Skip to main content
Top
Published in: Strahlentherapie und Onkologie 8/2014

01-08-2014 | Original article

Radioprotection of normal tissue cells

Authors: PD Dr. Patrick Maier, Frederik Wenz, Carsten Herskind

Published in: Strahlentherapie und Onkologie | Issue 8/2014

Login to get access

Abstract

Improvements of radiotherapy in combination with surgery and systemic therapy have resulted in increased survival rates of tumor patients. However, radiation-induced normal tissue toxicity is still dose limiting. Several strategies have been pursued with the goal to develop substances which may prevent or reduce damage to normal tissue. Drugs applied before radiotherapy are called radioprotectors; those given after radiotherapy to reduce long-term effects are radiomitigators. Despite more than 50 years of research, until now only two substances, amifostine and palifermin, have overcome all obstacles of clinical approval and are applied during radiotherapy of head and neck cancer or total body irradiation, respectively. However, better understanding of the cellular pathways involved in radiation response has allowed the development of several highly promising drugs functioning as scavengers of reactive oxygen species or targeting specific molecules involved in regulation of cell death pathways or cell cycle arrest. The present review describes the major targets for radioprotectors or radiomitigators currently tested in clinical trials.
Literature
2.
go back to reference Lo SS, Fakiris AJ, Chang EL et al (2010) Stereotactic body radiation therapy: a novel treatment modality. Nat Rev Clin Oncol 7:44–54PubMedCrossRef Lo SS, Fakiris AJ, Chang EL et al (2010) Stereotactic body radiation therapy: a novel treatment modality. Nat Rev Clin Oncol 7:44–54PubMedCrossRef
3.
go back to reference Tipton K, Launders JH, Inamdar R, Miyamoto C, Schoelles K (2011) Stereotactic body radiation therapy: scope of the literature. Ann Intern Med 154:737–745PubMedCrossRef Tipton K, Launders JH, Inamdar R, Miyamoto C, Schoelles K (2011) Stereotactic body radiation therapy: scope of the literature. Ann Intern Med 154:737–745PubMedCrossRef
5.
go back to reference Purdy JA (2008) Dose to normal tissues outside the radiation therapy patient’s treated volume: a review of different radiation therapy techniques. Health Phys 95:666–676PubMedCrossRef Purdy JA (2008) Dose to normal tissues outside the radiation therapy patient’s treated volume: a review of different radiation therapy techniques. Health Phys 95:666–676PubMedCrossRef
6.
go back to reference Wenz F, Tiefenbacher U, Willeke F, Weber KJ (2001) The search for therapeutic gain in radiation oncology. Onkologie 24:51–55PubMedCrossRef Wenz F, Tiefenbacher U, Willeke F, Weber KJ (2001) The search for therapeutic gain in radiation oncology. Onkologie 24:51–55PubMedCrossRef
7.
go back to reference Verellen D, Ridder MD, Linthout N, Tournel K et al (2007) Innovations in image-guided radiotherapy. Nat Rev Cancer 7:949–960PubMedCrossRef Verellen D, Ridder MD, Linthout N, Tournel K et al (2007) Innovations in image-guided radiotherapy. Nat Rev Cancer 7:949–960PubMedCrossRef
8.
go back to reference Stieler F, Wenz F, Shi M, Lohr F (2013) A novel surface imaging system for patient positioning and surveillance during radiotherapy: a phantom study and clinical evaluation. Strahlenther Onkol 189:938–944PubMedCrossRef Stieler F, Wenz F, Shi M, Lohr F (2013) A novel surface imaging system for patient positioning and surveillance during radiotherapy: a phantom study and clinical evaluation. Strahlenther Onkol 189:938–944PubMedCrossRef
9.
go back to reference Bentzen SM, Gregoire V (2011) Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Semin Radiat Oncol 21:101–110PubMedCentralPubMedCrossRef Bentzen SM, Gregoire V (2011) Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Semin Radiat Oncol 21:101–110PubMedCentralPubMedCrossRef
10.
go back to reference Ch’ang HJ, Maj JG, Paris F et al (2005) ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med 11:484–490PubMedCrossRef Ch’ang HJ, Maj JG, Paris F et al (2005) ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med 11:484–490PubMedCrossRef
11.
go back to reference Dainiak N (2002) Hematologic consequences of exposure to ionizing radiation. Exp Hematol 30:513–528PubMedCrossRef Dainiak N (2002) Hematologic consequences of exposure to ionizing radiation. Exp Hematol 30:513–528PubMedCrossRef
12.
go back to reference Haimovitz-Friedman A, Kolesnick RN, Fuks Z (1997) Differential inhibition of radiation-induced apoptosis. Stem Cells 15:43–47PubMedCrossRef Haimovitz-Friedman A, Kolesnick RN, Fuks Z (1997) Differential inhibition of radiation-induced apoptosis. Stem Cells 15:43–47PubMedCrossRef
13.
go back to reference Paris F, Fuks Z, Kang A et al (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297PubMedCrossRef Paris F, Fuks Z, Kang A et al (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297PubMedCrossRef
14.
go back to reference Scott SD, Greco O (2004) Radiation and hypoxia inducible gene therapy systems. Cancer Metastasis Rev 23:269–276PubMedCrossRef Scott SD, Greco O (2004) Radiation and hypoxia inducible gene therapy systems. Cancer Metastasis Rev 23:269–276PubMedCrossRef
15.
go back to reference Cordes N, Rodel F, Rodemann HP (2012) Molecular signaling pathways. Mechanisms and clinical use. Strahlenther Onkol 188:308–311PubMedCrossRef Cordes N, Rodel F, Rodemann HP (2012) Molecular signaling pathways. Mechanisms and clinical use. Strahlenther Onkol 188:308–311PubMedCrossRef
16.
go back to reference Stewart FA, Akleyev AV, Hauer-Jensen M et al (2012) ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann ICRP 41:211–286 Stewart FA, Akleyev AV, Hauer-Jensen M et al (2012) ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann ICRP 41:211–286
17.
go back to reference Bourgier C, Levy A, Vozenin MC, Deutsch E (2012) Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics? Cancer Metastasis Rev 31:699–712PubMedCrossRef Bourgier C, Levy A, Vozenin MC, Deutsch E (2012) Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics? Cancer Metastasis Rev 31:699–712PubMedCrossRef
18.
go back to reference Maier P, Veldwijk MR, Wenz F (2011) Radioprotective gene therapy. Expert Opin Biol Ther 11:1135–1151PubMedCrossRef Maier P, Veldwijk MR, Wenz F (2011) Radioprotective gene therapy. Expert Opin Biol Ther 11:1135–1151PubMedCrossRef
19.
go back to reference Herskind C (1988) Sulfhydryl protection and the oxygen effect on radiation-induced inactivation of r-chromatin in vitro. Influence of an OH scavenger: t-butanol. Radiat Res 115:141–151PubMedCrossRef Herskind C (1988) Sulfhydryl protection and the oxygen effect on radiation-induced inactivation of r-chromatin in vitro. Influence of an OH scavenger: t-butanol. Radiat Res 115:141–151PubMedCrossRef
20.
go back to reference Yuhas JM, Storer JB (1969) Differential chemoprotection of normal and malignant tissues. J Natl Cancer Inst 42:331–335PubMed Yuhas JM, Storer JB (1969) Differential chemoprotection of normal and malignant tissues. J Natl Cancer Inst 42:331–335PubMed
21.
go back to reference Calabro-Jones PM, Fahey RC, Smoluk GD, Ward JF (1985) Alkaline phosphatase promotes radioprotection and accumulation of WR-1065 in V79–171 cells incubated in medium containing WR-2721. Int J Radiat Biol Relat Stud Phys Chem Med 47:23–27PubMedCrossRef Calabro-Jones PM, Fahey RC, Smoluk GD, Ward JF (1985) Alkaline phosphatase promotes radioprotection and accumulation of WR-1065 in V79–171 cells incubated in medium containing WR-2721. Int J Radiat Biol Relat Stud Phys Chem Med 47:23–27PubMedCrossRef
22.
go back to reference Yuhas JM (1980) Active versus passive absorption kinetics as the basis for selective protection of normal tissues by S-2-(3-aminopropylamino)-ethylphosphorothioic acid. Cancer Res 40:1519–1524PubMed Yuhas JM (1980) Active versus passive absorption kinetics as the basis for selective protection of normal tissues by S-2-(3-aminopropylamino)-ethylphosphorothioic acid. Cancer Res 40:1519–1524PubMed
23.
go back to reference Savoye C, Swenberg C, Hugot S et al (1997) Thiol WR-1065 and disulphide WR-33278, two metabolites of the drug ethyol (WR-2721), protect DNA against fast neutron-induced strand breakage. Int J Radiat Biol 71:193–202PubMedCrossRef Savoye C, Swenberg C, Hugot S et al (1997) Thiol WR-1065 and disulphide WR-33278, two metabolites of the drug ethyol (WR-2721), protect DNA against fast neutron-induced strand breakage. Int J Radiat Biol 71:193–202PubMedCrossRef
24.
go back to reference Kouvaris JR, Kouloulias VE, Vlahos LJ (2007) Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist 12:738–747PubMedCrossRef Kouvaris JR, Kouloulias VE, Vlahos LJ (2007) Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist 12:738–747PubMedCrossRef
25.
go back to reference Sasse AD, Clark LG, Sasse EC, Clark OA (2006) Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a meta-analysis. Int J Radiat Oncol Biol Phys 64:784–791PubMedCrossRef Sasse AD, Clark LG, Sasse EC, Clark OA (2006) Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a meta-analysis. Int J Radiat Oncol Biol Phys 64:784–791PubMedCrossRef
26.
go back to reference Mell LK, Malik R, Komaki R et al (2007) Effect of amifostine on response rates in locally advanced non-small-cell lung cancer patients treated on randomized controlled trials: a meta-analysis. Int J Radiat Oncol Biol Phys 68:111–118PubMedCrossRef Mell LK, Malik R, Komaki R et al (2007) Effect of amifostine on response rates in locally advanced non-small-cell lung cancer patients treated on randomized controlled trials: a meta-analysis. Int J Radiat Oncol Biol Phys 68:111–118PubMedCrossRef
27.
go back to reference Movsas B, Scott C, Langer C et al (2005) Randomized trial of amifostine in locally advanced non-small-cell lung cancer patients receiving chemotherapy and hyperfractionated radiation: radiation therapy oncology group trial 98–01. J Clin Oncol 23:2145–2154PubMedCrossRef Movsas B, Scott C, Langer C et al (2005) Randomized trial of amifostine in locally advanced non-small-cell lung cancer patients receiving chemotherapy and hyperfractionated radiation: radiation therapy oncology group trial 98–01. J Clin Oncol 23:2145–2154PubMedCrossRef
28.
go back to reference Koukourakis MI, Maltezos E (2006) Amifostine administration during radiotherapy for cancer patients with genetic, autoimmune, metabolic and other diseases. Anticancer Drugs 17:133–138PubMedCrossRef Koukourakis MI, Maltezos E (2006) Amifostine administration during radiotherapy for cancer patients with genetic, autoimmune, metabolic and other diseases. Anticancer Drugs 17:133–138PubMedCrossRef
31.
32.
go back to reference Russo A, Mitchell JB (1984) Radiation response of Chinese hamster cells after elevation of intracellular glutathione levels. Int J Radiat Oncol Biol Phys 10:1243–1247PubMedCrossRef Russo A, Mitchell JB (1984) Radiation response of Chinese hamster cells after elevation of intracellular glutathione levels. Int J Radiat Oncol Biol Phys 10:1243–1247PubMedCrossRef
33.
go back to reference Russo A, Mitchell JB, Finkelstein E, DeGraff WG et al (1985) The effects of cellular glutathione elevation on the oxygen enhancement ratio. Radiat Res 103:232–239PubMedCrossRef Russo A, Mitchell JB, Finkelstein E, DeGraff WG et al (1985) The effects of cellular glutathione elevation on the oxygen enhancement ratio. Radiat Res 103:232–239PubMedCrossRef
34.
go back to reference Mazur L (2000) Radioprotective effects of the thiols GSH and WR-2721 against X-ray-induction of micronuclei in erythroblasts. Mutat Res 468:27–33PubMedCrossRef Mazur L (2000) Radioprotective effects of the thiols GSH and WR-2721 against X-ray-induction of micronuclei in erythroblasts. Mutat Res 468:27–33PubMedCrossRef
35.
go back to reference Chaudhuri JP, Langendorff H (1968) Chemical radioprotection of mammalian chromosomes in vivo: radioprotection of rat bone-marrow chromosomes with a single prophylactic dose of AET. Int J Radiat Biol Relat Stud Phys Chem Med 14:463–467PubMedCrossRef Chaudhuri JP, Langendorff H (1968) Chemical radioprotection of mammalian chromosomes in vivo: radioprotection of rat bone-marrow chromosomes with a single prophylactic dose of AET. Int J Radiat Biol Relat Stud Phys Chem Med 14:463–467PubMedCrossRef
36.
go back to reference Chatterjee A, Jacob-Raman M, Mohapatra B (1989) Potentiation of bleomycin-induced chromosome aberrations by the radioprotector reduced glutathione. Mutat Res 214:207–213PubMedCrossRef Chatterjee A, Jacob-Raman M, Mohapatra B (1989) Potentiation of bleomycin-induced chromosome aberrations by the radioprotector reduced glutathione. Mutat Res 214:207–213PubMedCrossRef
37.
go back to reference Louie KG, Behrens BC, Kinsella TJ et al (1985) Radiation survival parameters of antineoplastic drug-sensitive and -resistant human ovarian cancer cell lines and their modification by buthionine sulfoximine. Cancer Res 45:2110–2115PubMed Louie KG, Behrens BC, Kinsella TJ et al (1985) Radiation survival parameters of antineoplastic drug-sensitive and -resistant human ovarian cancer cell lines and their modification by buthionine sulfoximine. Cancer Res 45:2110–2115PubMed
38.
go back to reference Biaglow JE, Ayene IS, Koch CJ et al (2003) Radiation response of cells during altered protein thiol redox. Radiat Res 159:484–494PubMedCrossRef Biaglow JE, Ayene IS, Koch CJ et al (2003) Radiation response of cells during altered protein thiol redox. Radiat Res 159:484–494PubMedCrossRef
39.
go back to reference Pujari G, Berni A, Palitti F, Chatterjee A (2009) Influence of glutathione levels on radiation-induced chromosomal DNA damage and repair in human peripheral lymphocytes. Mutat Res 675:23–28PubMedCrossRef Pujari G, Berni A, Palitti F, Chatterjee A (2009) Influence of glutathione levels on radiation-induced chromosomal DNA damage and repair in human peripheral lymphocytes. Mutat Res 675:23–28PubMedCrossRef
40.
go back to reference Ray S, Chatterjee A (2007) Influence of glutathione on the induction of chromosome aberrations, delay in cell cycle kinetics and cell cycle regulator proteins in irradiated mouse bone marrow cells. Int J Radiat Biol 83:347–354PubMedCrossRef Ray S, Chatterjee A (2007) Influence of glutathione on the induction of chromosome aberrations, delay in cell cycle kinetics and cell cycle regulator proteins in irradiated mouse bone marrow cells. Int J Radiat Biol 83:347–354PubMedCrossRef
41.
go back to reference Herskind C, Westergaard O (1986) Inactivation of a single eucaryotic gene irradiated in vitro in transcriptionally active chromatin form. Radiat Res 106:331–344CrossRef Herskind C, Westergaard O (1986) Inactivation of a single eucaryotic gene irradiated in vitro in transcriptionally active chromatin form. Radiat Res 106:331–344CrossRef
42.
go back to reference Herskind C, Westergaard O (1988) Variable protection by OH scavengers against radiation-induced inactivation of isolated transcriptionally active chromatin: the influence of secondary radicals. Radiat Res 114:28–41PubMedCrossRef Herskind C, Westergaard O (1988) Variable protection by OH scavengers against radiation-induced inactivation of isolated transcriptionally active chromatin: the influence of secondary radicals. Radiat Res 114:28–41PubMedCrossRef
43.
go back to reference Vorotnikova E, Rosenthal RA, Tries M, Doctrow SR, Braunhut SJ (2010) Novel synthetic SOD/catalase mimetics can mitigate capillary endothelial cell apoptosis caused by ionizing radiation. Radiat Res 173:748–759PubMedCrossRef Vorotnikova E, Rosenthal RA, Tries M, Doctrow SR, Braunhut SJ (2010) Novel synthetic SOD/catalase mimetics can mitigate capillary endothelial cell apoptosis caused by ionizing radiation. Radiat Res 173:748–759PubMedCrossRef
44.
go back to reference Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349PubMedCrossRef Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349PubMedCrossRef
45.
go back to reference Akashi M, Hachiya M, Paquette RL et al (1995) Irradiation increases manganese superoxide dismutase mRNA levels in human fibroblasts. Possible mechanisms for its accumulation. J Biol Chem 270:15864–15869PubMedCrossRef Akashi M, Hachiya M, Paquette RL et al (1995) Irradiation increases manganese superoxide dismutase mRNA levels in human fibroblasts. Possible mechanisms for its accumulation. J Biol Chem 270:15864–15869PubMedCrossRef
46.
go back to reference Greenberger JS, Epperly MW (2007) Review. Antioxidant gene therapeutic approaches to normal tissue radioprotection and tumor radiosensitization. Vivo 21:141–146 Greenberger JS, Epperly MW (2007) Review. Antioxidant gene therapeutic approaches to normal tissue radioprotection and tumor radiosensitization. Vivo 21:141–146
47.
go back to reference Gauter-Fleckenstein B, Fleckenstein K, Owzar K et al (2008) Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection. Free Radic Biol Med 44:982–989PubMedCentralPubMedCrossRef Gauter-Fleckenstein B, Fleckenstein K, Owzar K et al (2008) Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection. Free Radic Biol Med 44:982–989PubMedCentralPubMedCrossRef
48.
go back to reference Rabbani ZN, Batinic-Haberle I, Anscher MS et al (2007) Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury. Int J Radiat Oncol Biol Phys 67:573–580PubMedCentralPubMedCrossRef Rabbani ZN, Batinic-Haberle I, Anscher MS et al (2007) Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury. Int J Radiat Oncol Biol Phys 67:573–580PubMedCentralPubMedCrossRef
49.
go back to reference Vujaskovic Z, Batinic-Haberle I, Rabbani ZN et al (2002) A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic Biol Med 33:857–863PubMedCrossRef Vujaskovic Z, Batinic-Haberle I, Rabbani ZN et al (2002) A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic Biol Med 33:857–863PubMedCrossRef
50.
go back to reference Doctrow SR, Huffman K, Marcus CB et al (2002) Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents: structure-activity relationship studies. J Med Chem 45:4549–4558PubMedCrossRef Doctrow SR, Huffman K, Marcus CB et al (2002) Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents: structure-activity relationship studies. J Med Chem 45:4549–4558PubMedCrossRef
51.
52.
go back to reference Gao F, Fish BL, Szabo A et al (2012) Short-term treatment with a SOD/catalase mimetic, EUK-207, mitigates pneumonitis and fibrosis after single-dose total-body or whole-thoracic irradiation. Radiat Res 178:468–480PubMedCentralPubMedCrossRef Gao F, Fish BL, Szabo A et al (2012) Short-term treatment with a SOD/catalase mimetic, EUK-207, mitigates pneumonitis and fibrosis after single-dose total-body or whole-thoracic irradiation. Radiat Res 178:468–480PubMedCentralPubMedCrossRef
53.
go back to reference Doctrow SR, Lopez A, Schock AM et al (2013) A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin. J Invest Dermatol 133:1088–1096PubMedCentralPubMedCrossRef Doctrow SR, Lopez A, Schock AM et al (2013) A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin. J Invest Dermatol 133:1088–1096PubMedCentralPubMedCrossRef
54.
go back to reference Goff JP, Epperly MW, Dixon T et al (2011) Radiobiologic effects of GS-nitroxide (JP4–039) on the hematopoietic syndrome. Vivo 25:315–323 Goff JP, Epperly MW, Dixon T et al (2011) Radiobiologic effects of GS-nitroxide (JP4–039) on the hematopoietic syndrome. Vivo 25:315–323
55.
go back to reference Epperly MW, Goff JP, Li S et al (2010) Intraesophageal administration of GS-nitroxide (JP4–039) protects against ionizing irradiation-induced esophagitis. Vivo 24:811–819 Epperly MW, Goff JP, Li S et al (2010) Intraesophageal administration of GS-nitroxide (JP4–039) protects against ionizing irradiation-induced esophagitis. Vivo 24:811–819
56.
go back to reference Veldwijk MR, Herskind C, Laufs S et al (2004) Recombinant adeno-associated virus 2-mediated transfer of the human superoxide-dismutase gene does not confer radioresistance on HeLa cervical carcinoma cells. Radiother Oncol 72:341–350PubMedCrossRef Veldwijk MR, Herskind C, Laufs S et al (2004) Recombinant adeno-associated virus 2-mediated transfer of the human superoxide-dismutase gene does not confer radioresistance on HeLa cervical carcinoma cells. Radiother Oncol 72:341–350PubMedCrossRef
57.
go back to reference Veldwijk MR, Trah J, Wang M et al (2011) Overexpression of manganese superoxide dismutase does not increase clonogenic cell survival despite effect on apoptosis in irradiated lymphoblastoid cells. Radiat Res 176:725–731PubMedCrossRef Veldwijk MR, Trah J, Wang M et al (2011) Overexpression of manganese superoxide dismutase does not increase clonogenic cell survival despite effect on apoptosis in irradiated lymphoblastoid cells. Radiat Res 176:725–731PubMedCrossRef
58.
go back to reference Zhong W, Oberley LW, Oberley TD et al (1996) Inhibition of cell growth and sensitization to oxidative damage by overexpression of manganese superoxide dismutase in rat glioma cells. Cell Growth Differ 7:1175–1186PubMed Zhong W, Oberley LW, Oberley TD et al (1996) Inhibition of cell growth and sensitization to oxidative damage by overexpression of manganese superoxide dismutase in rat glioma cells. Cell Growth Differ 7:1175–1186PubMed
59.
go back to reference Epperly MW, Defilippi S, Sikora C et al (2000) Intratracheal injection of manganese superoxide dismutase (MnSOD) plasmid/liposomes protects normal lung but not orthotopic tumors from irradiation. Gene Ther 7:1011–1018PubMedCrossRef Epperly MW, Defilippi S, Sikora C et al (2000) Intratracheal injection of manganese superoxide dismutase (MnSOD) plasmid/liposomes protects normal lung but not orthotopic tumors from irradiation. Gene Ther 7:1011–1018PubMedCrossRef
60.
go back to reference Guo H, Seixas-Silva JA Jr, Epperly MW et al (2003) Prevention of radiation-induced oral cavity mucositis by plasmid/liposome delivery of the human manganese superoxide dismutase (SOD2) transgene. Radiat Res 159:361–370PubMedCrossRef Guo H, Seixas-Silva JA Jr, Epperly MW et al (2003) Prevention of radiation-induced oral cavity mucositis by plasmid/liposome delivery of the human manganese superoxide dismutase (SOD2) transgene. Radiat Res 159:361–370PubMedCrossRef
61.
go back to reference Delanian S, Martin M, Bravard A et al (2001) Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage. RadiotherOncol 58:325–331 Delanian S, Martin M, Bravard A et al (2001) Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage. RadiotherOncol 58:325–331
62.
go back to reference Epperly MW, Bray JA, Krager S et al (1999) Intratracheal injection of adenovirus containing the human MnSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis. IntJRadiatOncolBiolPhys 43:169–181 Epperly MW, Bray JA, Krager S et al (1999) Intratracheal injection of adenovirus containing the human MnSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis. IntJRadiatOncolBiolPhys 43:169–181
63.
go back to reference Sun J, Chen Y, Li M, Ge Z (1998) Role of antioxidant enzymes on ionizing radiation resistance. Free RadicBiolMed 24:586–593CrossRef Sun J, Chen Y, Li M, Ge Z (1998) Role of antioxidant enzymes on ionizing radiation resistance. Free RadicBiolMed 24:586–593CrossRef
64.
go back to reference Veldwijk MR, Herskind C, Sellner L et al (2009) Normal-tissue radioprotection by overexpression of the copper-zinc and manganese superoxide dismutase genes. Strahlenther Onkol 185:517–523PubMedCrossRef Veldwijk MR, Herskind C, Sellner L et al (2009) Normal-tissue radioprotection by overexpression of the copper-zinc and manganese superoxide dismutase genes. Strahlenther Onkol 185:517–523PubMedCrossRef
65.
go back to reference Tarhini AA, Belani CP, Luketich JD et al (2011) A phase I study of concurrent chemotherapy (paclitaxel and carboplatin) and thoracic radiotherapy with swallowed manganese superoxide dismutase plasmid liposome protection in patients with locally advanced stage III non-small-cell lung cancer. Hum Gene Ther 22:336–342PubMedCentralPubMedCrossRef Tarhini AA, Belani CP, Luketich JD et al (2011) A phase I study of concurrent chemotherapy (paclitaxel and carboplatin) and thoracic radiotherapy with swallowed manganese superoxide dismutase plasmid liposome protection in patients with locally advanced stage III non-small-cell lung cancer. Hum Gene Ther 22:336–342PubMedCentralPubMedCrossRef
66.
go back to reference Maier P, Herskind C, Fleckenstein K et al (2008) MDR1 gene transfer using a lentiviral SIN vector confers radioprotection to human CD34+ hematopoietic progenitor cells. Radiat Res 169:301–310PubMedCrossRef Maier P, Herskind C, Fleckenstein K et al (2008) MDR1 gene transfer using a lentiviral SIN vector confers radioprotection to human CD34+ hematopoietic progenitor cells. Radiat Res 169:301–310PubMedCrossRef
67.
go back to reference Komarov PG, Komarova EA, Kondratov RV et al (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737PubMedCrossRef Komarov PG, Komarova EA, Kondratov RV et al (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737PubMedCrossRef
68.
go back to reference Gudkov AV, Komarova EA (2007) Dangerous habits of a security guard: the two faces of p53 as a drug target. Hum Mol Genet 16:R67–R72 Gudkov AV, Komarova EA (2007) Dangerous habits of a security guard: the two faces of p53 as a drug target. Hum Mol Genet 16:R67–R72
70.
go back to reference Strom E, Sathe S, Komarov PG et al (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2:474–479PubMedCrossRef Strom E, Sathe S, Komarov PG et al (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2:474–479PubMedCrossRef
71.
go back to reference Leonova KI, Shneyder J, Antoch MP et al (2010) A small molecule inhibitor of p53 stimulates amplification of hematopoietic stem cells but does not promote tumor development in mice. Cell Cycle 9:1434–1443PubMedCrossRef Leonova KI, Shneyder J, Antoch MP et al (2010) A small molecule inhibitor of p53 stimulates amplification of hematopoietic stem cells but does not promote tumor development in mice. Cell Cycle 9:1434–1443PubMedCrossRef
72.
go back to reference Christophorou MA, Ringshausen I, Finch AJ et al (2006) The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443:214–217PubMedCrossRef Christophorou MA, Ringshausen I, Finch AJ et al (2006) The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443:214–217PubMedCrossRef
73.
go back to reference Sinn B, Schulze J, Schroeder G et al (2010) Pifithrin-alpha as a potential cytoprotective agent in radiotherapy: protection of normal tissue without decreasing therapeutic efficacy in glioma cells. Radiat Res 174:601–610PubMedCrossRef Sinn B, Schulze J, Schroeder G et al (2010) Pifithrin-alpha as a potential cytoprotective agent in radiotherapy: protection of normal tissue without decreasing therapeutic efficacy in glioma cells. Radiat Res 174:601–610PubMedCrossRef
74.
go back to reference Finch PW, Rubin JS, Miki T et al (1989) Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science 245:752–755PubMedCrossRef Finch PW, Rubin JS, Miki T et al (1989) Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science 245:752–755PubMedCrossRef
75.
go back to reference Miki T, Fleming TP, Bottaro DP et al (1991) Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop. Science 251:72–75PubMedCrossRef Miki T, Fleming TP, Bottaro DP et al (1991) Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop. Science 251:72–75PubMedCrossRef
76.
go back to reference Finch PW, Rubin JS (2006) Keratinocyte growth factor expression and activity in cancer: implications for use in patients with solid tumors. J Natl Cancer Inst 98:812–824PubMedCrossRef Finch PW, Rubin JS (2006) Keratinocyte growth factor expression and activity in cancer: implications for use in patients with solid tumors. J Natl Cancer Inst 98:812–824PubMedCrossRef
77.
go back to reference Wildhaber BE, Yang H, Teitelbaum DH (2003) Keratinocyte growth factor decreases total parenteral nutrition-induced apoptosis in mouse intestinal epithelium via Bcl-2. J Pediatr Surg 38:92–96 (discussion 92–96) Wildhaber BE, Yang H, Teitelbaum DH (2003) Keratinocyte growth factor decreases total parenteral nutrition-induced apoptosis in mouse intestinal epithelium via Bcl-2. J Pediatr Surg 38:92–96 (discussion 92–96)
78.
79.
go back to reference Braun S, Hanselmann C, Gassmann MG et al (2002) Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Mol Cell Biol 22:5492–5505PubMedCentralPubMedCrossRef Braun S, Hanselmann C, Gassmann MG et al (2002) Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Mol Cell Biol 22:5492–5505PubMedCentralPubMedCrossRef
80.
go back to reference Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44 Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44
81.
go back to reference Spielberger R, Stiff P, Bensinger W et al (2004) Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med 351:2590–2598PubMedCrossRef Spielberger R, Stiff P, Bensinger W et al (2004) Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med 351:2590–2598PubMedCrossRef
82.
go back to reference Stiff PJ, Emmanouilides C, Bensinger WI et al (2006) Palifermin reduces patient-reported mouth and throat soreness and improves patient functioning in the hematopoietic stem-cell transplantation setting. J Clin Oncol 24:5186–5193PubMedCrossRef Stiff PJ, Emmanouilides C, Bensinger WI et al (2006) Palifermin reduces patient-reported mouth and throat soreness and improves patient functioning in the hematopoietic stem-cell transplantation setting. J Clin Oncol 24:5186–5193PubMedCrossRef
83.
go back to reference Raber-Durlacher JE, von Bultzingslowen I, Logan RM et al (2013) Systematic review of cytokines and growth factors for the management of oral mucositis in cancer patients. Support Care Cancer 21:343–355PubMedCrossRef Raber-Durlacher JE, von Bultzingslowen I, Logan RM et al (2013) Systematic review of cytokines and growth factors for the management of oral mucositis in cancer patients. Support Care Cancer 21:343–355PubMedCrossRef
84.
go back to reference Alvarez E, Fey EG, Valax P et al (2003) Preclinical characterization of CG53135 (FGF-20) in radiation and concomitant chemotherapy/radiation-induced oral mucositis. Clin Cancer Res 9:3454–3461PubMed Alvarez E, Fey EG, Valax P et al (2003) Preclinical characterization of CG53135 (FGF-20) in radiation and concomitant chemotherapy/radiation-induced oral mucositis. Clin Cancer Res 9:3454–3461PubMed
85.
go back to reference Steiling H, Werner S (2003) Fibroblast growth factors: key players in epithelial morphogenesis, repair and cytoprotection. Curr Opin Biotechnol 14:533–537PubMedCrossRef Steiling H, Werner S (2003) Fibroblast growth factors: key players in epithelial morphogenesis, repair and cytoprotection. Curr Opin Biotechnol 14:533–537PubMedCrossRef
86.
go back to reference Schuster MW, Shore TB, Harpel JG et al (2008) Safety and tolerability of velafermin (CG53135–05) in patients receiving high-dose chemotherapy and autologous peripheral blood stem cell transplant. Support Care Cancer 16:477–483PubMedCrossRef Schuster MW, Shore TB, Harpel JG et al (2008) Safety and tolerability of velafermin (CG53135–05) in patients receiving high-dose chemotherapy and autologous peripheral blood stem cell transplant. Support Care Cancer 16:477–483PubMedCrossRef
87.
go back to reference Freytes CO, Ratanatharathorn V, Taylor C et al (2004) Phase I/II randomized trial evaluating the safety and clinical effects of repifermin administered to reduce mucositis in patients undergoing autologous hematopoietic stem cell transplantation. Clin Cancer Res 10:8318–8324PubMedCrossRef Freytes CO, Ratanatharathorn V, Taylor C et al (2004) Phase I/II randomized trial evaluating the safety and clinical effects of repifermin administered to reduce mucositis in patients undergoing autologous hematopoietic stem cell transplantation. Clin Cancer Res 10:8318–8324PubMedCrossRef
88.
go back to reference Kim SB, Pandita RK, Eskiocak U et al (2012) Targeting of Nrf2 induces DNA damage signaling and protects colonic epithelial cells from ionizing radiation. Proc Natl Acad Sci USA 109:E2949–E2955 Kim SB, Pandita RK, Eskiocak U et al (2012) Targeting of Nrf2 induces DNA damage signaling and protects colonic epithelial cells from ionizing radiation. Proc Natl Acad Sci USA 109:E2949–E2955
89.
go back to reference Mustata G, Li M, Zevola N et al (2011) Development of small-molecule PUMA inhibitors for mitigating radiation-induced cell death. Curr Top Med Chem 11:281–290PubMedCentralPubMedCrossRef Mustata G, Li M, Zevola N et al (2011) Development of small-molecule PUMA inhibitors for mitigating radiation-induced cell death. Curr Top Med Chem 11:281–290PubMedCentralPubMedCrossRef
90.
go back to reference Inoue A, Seidel MG, Wu W et al (2002) Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer cell 2:279–288 Inoue A, Seidel MG, Wu W et al (2002) Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer cell 2:279–288
91.
go back to reference Maier P, Herskind C, Barzan D, Zeller WJ, Wenz F (2010) SNAI2 as a novel radioprotector of normal tissue by gene transfer using a lentiviral bicistronic SIN vector. Radiat Res 173:612–619PubMedCrossRef Maier P, Herskind C, Barzan D, Zeller WJ, Wenz F (2010) SNAI2 as a novel radioprotector of normal tissue by gene transfer using a lentiviral bicistronic SIN vector. Radiat Res 173:612–619PubMedCrossRef
92.
go back to reference Gottesman MM, Ling V (2006) The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS letters 580:998–1009 Gottesman MM, Ling V (2006) The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS letters 580:998–1009
93.
go back to reference Ruefli AA, Tainton KM, Darcy PK, Smyth MJ, Johnstone RW (2002) P-glycoprotein inhibits caspase-8 activation but not formation of the death inducing signal complex (disc) following Fas ligation. Cell Death Differ 9:1266–1272PubMedCrossRef Ruefli AA, Tainton KM, Darcy PK, Smyth MJ, Johnstone RW (2002) P-glycoprotein inhibits caspase-8 activation but not formation of the death inducing signal complex (disc) following Fas ligation. Cell Death Differ 9:1266–1272PubMedCrossRef
94.
go back to reference Tainton KM, Smyth MJ, Jackson JT et al (2004) Mutational analysis of P-glycoprotein: suppression of caspase activation in the absence of ATP-dependent drug efflux. Cell Death Differ 11:1028–1037PubMedCrossRef Tainton KM, Smyth MJ, Jackson JT et al (2004) Mutational analysis of P-glycoprotein: suppression of caspase activation in the absence of ATP-dependent drug efflux. Cell Death Differ 11:1028–1037PubMedCrossRef
95.
go back to reference Belka C, Rudner J, Wesselborg S et al (2000) Differential role of caspase-8 and BID activation during radiation- and CD95-induced apoptosis. Oncogene 19:1181–1190PubMedCrossRef Belka C, Rudner J, Wesselborg S et al (2000) Differential role of caspase-8 and BID activation during radiation- and CD95-induced apoptosis. Oncogene 19:1181–1190PubMedCrossRef
96.
go back to reference Maier P, Fleckenstein K, Li L et al (2006) Overexpression of MDR1 using a retroviral vector differentially regulates genes involved in detoxification and apoptosis and confers radioprotection. Radiat Res 166:463–473PubMedCrossRef Maier P, Fleckenstein K, Li L et al (2006) Overexpression of MDR1 using a retroviral vector differentially regulates genes involved in detoxification and apoptosis and confers radioprotection. Radiat Res 166:463–473PubMedCrossRef
97.
go back to reference Tallant T, Deb A, Kar N et al (2004) Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol 4:33PubMedCentralPubMedCrossRef Tallant T, Deb A, Kar N et al (2004) Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol 4:33PubMedCentralPubMedCrossRef
98.
go back to reference Burdelya LG, Krivokrysenko VI, Tallant TC et al (2008) An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320:226–230PubMedCrossRef Burdelya LG, Krivokrysenko VI, Tallant TC et al (2008) An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320:226–230PubMedCrossRef
99.
go back to reference Wang ZD, Qiao YL, Tian XF et al (2012) Toll-like receptor 5 agonism protects mice from radiation pneumonitis and pulmonary fibrosis. Asian Pac J Cancer Prev 13:4763–4767PubMedCrossRef Wang ZD, Qiao YL, Tian XF et al (2012) Toll-like receptor 5 agonism protects mice from radiation pneumonitis and pulmonary fibrosis. Asian Pac J Cancer Prev 13:4763–4767PubMedCrossRef
100.
go back to reference Zhou SX, Li FS, Qiao YL et al (2012) Toll-like receptor 5 agonist inhibition of growth of A549 lung cancer cells in vivo in a Myd88 dependent manner. Asian Pac J Cancer Prev 13:2807–2812PubMedCrossRef Zhou SX, Li FS, Qiao YL et al (2012) Toll-like receptor 5 agonist inhibition of growth of A549 lung cancer cells in vivo in a Myd88 dependent manner. Asian Pac J Cancer Prev 13:2807–2812PubMedCrossRef
101.
go back to reference Fry DW, Harvey PJ, Keller PR et al (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3:1427–1438PubMed Fry DW, Harvey PJ, Keller PR et al (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3:1427–1438PubMed
102.
go back to reference Toogood PL, Harvey PJ, Repine JT et al (2005) Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J Med Chem 48:2388–2406PubMedCrossRef Toogood PL, Harvey PJ, Repine JT et al (2005) Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J Med Chem 48:2388–2406PubMedCrossRef
103.
go back to reference Zhu G, Conner SE, Zhou X et al (2003) Synthesis, structure-activity relationship, and biological studies of indolocarbazoles as potent cyclin D1-CDK4 inhibitors. J Med Chem 46:2027–2030PubMedCrossRef Zhu G, Conner SE, Zhou X et al (2003) Synthesis, structure-activity relationship, and biological studies of indolocarbazoles as potent cyclin D1-CDK4 inhibitors. J Med Chem 46:2027–2030PubMedCrossRef
104.
go back to reference Johnson SM, Torrice CD, Bell JF et al (2010) Mitigation of hematologic radiation toxicity in mice through pharmacological quiescence induced by CDK4/6 inhibition. J Clin Invest 120:2528–2536PubMedCentralPubMedCrossRef Johnson SM, Torrice CD, Bell JF et al (2010) Mitigation of hematologic radiation toxicity in mice through pharmacological quiescence induced by CDK4/6 inhibition. J Clin Invest 120:2528–2536PubMedCentralPubMedCrossRef
105.
go back to reference Collins I, Garrett MD (2005) Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol 5:366–373PubMedCrossRef Collins I, Garrett MD (2005) Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol 5:366–373PubMedCrossRef
107.
go back to reference Liang Y, Lin SY, Brunicardi FC et al (2009) DNA damage response pathways in tumor suppression and cancer treatment. World J Surg 33:661–666PubMedCrossRef Liang Y, Lin SY, Brunicardi FC et al (2009) DNA damage response pathways in tumor suppression and cancer treatment. World J Surg 33:661–666PubMedCrossRef
108.
go back to reference Greenberger JS (2009) Radioprotection. Vivo 23:323–336 Greenberger JS (2009) Radioprotection. Vivo 23:323–336
109.
go back to reference Erenpreisa J, Kalejs M, Cragg MS (2005) Mitotic catastrophe and endomitosis in tumour cells: an evolutionary key to a molecular solution. Cell Biol Int 29:1012–1018PubMedCrossRef Erenpreisa J, Kalejs M, Cragg MS (2005) Mitotic catastrophe and endomitosis in tumour cells: an evolutionary key to a molecular solution. Cell Biol Int 29:1012–1018PubMedCrossRef
110.
go back to reference Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295PubMedCentralPubMedCrossRef Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295PubMedCentralPubMedCrossRef
Metadata
Title
Radioprotection of normal tissue cells
Authors
PD Dr. Patrick Maier
Frederik Wenz
Carsten Herskind
Publication date
01-08-2014
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 8/2014
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-014-0637-x

Other articles of this Issue 8/2014

Strahlentherapie und Onkologie 8/2014 Go to the issue

Mitteilungen der Fachgesellschaften

Jubilare