Skip to main content
Top
Published in: Tumor Biology 9/2016

01-09-2016 | Original Article

Aphanin, a triterpenoid from Amoora rohituka inhibits K-Ras mutant activity and STAT3 in pancreatic carcinoma cells

Authors: Thangaiyan Rabi, Carlo V. Catapano

Published in: Tumor Biology | Issue 9/2016

Login to get access

Abstract

Mutations of the K-Ras gene occur in over 90 % of pancreatic carcinomas, and to date, no targeted therapies exist for this genetically defined subset of cancers. STAT3 plays a critical role in KRAS-driven pancreatic tumorigenesis, suggesting its potential as a therapeutic target in this cancer. Therefore, finding novel and potential drugs to inhibit oncogenic K-Ras is a major challenge in cancer therapy. In an attempt to develop novel anti-KRAS mutant chemotherapeutics, we isolated three novel triterpenoids from Amoora rohituka stem and their chemical structures were characterized by extensive 1H-NMR, 13C-NMR, Mass, IR spectroscopic studies and chemical transformations. Aphanin (3 alpha-angeloyloxyolean-12-en-28-oic acid) is one of the isolated novel triterpenoid compounds. We found aphanin exhibited antiproliferative effects, caused G0-G1 cell cycle arrest, inhibits K-Ras G12D mutant activity by decreased STAT3, p-STAT3, Akt, p-Akt, cyclin D1 and c-Myc expressions, and induced apoptosis in pancreatic cancer HPAF-II (ΔKRAS G12D ) cells. The apoptosis proceeded through depletion of GSH with a concomitant increase in the reactive oxygen species production. The results of our study have important implications for the development of aphanin as potential novel agent for the treatment of K-Ras mutant pancreatic cancer, and STAT3-cMyc-cyclinD1 axis may serve as an important predictive biomarker for the therapeutic efficacy.
Literature
2.
go back to reference Trahey M, McCormick F. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science. 1987;238(4826):542–5.CrossRefPubMed Trahey M, McCormick F. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science. 1987;238(4826):542–5.CrossRefPubMed
3.
go back to reference Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 2003;17(24):3112–26.CrossRefPubMedPubMedCentral Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 2003;17(24):3112–26.CrossRefPubMedPubMedCentral
5.
go back to reference Kohl NE, Omer CA, Conner MW, Anthony NJ, Davide JP, deSolms SJ, et al. Inhibition of farnesyltransferase Induces regression of mammary and salivary carcinomas in rastransgenic mice. Nat Med. 1995;8:792–7.CrossRef Kohl NE, Omer CA, Conner MW, Anthony NJ, Davide JP, deSolms SJ, et al. Inhibition of farnesyltransferase Induces regression of mammary and salivary carcinomas in rastransgenic mice. Nat Med. 1995;8:792–7.CrossRef
6.
go back to reference Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem. 1997;272(22):14459–64.CrossRefPubMed Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem. 1997;272(22):14459–64.CrossRefPubMed
7.
go back to reference James G, Goldstein JL, Brown MS. Resistance of K-RasBV12 proteins to farnesyl transferase inhibitors in Rat1 cells. Proc Natl Acad Sci U S A. 1996;93(9):4454–8.CrossRefPubMedPubMedCentral James G, Goldstein JL, Brown MS. Resistance of K-RasBV12 proteins to farnesyl transferase inhibitors in Rat1 cells. Proc Natl Acad Sci U S A. 1996;93(9):4454–8.CrossRefPubMedPubMedCentral
8.
go back to reference Torrance CJ, Agrawal V, Vogelstein B, Kinzler KW. Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nat Biotechnol. 2001;19(10):940–5.CrossRefPubMed Torrance CJ, Agrawal V, Vogelstein B, Kinzler KW. Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nat Biotechnol. 2001;19(10):940–5.CrossRefPubMed
9.
go back to reference Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285–96.CrossRefPubMed Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285–96.CrossRefPubMed
10.
go back to reference Guo W, Wu S, Liu J, Fang B. Identification of a small molecule with synthetic lethality for K-ras and protein kinase C iota. Cancer Res. 2008;68(18):7403–8.CrossRefPubMedPubMedCentral Guo W, Wu S, Liu J, Fang B. Identification of a small molecule with synthetic lethality for K-ras and protein kinase C iota. Cancer Res. 2008;68(18):7403–8.CrossRefPubMedPubMedCentral
11.
go back to reference Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn LF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462(7269):108–12.CrossRefPubMedPubMedCentral Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn LF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462(7269):108–12.CrossRefPubMedPubMedCentral
12.
go back to reference Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 2009;137(5):835–48.CrossRefPubMedPubMedCentral Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 2009;137(5):835–48.CrossRefPubMedPubMedCentral
13.
go back to reference Scholl C, Fröhling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, et al. Synthetic Lethal interaction between oncogenic KRAS dependency and STK33 suppression in huma cancercells. Cell. 2009;137(5):821–34.CrossRefPubMed Scholl C, Fröhling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, et al. Synthetic Lethal interaction between oncogenic KRAS dependency and STK33 suppression in huma cancercells. Cell. 2009;137(5):821–34.CrossRefPubMed
14.
go back to reference Kindler HL, Niedzwiecki D, Hollis D, Sutherland S. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol. 2010;28:3617–22.CrossRefPubMedPubMedCentral Kindler HL, Niedzwiecki D, Hollis D, Sutherland S. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol. 2010;28:3617–22.CrossRefPubMedPubMedCentral
15.
go back to reference Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N Engl J Med. 2011;364:1817–25.CrossRefPubMed Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N Engl J Med. 2011;364:1817–25.CrossRefPubMed
16.
go back to reference Chan TO, Rodeck U, Chan AM, et al. Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit. Cancer Cell. 2002;1:181–91.CrossRefPubMed Chan TO, Rodeck U, Chan AM, et al. Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit. Cancer Cell. 2002;1:181–91.CrossRefPubMed
17.
go back to reference Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature. 1994;370:527–32.CrossRefPubMed Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature. 1994;370:527–32.CrossRefPubMed
18.
go back to reference Wong KK, Engelman JA, Cantley LC. Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev. 2010;20:87–90.CrossRefPubMed Wong KK, Engelman JA, Cantley LC. Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev. 2010;20:87–90.CrossRefPubMed
19.
go back to reference Kim IA, Bae SS, Fernandes A, et al. Selective inhibition of Ras, phosphoinositide 3 kinase, and Akt isoforms increases the radiosensitivity of human carcinoma cell lines. Cancer Res. 2005;65:7902–10.PubMed Kim IA, Bae SS, Fernandes A, et al. Selective inhibition of Ras, phosphoinositide 3 kinase, and Akt isoforms increases the radiosensitivity of human carcinoma cell lines. Cancer Res. 2005;65:7902–10.PubMed
20.
go back to reference Toyonaga T, Nakano K, Nagano M, Zhao G, Yamaguchi K, Kuroki S, et al. Blockade of constitutively activate Janus kinase/signal transducer and activator of transcription-3 pathway inhibits growth of human pancreatic cancer. Cancer Lett. 2003;201:107–16.CrossRefPubMed Toyonaga T, Nakano K, Nagano M, Zhao G, Yamaguchi K, Kuroki S, et al. Blockade of constitutively activate Janus kinase/signal transducer and activator of transcription-3 pathway inhibits growth of human pancreatic cancer. Cancer Lett. 2003;201:107–16.CrossRefPubMed
21.
go back to reference Frank DA, Mahajan S, Ritz J. B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Investig. 1997;100:3140–8.CrossRefPubMedPubMedCentral Frank DA, Mahajan S, Ritz J. B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Investig. 1997;100:3140–8.CrossRefPubMedPubMedCentral
22.
go back to reference Lesina M, Kurkowski MU, Ludes K, Rose-John S, Treiber M, Klöppel G, et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell. 2011;19:456–69.CrossRefPubMed Lesina M, Kurkowski MU, Ludes K, Rose-John S, Treiber M, Klöppel G, et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell. 2011;19:456–69.CrossRefPubMed
23.
go back to reference Fukuda A, Wang SC, Morris JP, Folias AE, Liou A, Kim GE, et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell. 2011;19:441–55.CrossRefPubMedPubMedCentral Fukuda A, Wang SC, Morris JP, Folias AE, Liou A, Kim GE, et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell. 2011;19:441–55.CrossRefPubMedPubMedCentral
24.
go back to reference Ling X, Arlinghaus RB. Knockdown of STAT3 expression by RNA interference inhibits the induction of breast tumors in immunocompetent mice. Cancer Res. 2005;65:2532–6.CrossRefPubMed Ling X, Arlinghaus RB. Knockdown of STAT3 expression by RNA interference inhibits the induction of breast tumors in immunocompetent mice. Cancer Res. 2005;65:2532–6.CrossRefPubMed
25.
go back to reference Ghani A. Medicinal Plants of Bangladesh with Chemical Constituents and Uses. 2nd ed. Dhaka: Asiatic Society of Bangladesh; 2003. Ghani A. Medicinal Plants of Bangladesh with Chemical Constituents and Uses. 2nd ed. Dhaka: Asiatic Society of Bangladesh; 2003.
26.
go back to reference Chatterjee A, Kundu AB, Chakrabortty T, Chandrasekharan S. Extractives of Aphanamixis polystachya wall. Structures and stereochemistry of aphanamixin and aphanamixinin. Tetrahedron. 1970;26:1859–67.CrossRef Chatterjee A, Kundu AB, Chakrabortty T, Chandrasekharan S. Extractives of Aphanamixis polystachya wall. Structures and stereochemistry of aphanamixin and aphanamixinin. Tetrahedron. 1970;26:1859–67.CrossRef
27.
go back to reference Wu HF, Zhang XP, Wang Y, Zhang JY, Ma GX, Tian Y, et al. Four new diterpenes diterpenes from Aphanamixis polystachya. Fitoterapia. 2013;90:126–31.CrossRefPubMed Wu HF, Zhang XP, Wang Y, Zhang JY, Ma GX, Tian Y, et al. Four new diterpenes diterpenes from Aphanamixis polystachya. Fitoterapia. 2013;90:126–31.CrossRefPubMed
28.
go back to reference Mulholland DA, Naidoo N. Limonoids from Aphanamixis polystachya. Phytochemistry. 1999;51:927–30.CrossRef Mulholland DA, Naidoo N. Limonoids from Aphanamixis polystachya. Phytochemistry. 1999;51:927–30.CrossRef
29.
go back to reference Jain SA, Srivastava SK. 8-C-methyl-quercetin-3-O-b -Dxylopyranoside, a new flavone glycoside from the roots of Amoora rohituka. J Nat Prod. 1985;48:299–301.CrossRef Jain SA, Srivastava SK. 8-C-methyl-quercetin-3-O-b -Dxylopyranoside, a new flavone glycoside from the roots of Amoora rohituka. J Nat Prod. 1985;48:299–301.CrossRef
30.
go back to reference Harmon AD, Weiss U, Silverton JV. The structure of rohitukine, the main alkaloid of Amoora rohituka (Syn. Aphanamixis polystachya) (Maliaceae). Tetrahedron Lett. 1979;8:721–4.CrossRef Harmon AD, Weiss U, Silverton JV. The structure of rohitukine, the main alkaloid of Amoora rohituka (Syn. Aphanamixis polystachya) (Maliaceae). Tetrahedron Lett. 1979;8:721–4.CrossRef
31.
go back to reference Rabi T. 1996. Antitumor activity of amooranin from Amoora rohituka stem bark. Curr Sci. 1996;70:80–1. Rabi T. 1996. Antitumor activity of amooranin from Amoora rohituka stem bark. Curr Sci. 1996;70:80–1.
33.
go back to reference Lee CI, Wu CC, Hsieh SL, Lee CL, Chang YP, Chang CC, et al. Anticancer effects on human pancreatic cancer cells of triterpenoids, polysaccharides and 1,3-β-D-glucan derived from the fruiting body of Antrodia comphorate. Food Funct. 2014;5:3224–32.CrossRefPubMed Lee CI, Wu CC, Hsieh SL, Lee CL, Chang YP, Chang CC, et al. Anticancer effects on human pancreatic cancer cells of triterpenoids, polysaccharides and 1,3-β-D-glucan derived from the fruiting body of Antrodia comphorate. Food Funct. 2014;5:3224–32.CrossRefPubMed
34.
go back to reference Deeb D, Brigolin C, Gao X, Liu Y, Pindolia KR, Gautam SC. Induction of Apoptosis in Pancreatic Cancer Cells by CDDO-Me Involves Repression of Telomerase through Epigenetic Pathways. J Carcinog Mutagen. 2014;5:177–82.CrossRefPubMedPubMedCentral Deeb D, Brigolin C, Gao X, Liu Y, Pindolia KR, Gautam SC. Induction of Apoptosis in Pancreatic Cancer Cells by CDDO-Me Involves Repression of Telomerase through Epigenetic Pathways. J Carcinog Mutagen. 2014;5:177–82.CrossRefPubMedPubMedCentral
35.
go back to reference Deeb D, Gao X, Liu Y, Kim SH, Pindolia KR, Arbab AS, et al. Inhibition of cell proliferation and induction of apoptosis by oleanane triterpenoid (CDDO-Me) in cancer cells is associated with the suppression of hTERT gene expression and its telomerase activity. Biochem Biophys Res Commun. 2012;422:561–7.CrossRefPubMedPubMedCentral Deeb D, Gao X, Liu Y, Kim SH, Pindolia KR, Arbab AS, et al. Inhibition of cell proliferation and induction of apoptosis by oleanane triterpenoid (CDDO-Me) in cancer cells is associated with the suppression of hTERT gene expression and its telomerase activity. Biochem Biophys Res Commun. 2012;422:561–7.CrossRefPubMedPubMedCentral
36.
go back to reference Liby KT, Royce DB, Risingsong R, Williams CR, Maitra A, Hruban RH, et al. Synthetic triterpenoids prolong survival in a transgenic mouse model of pancreatic cancer Cancer. Prev Res (Phila). 2010;3(11):1427–34.CrossRef Liby KT, Royce DB, Risingsong R, Williams CR, Maitra A, Hruban RH, et al. Synthetic triterpenoids prolong survival in a transgenic mouse model of pancreatic cancer Cancer. Prev Res (Phila). 2010;3(11):1427–34.CrossRef
37.
go back to reference Thoennissen NH, Iwanski GB, Doan NB, Okamoto R, Lin P, Abbassi S, et al. Cucurbitacin B induces Apoptosis by Inhibition of the JAK/STAT Pathway and Potentiates Antiproliferative Effects of Gemcitabine on Pancreatic Cancer Cells. Cancer Res. 2009;69(14):5876–84.CrossRefPubMed Thoennissen NH, Iwanski GB, Doan NB, Okamoto R, Lin P, Abbassi S, et al. Cucurbitacin B induces Apoptosis by Inhibition of the JAK/STAT Pathway and Potentiates Antiproliferative Effects of Gemcitabine on Pancreatic Cancer Cells. Cancer Res. 2009;69(14):5876–84.CrossRefPubMed
38.
go back to reference Rabi T, Venkatanarasimhan M. Novel synthetic oleanane triterpenoid AMR-MeOAc inhibits K-Ras through ERK, Akt and survivin in pancreatic cancer cells. Phytomedicine. 2014;21:491–6.CrossRefPubMed Rabi T, Venkatanarasimhan M. Novel synthetic oleanane triterpenoid AMR-MeOAc inhibits K-Ras through ERK, Akt and survivin in pancreatic cancer cells. Phytomedicine. 2014;21:491–6.CrossRefPubMed
39.
go back to reference Rabi T, Wang L, Banerjee S. Novel triterpenoid 25-hydroxy-3-oxoolean-12-en-28-oic acid induces growth arrest and apoptosis in breast cancer cells. Breast Cancer Res Treat. 2007;101:27–36.CrossRefPubMed Rabi T, Wang L, Banerjee S. Novel triterpenoid 25-hydroxy-3-oxoolean-12-en-28-oic acid induces growth arrest and apoptosis in breast cancer cells. Breast Cancer Res Treat. 2007;101:27–36.CrossRefPubMed
40.
go back to reference Bromberg IF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, et al. STAT3 as an oncogene. Cell. 1999;98:295–303.CrossRefPubMed Bromberg IF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, et al. STAT3 as an oncogene. Cell. 1999;98:295–303.CrossRefPubMed
41.
go back to reference Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy induced apoptosis. Cancer Res. 1993;53:3976–85.PubMed Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy induced apoptosis. Cancer Res. 1993;53:3976–85.PubMed
42.
go back to reference Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol. 2003;15:725–31.CrossRefPubMed Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol. 2003;15:725–31.CrossRefPubMed
43.
go back to reference Barnard D, Diaz B, Hettich L, Chuang E, Zhang XF, Avruch J. Identification of the sites of interaction between c-Raf-1 and Ras-GTP. Oncogene. 1995;10:1283–90.PubMed Barnard D, Diaz B, Hettich L, Chuang E, Zhang XF, Avruch J. Identification of the sites of interaction between c-Raf-1 and Ras-GTP. Oncogene. 1995;10:1283–90.PubMed
44.
go back to reference Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Nigatia J, Scaife CL, et al. Phenotype and genotype of pancreatic cancer cell lines. Pancreas. 2010;39:425–35.CrossRefPubMedPubMedCentral Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Nigatia J, Scaife CL, et al. Phenotype and genotype of pancreatic cancer cell lines. Pancreas. 2010;39:425–35.CrossRefPubMedPubMedCentral
45.
go back to reference Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, et al. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene. 2003;22:319–29.CrossRefPubMed Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, et al. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene. 2003;22:319–29.CrossRefPubMed
46.
go back to reference Leslie K, Lang C, Devgan G, Azare J, Berishaj M, Gerald W, et al. Cyclin D1 Is Transcriptionally Regulated by and Required for Transformation by Activated Signal Transducer and Activator of Transcription 3. Cancer Res. 2006;66:2544–52.CrossRefPubMed Leslie K, Lang C, Devgan G, Azare J, Berishaj M, Gerald W, et al. Cyclin D1 Is Transcriptionally Regulated by and Required for Transformation by Activated Signal Transducer and Activator of Transcription 3. Cancer Res. 2006;66:2544–52.CrossRefPubMed
47.
go back to reference Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57:145–55.CrossRefPubMed Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57:145–55.CrossRefPubMed
48.
go back to reference Parasramka MA, Gupta SV. Garcinol inhibits cell proliferation and promotes apoptosis in pancreatic adenocarcinoma cells. Nutr Cancer. 2011;63:456–65.CrossRefPubMed Parasramka MA, Gupta SV. Garcinol inhibits cell proliferation and promotes apoptosis in pancreatic adenocarcinoma cells. Nutr Cancer. 2011;63:456–65.CrossRefPubMed
50.
go back to reference Li N, Grivennikov SI, Karin M. The unholy trinity: inflammation, cytokines, and STAT3 shape the cancer microenvironment. Cancer Cell. 2011;19:429–31.CrossRefPubMedPubMedCentral Li N, Grivennikov SI, Karin M. The unholy trinity: inflammation, cytokines, and STAT3 shape the cancer microenvironment. Cancer Cell. 2011;19:429–31.CrossRefPubMedPubMedCentral
51.
52.
go back to reference Rachagani S, Senapati S, Chakraborty S, Ponnusamy MP, Kumar S, Smith LM, et al. Activated KrasG12D is associated with invasion and metastasis of pancreatic cancer cells through inhibition of E-cadherin. Br J Cancer. 2011;104:1038–48.CrossRefPubMedPubMedCentral Rachagani S, Senapati S, Chakraborty S, Ponnusamy MP, Kumar S, Smith LM, et al. Activated KrasG12D is associated with invasion and metastasis of pancreatic cancer cells through inhibition of E-cadherin. Br J Cancer. 2011;104:1038–48.CrossRefPubMedPubMedCentral
53.
go back to reference Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, et al. MYC inactivation uncovers pluripotent differentiation and tumor dormancy in hepatocellular cancer. Nature. 2004;431:1112–7.CrossRefPubMed Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, et al. MYC inactivation uncovers pluripotent differentiation and tumor dormancy in hepatocellular cancer. Nature. 2004;431:1112–7.CrossRefPubMed
55.
go back to reference Alexandre J, Batteux F, Nicco C, Chereau C, Laurent A, Guillevin L, et al. Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo. Int J Cancer. 2006;119:41–8.CrossRefPubMed Alexandre J, Batteux F, Nicco C, Chereau C, Laurent A, Guillevin L, et al. Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo. Int J Cancer. 2006;119:41–8.CrossRefPubMed
56.
go back to reference Tan S, Sagara Y, Liu Y, Schubert D. The regulation of reactive oxygen species production during programmed cell death. J Cell Biol. 1998;141:1423–32.CrossRefPubMedPubMedCentral Tan S, Sagara Y, Liu Y, Schubert D. The regulation of reactive oxygen species production during programmed cell death. J Cell Biol. 1998;141:1423–32.CrossRefPubMedPubMedCentral
57.
go back to reference Hilldeman DA, Mitchell T, Aronow B, Wojciechowski S, Kappler J. Control of Bcl-2 expression by reactive oxygen species. Proc Natl Acad Sci U S A. 2003;100:15035–40.CrossRef Hilldeman DA, Mitchell T, Aronow B, Wojciechowski S, Kappler J. Control of Bcl-2 expression by reactive oxygen species. Proc Natl Acad Sci U S A. 2003;100:15035–40.CrossRef
58.
go back to reference Lim KH, Baines AT, Fiordalisi JJ, Shipitsin M, Feig LA, Cox AD, et al. Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell. 2005;6:533–45.CrossRef Lim KH, Baines AT, Fiordalisi JJ, Shipitsin M, Feig LA, Cox AD, et al. Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell. 2005;6:533–45.CrossRef
Metadata
Title
Aphanin, a triterpenoid from Amoora rohituka inhibits K-Ras mutant activity and STAT3 in pancreatic carcinoma cells
Authors
Thangaiyan Rabi
Carlo V. Catapano
Publication date
01-09-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 9/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5102-2

Other articles of this Issue 9/2016

Tumor Biology 9/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine