du FH et al (2013) Cyclic GMP-AMP synthase is a cytosolic dna sensor that activates the Type I interferon pathway. Science 339:786–791PubMed
28.
go back to reference Burnette BC, Liang H, Lee Y et al (2011) The efficacy of radiotherapy relies upon induction of Type I interferon-dependent innate and adaptive immunity. Can Res 71:2488–2496 Burnette BC, Liang H, Lee Y et al (2011) The efficacy of radiotherapy relies upon induction of Type I interferon-dependent innate and adaptive immunity. Can Res 71:2488–2496
29.
go back to reference Hornung V, Latz E (2010) Intracellular DNA recognition. Nat Rev Immunol 10:123–130PubMed Hornung V, Latz E (2010) Intracellular DNA recognition. Nat Rev Immunol 10:123–130PubMed
30.
go back to reference Ablasser A, Goldeck M, Cavlar T et al (2013) cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature 498:380PubMedPubMedCentral Ablasser A, Goldeck M, Cavlar T et al (2013) cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature 498:380PubMedPubMedCentral
31.
go back to reference Wang H, Hu SQ, Chen X et al (2017) cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci USA 114:1637–1642PubMedPubMedCentral Wang H, Hu SQ, Chen X et al (2017) cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci USA 114:1637–1642PubMedPubMedCentral
32.
go back to reference Gerber SA, Sedlacek AL, Cron KR et al (2013) IFN-gamma mediates the antitumor effects of radiation therapy in a murine colon tumor. Am J Pathol 182:2345–2354PubMedPubMedCentral Gerber SA, Sedlacek AL, Cron KR et al (2013) IFN-gamma mediates the antitumor effects of radiation therapy in a murine colon tumor. Am J Pathol 182:2345–2354PubMedPubMedCentral
33.
go back to reference Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271PubMedPubMedCentral Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271PubMedPubMedCentral
34.
go back to reference Gasser S, Orsulic S, Brown EJ et al (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190PubMedPubMedCentral Gasser S, Orsulic S, Brown EJ et al (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190PubMedPubMedCentral
35.
go back to reference Nakajima NI, Niimi A, Isono M et al (2017) Inhibition of the HDAC/Suv39/G9a pathway restores the expression of DNA damage-dependent major histocompatibility complex class I-related chain A and B in cancer cells. Oncol Rep 38:693–702PubMedPubMedCentral Nakajima NI, Niimi A, Isono M et al (2017) Inhibition of the HDAC/Suv39/G9a pathway restores the expression of DNA damage-dependent major histocompatibility complex class I-related chain A and B in cancer cells. Oncol Rep 38:693–702PubMedPubMedCentral
36.
go back to reference Stangl S, Gross C, Pockley AG et al (2008) Influence of Hsp70 and HLA-E on the killing of leukemic blasts by cytokine/Hsp70 peptide-activated human natural killer (NK) cells. Cell Stress Chaperones 13:221–230PubMedPubMedCentral Stangl S, Gross C, Pockley AG et al (2008) Influence of Hsp70 and HLA-E on the killing of leukemic blasts by cytokine/Hsp70 peptide-activated human natural killer (NK) cells. Cell Stress Chaperones 13:221–230PubMedPubMedCentral
37.
go back to reference Shevtsov M, Sato H, Multhoff G et al (2019) Novel approaches to improve the efficacy of immuno-radiotherapy. Front Oncol 9:156PubMedPubMedCentral Shevtsov M, Sato H, Multhoff G et al (2019) Novel approaches to improve the efficacy of immuno-radiotherapy. Front Oncol 9:156PubMedPubMedCentral
38.
go back to reference Dovedi SJ, Adlard AL, Lipowska-Bhalla G et al (2014) Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Can Res 74:5458–5468 Dovedi SJ, Adlard AL, Lipowska-Bhalla G et al (2014) Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Can Res 74:5458–5468
39.
go back to reference Chen MF, Chen PT, Chen WC et al (2016) The role of PD-L1 in the radiation response and prognosis for esophageal squamous cell carcinoma related to IL-6 and T-cell immunosuppression. Oncotarget 7:7913–7924PubMedPubMedCentral Chen MF, Chen PT, Chen WC et al (2016) The role of PD-L1 in the radiation response and prognosis for esophageal squamous cell carcinoma related to IL-6 and T-cell immunosuppression. Oncotarget 7:7913–7924PubMedPubMedCentral
40.
go back to reference Azad A, Lim SY, D'Costa Z et al (2017) PD-L1 blockade enhances response of pancreatic ductal adenocarcinoma to radiotherapy. Embo Mol Med 9:167–180PubMed Azad A, Lim SY, D'Costa Z et al (2017) PD-L1 blockade enhances response of pancreatic ductal adenocarcinoma to radiotherapy. Embo Mol Med 9:167–180PubMed
41.
42.
go back to reference Shin DS, Zaretsky JM, Escuin-Ordinas H et al (2017) Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. Cancer Discov 7:188–201PubMed Shin DS, Zaretsky JM, Escuin-Ordinas H et al (2017) Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. Cancer Discov 7:188–201PubMed
43.
go back to reference Garcia-Diaz A, Shin DS, Moreno BH et al (2017) Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 19:1189–1201PubMedPubMedCentral Garcia-Diaz A, Shin DS, Moreno BH et al (2017) Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 19:1189–1201PubMedPubMedCentral
44.
go back to reference Vanpouille-Box C, Alard A, Aryankalayil MJ et al (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 8:15618PubMedPubMedCentral Vanpouille-Box C, Alard A, Aryankalayil MJ et al (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 8:15618PubMedPubMedCentral
45.
go back to reference Zhang N, Zeng YY, Du WW et al (2016) The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol 49:1360–1368PubMed Zhang N, Zeng YY, Du WW et al (2016) The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol 49:1360–1368PubMed
46.
go back to reference Gao SP, Mark KG, Leslie K et al (2007) Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Investig 117:3846–3856PubMedPubMedCentral Gao SP, Mark KG, Leslie K et al (2007) Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Investig 117:3846–3856PubMedPubMedCentral
47.
go back to reference Sato H, Niimi A, Yasuhara T et al (2017) DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun 8(1):1751PubMedPubMedCentral Sato H, Niimi A, Yasuhara T et al (2017) DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun 8(1):1751PubMedPubMedCentral
48.
go back to reference Permata TBM, Hagiwara Y, Sato H et al (2019) Base excision repair regulates PD-L1 expression in cancer cells. Oncogene 38:4452–4466PubMed Permata TBM, Hagiwara Y, Sato H et al (2019) Base excision repair regulates PD-L1 expression in cancer cells. Oncogene 38:4452–4466PubMed
49.
go back to reference Iijima M, Okonogi N, Nakajima NI et al (2019) Significance of PD-L1 expression in carbon-ion radiotherapy for uterine cervical adeno/adenosquamous carcinoma. J Gynecol Oncol 31:e19PubMedPubMedCentral Iijima M, Okonogi N, Nakajima NI et al (2019) Significance of PD-L1 expression in carbon-ion radiotherapy for uterine cervical adeno/adenosquamous carcinoma. J Gynecol Oncol 31:e19PubMedPubMedCentral
50.
go back to reference Sun LL, Yang RY, Li CW et al (2018) Inhibition of ATR downregulates PD-L1 and sensitizes tumor cells to T cell-mediated killing. Am J Cancer Res 8:1307PubMedPubMedCentral Sun LL, Yang RY, Li CW et al (2018) Inhibition of ATR downregulates PD-L1 and sensitizes tumor cells to T cell-mediated killing. Am J Cancer Res 8:1307PubMedPubMedCentral
51.
go back to reference Vendetti FP, Karukonda P, Clump DA et al (2018) ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J Clin Invest 128:3926–3940PubMedPubMedCentral Vendetti FP, Karukonda P, Clump DA et al (2018) ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J Clin Invest 128:3926–3940PubMedPubMedCentral
52.
go back to reference Zeng J, See AP, Phallen J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86:343–349PubMedPubMedCentral Zeng J, See AP, Phallen J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86:343–349PubMedPubMedCentral
53.
go back to reference Deng LF, Liang H, Burnette B et al (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Investig 124:687–695PubMedPubMedCentral Deng LF, Liang H, Burnette B et al (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Investig 124:687–695PubMedPubMedCentral
54.
go back to reference Park SS, Dong HD, Liu X et al (2015) PD-1 restrains radiotherapy-induced abscopal effect. Cancer Immunol Res 3:610–619PubMedPubMedCentral Park SS, Dong HD, Liu X et al (2015) PD-1 restrains radiotherapy-induced abscopal effect. Cancer Immunol Res 3:610–619PubMedPubMedCentral
55.
go back to reference Sharabi AB, Nirschl CJ, Kochel CM et al (2015) Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res 3:345–U130PubMed Sharabi AB, Nirschl CJ, Kochel CM et al (2015) Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res 3:345–U130PubMed
56.
go back to reference Rodriguez-Ruiz ME, Rodriguez I, Garasa S et al (2016) Abscopal effects of radiotherapy are enhanced by combined immunostimulatory mAbs and Are dependent on CD8 T cells and crosspriming. Can Res 76:5994–6005 Rodriguez-Ruiz ME, Rodriguez I, Garasa S et al (2016) Abscopal effects of radiotherapy are enhanced by combined immunostimulatory mAbs and Are dependent on CD8 T cells and crosspriming. Can Res 76:5994–6005
57.
go back to reference Herter-Sprie GS, Koyama S, Korideck H et al (2016) Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer. JCI Insight 1:e87415PubMedPubMedCentral Herter-Sprie GS, Koyama S, Korideck H et al (2016) Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer. JCI Insight 1:e87415PubMedPubMedCentral
58.
go back to reference Gong XM, Li XF, Jiang T et al (2017) Combined radiotherapy and anti-PD-L1 antibody synergistically enhances antitumor effect in non-small cell lung cancer. J Thorac Oncol 12:1085–1097PubMed Gong XM, Li XF, Jiang T et al (2017) Combined radiotherapy and anti-PD-L1 antibody synergistically enhances antitumor effect in non-small cell lung cancer. J Thorac Oncol 12:1085–1097PubMed
59.
go back to reference Takahashi Y, Yasui T, Minami K et al (2019) Carbon ion irradiation enhances the antitumor efficacy of dual immune checkpoint blockade therapy both for local and distant sites in murine osteosarcoma. Oncotarget 10:633–646PubMedPubMedCentral Takahashi Y, Yasui T, Minami K et al (2019) Carbon ion irradiation enhances the antitumor efficacy of dual immune checkpoint blockade therapy both for local and distant sites in murine osteosarcoma. Oncotarget 10:633–646PubMedPubMedCentral
60.
go back to reference Suzuki Y, Mimura K, Yoshimoto Y et al (2012) Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma. Cancer Res 72:3967–3976PubMed Suzuki Y, Mimura K, Yoshimoto Y et al (2012) Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma. Cancer Res 72:3967–3976PubMed
61.
go back to reference Singh AK, Winslow TB, Kermany MH et al (2017) A pilot study of stereotactic body radiation therapy combined with cytoreductive nephrectomy for metastatic renal cell carcinoma. Clin Cancer Res 23:5055–5065PubMedPubMedCentral Singh AK, Winslow TB, Kermany MH et al (2017) A pilot study of stereotactic body radiation therapy combined with cytoreductive nephrectomy for metastatic renal cell carcinoma. Clin Cancer Res 23:5055–5065PubMedPubMedCentral
62.
go back to reference Seliger B (2016) Molecular mechanisms of HLA class I-mediated immune evasion of human tumors and their role in resistance to immunotherapies. Hla 88:213–220PubMed Seliger B (2016) Molecular mechanisms of HLA class I-mediated immune evasion of human tumors and their role in resistance to immunotherapies. Hla 88:213–220PubMed
63.
go back to reference Sato H, Suzuki Y, Ide M et al (2014) HLA class I expression and its alteration by preoperative hyperthermo-chemoradiotherapy in patients with rectal cancer. PLoS ONE 9:e108122PubMedPubMedCentral Sato H, Suzuki Y, Ide M et al (2014) HLA class I expression and its alteration by preoperative hyperthermo-chemoradiotherapy in patients with rectal cancer. PLoS ONE 9:e108122PubMedPubMedCentral
64.
go back to reference Thompson RH, Gillettt MD, Cheville JC et al (2004) Costimulatory B7–H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA 101:17174–17179PubMedPubMedCentral Thompson RH, Gillettt MD, Cheville JC et al (2004) Costimulatory B7–H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA 101:17174–17179PubMedPubMedCentral
65.
go back to reference Hamanishi J, Mandai M, Iwasaki M et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8(+) T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365PubMedPubMedCentral Hamanishi J, Mandai M, Iwasaki M et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8(+) T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365PubMedPubMedCentral
66.
go back to reference Lim SH, Hong M, Ahn S et al (2016) Changes in tumour expression of programmed death-ligand 1 after neoadjuvant concurrent chemoradiotherapy in patients with squamous oesophageal cancer. Eur J Cancer 52:1–9PubMed Lim SH, Hong M, Ahn S et al (2016) Changes in tumour expression of programmed death-ligand 1 after neoadjuvant concurrent chemoradiotherapy in patients with squamous oesophageal cancer. Eur J Cancer 52:1–9PubMed
67.
go back to reference Hecht M, Büttner-Herold M, Erlenbach-Wünsch K et al (2016) PD-L1 is upregulated by radiochemotherapy in rectal adenocarcinoma patients and associated with a favourable prognosis. Eur J Cancer 65:52–60PubMed Hecht M, Büttner-Herold M, Erlenbach-Wünsch K et al (2016) PD-L1 is upregulated by radiochemotherapy in rectal adenocarcinoma patients and associated with a favourable prognosis. Eur J Cancer 65:52–60PubMed
68.
go back to reference Chiang SF, Huang CY, Ke TW et al (2019) Upregulation of tumor PD-L1 by neoadjuvant chemoradiotherapy (neoCRT) confers improved survival in patients with lymph node metastasis of locally advanced rectal cancers. Cancer Immunol Immunother 68:283–296PubMed Chiang SF, Huang CY, Ke TW et al (2019) Upregulation of tumor PD-L1 by neoadjuvant chemoradiotherapy (neoCRT) confers improved survival in patients with lymph node metastasis of locally advanced rectal cancers. Cancer Immunol Immunother 68:283–296PubMed
69.
go back to reference Chen TW, Huang KC, Chiang SF et al (2019) Prognostic relevance of programmed cell death-ligand 1 expression and CD8+ TILs in rectal cancer patients before and after neoadjuvant chemoradiotherapy. J Cancer Res Clin Oncol 145:1043–1053PubMed Chen TW, Huang KC, Chiang SF et al (2019) Prognostic relevance of programmed cell death-ligand 1 expression and CD8+ TILs in rectal cancer patients before and after neoadjuvant chemoradiotherapy. J Cancer Res Clin Oncol 145:1043–1053PubMed
70.
go back to reference Patel KR, Martinez A, Stahl JM et al (2018) Increase in PD-L1 expression after pre-operative radiotherapy for soft tissue sarcoma. Oncoimmunology 7:e1442168PubMedPubMedCentral Patel KR, Martinez A, Stahl JM et al (2018) Increase in PD-L1 expression after pre-operative radiotherapy for soft tissue sarcoma. Oncoimmunology 7:e1442168PubMedPubMedCentral
71.
go back to reference Jomrich G, Silberhumer GR, Marian B et al (2016) Programmed death-ligand 1 expression in rectal cancer. Eur Surg 48:352–356PubMedPubMedCentral Jomrich G, Silberhumer GR, Marian B et al (2016) Programmed death-ligand 1 expression in rectal cancer. Eur Surg 48:352–356PubMedPubMedCentral
72.
go back to reference Ogura A, Akiyoshi T, Yamamoto N et al (2018) Pattern of programmed cell death-ligand 1 expression and CD8-positive T-cell infiltration before and after chemoradiotherapy in rectal cancer. Eur J Cancer 91:11–20PubMed Ogura A, Akiyoshi T, Yamamoto N et al (2018) Pattern of programmed cell death-ligand 1 expression and CD8-positive T-cell infiltration before and after chemoradiotherapy in rectal cancer. Eur J Cancer 91:11–20PubMed
73.
go back to reference Fujimoto D, Uehara K, Sato Y et al (2017) Alteration of PD-L1 expression and its prognostic impact after concurrent chemoradiation therapy in non-small cell lung cancer patients. Sci Rep 7(1):11373PubMedPubMedCentral Fujimoto D, Uehara K, Sato Y et al (2017) Alteration of PD-L1 expression and its prognostic impact after concurrent chemoradiation therapy in non-small cell lung cancer patients. Sci Rep 7(1):11373PubMedPubMedCentral
74.
go back to reference Garon EB, Rizvi NA, Hui RN et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028PubMed Garon EB, Rizvi NA, Hui RN et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028PubMed
75.
go back to reference Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563PubMedPubMedCentral Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563PubMedPubMedCentral
77.
go back to reference Antonia SJ, Villegas A, Daniel D et al (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 377:1919–1929PubMed Antonia SJ, Villegas A, Daniel D et al (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 377:1919–1929PubMed
78.
go back to reference Antonia SJ, Villegas A, Daniel D et al (2018) Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med 379:2342–2350PubMed Antonia SJ, Villegas A, Daniel D et al (2018) Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med 379:2342–2350PubMed
79.
go back to reference Luke JJ, Lemons JM, Karrison TG et al (2018) Safety and clinical activity of pembrolizumab and multisite stereotactic body radiotherapy in patients with advanced solid tumors. J Clin Oncol 36:1611PubMedPubMedCentral Luke JJ, Lemons JM, Karrison TG et al (2018) Safety and clinical activity of pembrolizumab and multisite stereotactic body radiotherapy in patients with advanced solid tumors. J Clin Oncol 36:1611PubMedPubMedCentral
80.
go back to reference Shaverdian N, Lisberg AE, Bornazyan K et al (2017) Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol 18:895–903PubMedPubMedCentral Shaverdian N, Lisberg AE, Bornazyan K et al (2017) Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol 18:895–903PubMedPubMedCentral
81.
go back to reference Yamaguchi O, Kaira K, Hashimoto K et al (2019) Radiotherapy is an independent prognostic marker of favorable prognosis in non-small cell lung cancer patients after treatment with the immune checkpoint inhibitor, nivolumab. Thorac Cancer 10:992–1000PubMedPubMedCentral Yamaguchi O, Kaira K, Hashimoto K et al (2019) Radiotherapy is an independent prognostic marker of favorable prognosis in non-small cell lung cancer patients after treatment with the immune checkpoint inhibitor, nivolumab. Thorac Cancer 10:992–1000PubMedPubMedCentral
82.
go back to reference Mauclet C, Duplaquet F, Pirard L et al (2019) Complete tumor response of a locally advanced lung large-cell neuroendocrine carcinoma after palliative thoracic radiotherapy and immunotherapy with nivolumab. Lung Cancer 128:53–56PubMed Mauclet C, Duplaquet F, Pirard L et al (2019) Complete tumor response of a locally advanced lung large-cell neuroendocrine carcinoma after palliative thoracic radiotherapy and immunotherapy with nivolumab. Lung Cancer 128:53–56PubMed
83.
go back to reference Liniker E, Menzies AM, Kong BY et al (2016) Activity and safety of radiotherapy with anti-PD-1 drug therapy in patients with metastatic melanoma. Oncoimmunology 5:1214788 Liniker E, Menzies AM, Kong BY et al (2016) Activity and safety of radiotherapy with anti-PD-1 drug therapy in patients with metastatic melanoma. Oncoimmunology 5:1214788
84.
go back to reference Levy A, Massard C, Soria JC et al (2016) Concurrent irradiation with the anti-programmed cell death ligand-1 immune checkpoint blocker durvalumab: Single centre subset analysis from a phase 1/2 trial. Eur J Cancer 68:156–162PubMed Levy A, Massard C, Soria JC et al (2016) Concurrent irradiation with the anti-programmed cell death ligand-1 immune checkpoint blocker durvalumab: Single centre subset analysis from a phase 1/2 trial. Eur J Cancer 68:156–162PubMed
85.
go back to reference Anderson ES, Postow MA, Wolchok JD et al (2017) Melanoma brain metastases treated with stereotactic radiosurgery and concurrent pembrolizumab display marked regression; efficacy and safety of combined treatment. J Immunother Cancer 5:76PubMedPubMedCentral Anderson ES, Postow MA, Wolchok JD et al (2017) Melanoma brain metastases treated with stereotactic radiosurgery and concurrent pembrolizumab display marked regression; efficacy and safety of combined treatment. J Immunother Cancer 5:76PubMedPubMedCentral
86.
go back to reference Gomes JR, Schmerling RA, Haddad CK et al (2016) Analysis of the abscopal effect with anti-pd1 therapy in patients with metastatic solid tumors. J Immunother 39:367–372 Gomes JR, Schmerling RA, Haddad CK et al (2016) Analysis of the abscopal effect with anti-pd1 therapy in patients with metastatic solid tumors. J Immunother 39:367–372
87.
go back to reference Gong J, Le TQ, Massarelli E et al (2018) Radiation therapy and PD-1/PD-L1 blockade: the clinical development of an evolving anticancer combination. J Immunother Cancer 6:46PubMedPubMedCentral Gong J, Le TQ, Massarelli E et al (2018) Radiation therapy and PD-1/PD-L1 blockade: the clinical development of an evolving anticancer combination. J Immunother Cancer 6:46PubMedPubMedCentral
88.
go back to reference Bradley JD, Nishio M, Okamoto I et al (2019) PACIFIC-2: Phase 3 study of concurrent durvalumab and platinum-based chemoradiotherapy in patients with unresectable, stage III NSCLC. J Clin Oncol 37:8573 Bradley JD, Nishio M, Okamoto I et al (2019) PACIFIC-2: Phase 3 study of concurrent durvalumab and platinum-based chemoradiotherapy in patients with unresectable, stage III NSCLC. J Clin Oncol 37:8573
89.
go back to reference Lugade AA, Moran JP, Gerber SA et al (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174:7516–7523PubMed Lugade AA, Moran JP, Gerber SA et al (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174:7516–7523PubMed
90.
go back to reference Dewan MZ, Galloway AE, Kawashima N et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388PubMedPubMedCentral Dewan MZ, Galloway AE, Kawashima N et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388PubMedPubMedCentral
91.
go back to reference Schaue D, Ratikan JA, Iwamoto KS et al (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83:1306–1310PubMed Schaue D, Ratikan JA, Iwamoto KS et al (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83:1306–1310PubMed
92.
go back to reference Demaria S, Formenti SC (2012) Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol 2:153PubMedPubMedCentral Demaria S, Formenti SC (2012) Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol 2:153PubMedPubMedCentral
Metadata
Title
Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment
Authors
Hiro Sato
Noriyuki Okonogi
Takashi Nakano
Publication date
01-05-2020
Publisher
Springer Singapore
Published in
International Journal of Clinical Oncology / Issue 5/2020
Print ISSN: 1341-9625
Electronic ISSN: 1437-7772
DOI
https://doi.org/10.1007/s10147-020-01666-1

Other articles of this Issue 5/2020

International Journal of Clinical Oncology 5/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine