Skip to main content
Top
Published in: Tumor Biology 9/2016

01-09-2016 | Original Article

Rac3 regulates cell proliferation through cell cycle pathway and predicts prognosis in lung adenocarcinoma

Authors: Gebang Wang, Huan Wang, Chenlei Zhang, Tieqin Liu, Qingchang Li, Xuyong Lin, Jingwei Xie, Hongxu Liu

Published in: Tumor Biology | Issue 9/2016

Login to get access

Abstract

Lung cancer is still the leading cause of malignant deaths in the world. It is of great importance to find novel functional genes for the tumorigenesis of lung cancer. We demonstrated that Rac3 could promote cell proliferation and inhibit apoptosis in lung adenocarcinoma cell line A549 previously. The aim of this study was to investigate the function and mechanism of Rac3 in lung adenocarcinoma cell lines. Immunohistochemistry staining was performed in 107 lung adenocarcinoma tissues and matched non-tumor tissues. Multivariate analysis and Kaplan-Meier analysis were used to investigate the correlation between Rac3 expression and the clinical outcomes. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay, and flow cytometry analysis were employed to determine the proliferative ability, cell cycle distribution, and apoptosis in H1299 and H1975 cell lines. Gene expression microarray and pathway analysis between the Rac3-siRNA group and the control group in A549 cells were performed to investigate the pathways and mechanism of Rac3 regulation. Rac3 was shown to be positively expressed in lung adenocarcinoma tissues, and the expression of Rac3 associates with longer survival in lung adenocarcinoma patients. Silencing of Rac3 significantly induced cell growth inhibition, colony formation decrease, cell cycle arrest, and apoptosis of lung adenocarcinoma cell lines, which accompanied by obvious downregulation of CCND1, MYC, and TFDP1 of cell cycle pathway involving in the tumorigenesis of lung adenocarcinoma based on the gene expression microarray. In conclusion, these findings suggest that Rac3 has the potential of being a therapeutic target for lung adenocarcinoma.
Literature
2.
go back to reference GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2015;385:117–71.CrossRef GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2015;385:117–71.CrossRef
3.
go back to reference Reddy C, Chilla D, Boltax J. Lung cancer screening: a review of available data and current guidelines. Hosp Pract. 2011;39:107–12.CrossRef Reddy C, Chilla D, Boltax J. Lung cancer screening: a review of available data and current guidelines. Hosp Pract. 2011;39:107–12.CrossRef
4.
go back to reference Bach PB, Mirkin JN, Oliver TK, Azzoli CG, Berry DA, Brawley OW, Byers T, Colditz GA, Gould MK, Jett JR, Sabichi AL, Smith-Bindman R, Wood DE, Qaseem A, Detterbeck FC. Benefits and harms of CT screening for lung cancer: a systematic review. JAMA. 2012;307:2418–29.CrossRefPubMedPubMedCentral Bach PB, Mirkin JN, Oliver TK, Azzoli CG, Berry DA, Brawley OW, Byers T, Colditz GA, Gould MK, Jett JR, Sabichi AL, Smith-Bindman R, Wood DE, Qaseem A, Detterbeck FC. Benefits and harms of CT screening for lung cancer: a systematic review. JAMA. 2012;307:2418–29.CrossRefPubMedPubMedCentral
5.
go back to reference Botling J, Edlund K, Lohr M, Hellwig B, Holmberg L, Lambe M, Berglund A, Ekman S, Bergqvist M, Pontén F, König A, Fernandes O, Karlsson M, Helenius G, Karlsson C, Rahnenführer J, Hengstler JG, Micke P. Biomarker discovery in non–small cell lung cancer: integrating gene expression profiling, meta-analysis, and tissue microarray validation. Clin Cancer Res. 2013;19:194–204.CrossRefPubMed Botling J, Edlund K, Lohr M, Hellwig B, Holmberg L, Lambe M, Berglund A, Ekman S, Bergqvist M, Pontén F, König A, Fernandes O, Karlsson M, Helenius G, Karlsson C, Rahnenführer J, Hengstler JG, Micke P. Biomarker discovery in non–small cell lung cancer: integrating gene expression profiling, meta-analysis, and tissue microarray validation. Clin Cancer Res. 2013;19:194–204.CrossRefPubMed
6.
go back to reference Pusztai L. Chips to bedside: incorporation of microarray data into clinical practice. Clin Cancer Res. 2006;12:7209–14.CrossRefPubMed Pusztai L. Chips to bedside: incorporation of microarray data into clinical practice. Clin Cancer Res. 2006;12:7209–14.CrossRefPubMed
7.
go back to reference Van Aelst L, D’Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997;11:2295–322.CrossRefPubMed Van Aelst L, D’Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997;11:2295–322.CrossRefPubMed
8.
go back to reference Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 2005;6:167–80.CrossRefPubMed Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 2005;6:167–80.CrossRefPubMed
10.
go back to reference Ridley AJ. Rho GTPase and cell migration. J Cell Sci. 2001;114:2713–22.PubMed Ridley AJ. Rho GTPase and cell migration. J Cell Sci. 2001;114:2713–22.PubMed
11.
go back to reference Fritz G, Just I, Kaina B. Rho GTPases are over-expressed in human tumors. Int J Cancer. 1999;81:682–7.CrossRefPubMed Fritz G, Just I, Kaina B. Rho GTPases are over-expressed in human tumors. Int J Cancer. 1999;81:682–7.CrossRefPubMed
12.
go back to reference Abraham MT, Kuriakose MA, Sacks PG, Yee H, Chiriboga L, Bearer EL, Delacure MD. Motility-related proteins as markers for head and neck squamous cell cancer. Laryngoscope. 2001;111:1285–9.CrossRefPubMedPubMedCentral Abraham MT, Kuriakose MA, Sacks PG, Yee H, Chiriboga L, Bearer EL, Delacure MD. Motility-related proteins as markers for head and neck squamous cell cancer. Laryngoscope. 2001;111:1285–9.CrossRefPubMedPubMedCentral
13.
go back to reference Haataja L, Groffen J, Heisterkamp N. Characterization of RAC3, a novel member of the rho family. J Biol Chem. 1997;272:20384–8.CrossRefPubMed Haataja L, Groffen J, Heisterkamp N. Characterization of RAC3, a novel member of the rho family. J Biol Chem. 1997;272:20384–8.CrossRefPubMed
14.
go back to reference Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG. Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci U S A. 2000;97:185–9.CrossRefPubMedPubMedCentral Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG. Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci U S A. 2000;97:185–9.CrossRefPubMedPubMedCentral
15.
go back to reference Gest C, Joimel U, Huang L, Pritchard LL, Petit A, Dulong C, Buquet C, Hu CQ, Mirshahi P, Laurent M, Fauvel-Lafève F, Cazin L, Vannier JP, Lu H, Soria J, Li H, Varin R, Soria C. Rac3 induces a molecular pathway triggering breast cancer cell aggressiveness: differences in MDA-MB-231 and MCF-7 breast cancer cell lines. BMC Cancer. 2013;13:63.CrossRefPubMedPubMedCentral Gest C, Joimel U, Huang L, Pritchard LL, Petit A, Dulong C, Buquet C, Hu CQ, Mirshahi P, Laurent M, Fauvel-Lafève F, Cazin L, Vannier JP, Lu H, Soria J, Li H, Varin R, Soria C. Rac3 induces a molecular pathway triggering breast cancer cell aggressiveness: differences in MDA-MB-231 and MCF-7 breast cancer cell lines. BMC Cancer. 2013;13:63.CrossRefPubMedPubMedCentral
17.
go back to reference Engers R, Ziegler S, Mueller M, Walter A, Willers R, Gabbert HE. Prognostic relevance of increased Rac GTPase expression in prostate carcinomas. Endocr Relat Cancer. 2007;14:245–56.CrossRefPubMed Engers R, Ziegler S, Mueller M, Walter A, Willers R, Gabbert HE. Prognostic relevance of increased Rac GTPase expression in prostate carcinomas. Endocr Relat Cancer. 2007;14:245–56.CrossRefPubMed
18.
go back to reference Dong S, Zhao J, Wei J, Bowser RK, Khoo A, Liu Z, Luketich JD, Pennathur A, Ma H, Zhao Y. F-box protein complex FBXL19 regulates TGFβ1-induced E-cadherin down-regulation by mediating Rac3 ubiquitination and degradation. Mol Cancer. 2014;13:76.CrossRefPubMedPubMedCentral Dong S, Zhao J, Wei J, Bowser RK, Khoo A, Liu Z, Luketich JD, Pennathur A, Ma H, Zhao Y. F-box protein complex FBXL19 regulates TGFβ1-induced E-cadherin down-regulation by mediating Rac3 ubiquitination and degradation. Mol Cancer. 2014;13:76.CrossRefPubMedPubMedCentral
19.
go back to reference Li J, Liu Y, Yin Y. Inhibitory effects of Arhgap6 on cervical carcinoma cells. Tumor Biol. 2015 1. [Epub ahead of print] Li J, Liu Y, Yin Y. Inhibitory effects of Arhgap6 on cervical carcinoma cells. Tumor Biol. 2015 1. [Epub ahead of print]
20.
go back to reference Liu TQ, Wang GB, Li ZJ, Tong XD, Liu HX. Silencing of Rac3 inhibits proliferation and induces apoptosis of human lung cancer cells. Asian Pac J Cancer Prev. 2015;16:3061–5.CrossRefPubMed Liu TQ, Wang GB, Li ZJ, Tong XD, Liu HX. Silencing of Rac3 inhibits proliferation and induces apoptosis of human lung cancer cells. Asian Pac J Cancer Prev. 2015;16:3061–5.CrossRefPubMed
21.
go back to reference Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science. 2002;295:868–72.CrossRefPubMed Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science. 2002;295:868–72.CrossRefPubMed
22.
go back to reference Ginzinger DG. Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol. 2002;30:503–12.CrossRefPubMed Ginzinger DG. Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol. 2002;30:503–12.CrossRefPubMed
23.
go back to reference Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMed Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMed
24.
go back to reference Milner AE, Levens JM, Gregory CD. Flow cytometric methods of analyzing apoptotic cells. Methods Mol Biol. 1998;80:347–54.CrossRefPubMed Milner AE, Levens JM, Gregory CD. Flow cytometric methods of analyzing apoptotic cells. Methods Mol Biol. 1998;80:347–54.CrossRefPubMed
25.
go back to reference Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang XS, Bannon F, Ahn JV, Johnson CJ, Bonaventure A, Marcos-Gragera R, Stiller C, Azevedo e Silva G, Chen WQ, Ogunbiyi OJ, Rachet B, Soeberg MJ, You H, Matsuda T, Bielska-Lasota M, Storm H, Tucker TC, Coleman MP. CONCORD working group. Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 2015;385:977–1010.CrossRefPubMed Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang XS, Bannon F, Ahn JV, Johnson CJ, Bonaventure A, Marcos-Gragera R, Stiller C, Azevedo e Silva G, Chen WQ, Ogunbiyi OJ, Rachet B, Soeberg MJ, You H, Matsuda T, Bielska-Lasota M, Storm H, Tucker TC, Coleman MP. CONCORD working group. Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 2015;385:977–1010.CrossRefPubMed
26.
go back to reference Sánchez de Cos Escuín J. Molecular staging and prognosis in lung cancer. Arch Bronconeumol. 2011;47:539–40.CrossRefPubMed Sánchez de Cos Escuín J. Molecular staging and prognosis in lung cancer. Arch Bronconeumol. 2011;47:539–40.CrossRefPubMed
27.
go back to reference Tomaszek SC, Huebner M, Wigle DA. Prospects for molecular staging of non-small-cell lung cancer from genomic alterations. Expert Rev Respir Med. 2010;4:499–508.CrossRefPubMed Tomaszek SC, Huebner M, Wigle DA. Prospects for molecular staging of non-small-cell lung cancer from genomic alterations. Expert Rev Respir Med. 2010;4:499–508.CrossRefPubMed
28.
go back to reference Chatterjee M, Sequeira L, Jenkins-Kabaila M, Dubyk CW, Pathak S, van Golen KL. Individual rac GTPases mediate aspects of prostate cancer cell and bone marrow endothelial cell interactions. J Signal Transduct. 2011;2011:541851.CrossRefPubMedPubMedCentral Chatterjee M, Sequeira L, Jenkins-Kabaila M, Dubyk CW, Pathak S, van Golen KL. Individual rac GTPases mediate aspects of prostate cancer cell and bone marrow endothelial cell interactions. J Signal Transduct. 2011;2011:541851.CrossRefPubMedPubMedCentral
29.
go back to reference Hwang SL, Chang JH, Cheng TS, Sy WD, Lieu AS, Lin CL, Lee KS, Howng SL, Hong YR. Expression of Rac3 in human brain tumors. J Clin Neurosci. 2005;12:571–4.CrossRefPubMed Hwang SL, Chang JH, Cheng TS, Sy WD, Lieu AS, Lin CL, Lee KS, Howng SL, Hong YR. Expression of Rac3 in human brain tumors. J Clin Neurosci. 2005;12:571–4.CrossRefPubMed
30.
go back to reference Zhang G, Shang B, Yang P, Cao Z, Pan Y, Zhou Q. Induced pluripotent stem cell consensus genes: implication for the risk of tumorigenesis and cancers in induced pluripotent stem cell therapy. Stem Cells Dev. 2012;21:955–64.CrossRefPubMed Zhang G, Shang B, Yang P, Cao Z, Pan Y, Zhou Q. Induced pluripotent stem cell consensus genes: implication for the risk of tumorigenesis and cancers in induced pluripotent stem cell therapy. Stem Cells Dev. 2012;21:955–64.CrossRefPubMed
31.
go back to reference Tjandra H, Compton J, Kellogg D. Control of mitotic events by the Cdc42 GTPase, the Clb2 cyclin and a member of the PAK kinase family. Curr Biol. 1998;8:991–1000.CrossRefPubMed Tjandra H, Compton J, Kellogg D. Control of mitotic events by the Cdc42 GTPase, the Clb2 cyclin and a member of the PAK kinase family. Curr Biol. 1998;8:991–1000.CrossRefPubMed
32.
go back to reference Zhu WL, Hossain MS, Guo DY, Liu S, Tong H, Khakpoor A, Casey PJ, Wang M. A role for Rac3 GTPase in the regulation of autophagy. J Biol Chem. 2011;286:35291–8.CrossRefPubMedPubMedCentral Zhu WL, Hossain MS, Guo DY, Liu S, Tong H, Khakpoor A, Casey PJ, Wang M. A role for Rac3 GTPase in the regulation of autophagy. J Biol Chem. 2011;286:35291–8.CrossRefPubMedPubMedCentral
33.
go back to reference Fernández Larrosa PN, Ruiz Grecco M, Alvarado CV, Micenmacher S, Aguirre C, Martínez Noel G, Costas MA, Rubio MF. Rapamycin effect on senescence and autophagy processes in human cell lines. Medicina (B Aires). 2011;71:238–42. Fernández Larrosa PN, Ruiz Grecco M, Alvarado CV, Micenmacher S, Aguirre C, Martínez Noel G, Costas MA, Rubio MF. Rapamycin effect on senescence and autophagy processes in human cell lines. Medicina (B Aires). 2011;71:238–42.
Metadata
Title
Rac3 regulates cell proliferation through cell cycle pathway and predicts prognosis in lung adenocarcinoma
Authors
Gebang Wang
Huan Wang
Chenlei Zhang
Tieqin Liu
Qingchang Li
Xuyong Lin
Jingwei Xie
Hongxu Liu
Publication date
01-09-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 9/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5126-7

Other articles of this Issue 9/2016

Tumor Biology 9/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine