Skip to main content
Top
Published in: Cardiovascular Toxicology 2/2018

01-04-2018

Quercetin Reverses Altered Energy Metabolism in the Heart of Rats Receiving Adriamycin Chemotherapy

Authors: Naglaa Zakaria, Samah R. Khalil, Ashraf Awad, Ghada M. Khairy

Published in: Cardiovascular Toxicology | Issue 2/2018

Login to get access

Abstract

The primary aim of this study was to find the potential modulatory roles of quercetin (QUE) against Adriamycin (ADR)-induced cardiotoxicity. A total of 50 rats were assigned to five groups: a control group, an ADR-treated group, a QUE-treated group, a prophylaxis-cotreated group, and a therapeutic-cotreated group, respectively. QUE exhibited a significant cardioprotective effect, particularly, when it was administered prior to and concurrently with ADR treatment (prophylaxis-cotreated group). This effect was biochemically evident by the significant decreases in the serum levels of myocardial injury biomarkers such as troponin, creatine kinase–myocardium bound, and creatine phosphokinase. In addition, significant elevations in myocardial antioxidant indices coupled with significant reductions in myocardial malondialdehyde contents and DNA damage, elicited by ADR injection, were observed. All these biochemical improvements were accompanied by a significant histopathological recovery and obvious modulation of the AMP-activated protein kinase (AMPK) signaling pathway by promoting the expression of the AMPKα2, PPARα, and PCG-1α genes. Taken together, these findings conclusively showed that QUE administration through its antioxidant capacity and myocardial energy metabolism restoration provides a prophylactic effect in response to ADR-induced deleterious effects, in the rat heart.
Literature
1.
go back to reference Dervisis, N. G., Dominguez, P. A., Newman, R. G., Cadile, C. D., & Kitchell, B. E. (2011). Treatment with DAV for advanced-stage hemangiosarcoma in dogs. Journal of the American Animal Hospital Association, 47(3), 170–178.CrossRefPubMed Dervisis, N. G., Dominguez, P. A., Newman, R. G., Cadile, C. D., & Kitchell, B. E. (2011). Treatment with DAV for advanced-stage hemangiosarcoma in dogs. Journal of the American Animal Hospital Association, 47(3), 170–178.CrossRefPubMed
2.
go back to reference Singal, P. K., & Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 339(13), 900–905.CrossRefPubMed Singal, P. K., & Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 339(13), 900–905.CrossRefPubMed
3.
go back to reference Lipshultz, S. E., Colan, S. D., Gelber, R. D., Perez-Ataye, A. R., Sallan, S. E., & Sanders, S. P. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. New England Journal of Medicine, 324(12), 808–815.CrossRefPubMed Lipshultz, S. E., Colan, S. D., Gelber, R. D., Perez-Ataye, A. R., Sallan, S. E., & Sanders, S. P. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. New England Journal of Medicine, 324(12), 808–815.CrossRefPubMed
4.
go back to reference Nysom, K., Holm, K., Lipsitz, S. R., Mone, S. M., Colan, S. D., & Orav, E. J., et al. (1998). Relationship between cumulative anthracycline dose and late cardiotoxicity in childhood acute lymphoblastic leukemia. Journal of Clinical Oncology, 16(2), 545–550.CrossRefPubMed Nysom, K., Holm, K., Lipsitz, S. R., Mone, S. M., Colan, S. D., & Orav, E. J., et al. (1998). Relationship between cumulative anthracycline dose and late cardiotoxicity in childhood acute lymphoblastic leukemia. Journal of Clinical Oncology, 16(2), 545–550.CrossRefPubMed
5.
go back to reference Lipshultz, S. E. (2007). Heart failure in childhood cancer survivors. Nature Clinical Practice Oncology, 4(6), 334–335.CrossRefPubMed Lipshultz, S. E. (2007). Heart failure in childhood cancer survivors. Nature Clinical Practice Oncology, 4(6), 334–335.CrossRefPubMed
6.
go back to reference Štěrba, M., Popelová, O., Vávrová, A., Jirkovský, E., Kovaříková, P., Geršl, V., et al. (2013). Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxidants & Redox Signaling, 18(8), 899–929.CrossRef Štěrba, M., Popelová, O., Vávrová, A., Jirkovský, E., Kovaříková, P., Geršl, V., et al. (2013). Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxidants & Redox Signaling, 18(8), 899–929.CrossRef
7.
go back to reference Carvalho, F. S., Burgeiro, A., Garcia, R., Moreno, A. J., Carvalho, R. A., & Oliveira, P. J. (2014). Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Medicinal Research Reviews, 34(1), 106–135.CrossRefPubMed Carvalho, F. S., Burgeiro, A., Garcia, R., Moreno, A. J., Carvalho, R. A., & Oliveira, P. J. (2014). Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Medicinal Research Reviews, 34(1), 106–135.CrossRefPubMed
8.
go back to reference Amdani, S. M., Bansal, N., Franco, V. I., Adams, M. J., & Lipshultz, S. E. (2016). Cardiovascular effects of anthracycline chemotherapy and radiation therapy in children with cancer. In J. Herrmann (Ed.), Clinical cardio-oncology (pp. 397–431). Amsterdam: Elsevier Health Sciences.CrossRef Amdani, S. M., Bansal, N., Franco, V. I., Adams, M. J., & Lipshultz, S. E. (2016). Cardiovascular effects of anthracycline chemotherapy and radiation therapy in children with cancer. In J. Herrmann (Ed.), Clinical cardio-oncology (pp. 397–431). Amsterdam: Elsevier Health Sciences.CrossRef
9.
go back to reference Harake, D., Franco, V. I., Henkel, J. M., Miller, T. L., & Lipshultz, S. E. (2012). Cardiotoxicity in childhood cancer survivors: Strategies for prevention and management. Future Cardiology, 8(4), 647–670.CrossRefPubMed Harake, D., Franco, V. I., Henkel, J. M., Miller, T. L., & Lipshultz, S. E. (2012). Cardiotoxicity in childhood cancer survivors: Strategies for prevention and management. Future Cardiology, 8(4), 647–670.CrossRefPubMed
10.
go back to reference Piasek, A., Bartoszek, A., & Namieśnik, J. (2008). Phytochemicals that counteract the cardiotoxic side effects of cancer chemotherapy. Postepy Higieny I Medycyny Doswiadczalnej (Online), 63, 142–158. Piasek, A., Bartoszek, A., & Namieśnik, J. (2008). Phytochemicals that counteract the cardiotoxic side effects of cancer chemotherapy. Postepy Higieny I Medycyny Doswiadczalnej (Online), 63, 142–158.
11.
go back to reference Lipshultz, S. E., Rifai, N., Dalton, V. M., Levy, D. E., Silverman, L. B., Lipsitz, S. R., et al. (2004). The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. New England Journal of Medicine, 351(2), 145–153.CrossRefPubMed Lipshultz, S. E., Rifai, N., Dalton, V. M., Levy, D. E., Silverman, L. B., Lipsitz, S. R., et al. (2004). The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. New England Journal of Medicine, 351(2), 145–153.CrossRefPubMed
12.
go back to reference Lipshultz, S. E., Scully, R. E., Lipsitz, S. R., Sallan, S. E., Silverman, L. B., Miller, T. L., et al. (2010). Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: Long-term follow-up of a prospective, randomised, multicentre trial. The lancet Oncology, 11(10), 950–961.CrossRefPubMedPubMedCentral Lipshultz, S. E., Scully, R. E., Lipsitz, S. R., Sallan, S. E., Silverman, L. B., Miller, T. L., et al. (2010). Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: Long-term follow-up of a prospective, randomised, multicentre trial. The lancet Oncology, 11(10), 950–961.CrossRefPubMedPubMedCentral
13.
go back to reference Arafa, M. H., Mohammad, N. S., Atteia, H. H., & Abd-Elaziz, H. R. (2014). Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. Journal of Physiology and Biochemistry, 70(3), 701–711.CrossRefPubMed Arafa, M. H., Mohammad, N. S., Atteia, H. H., & Abd-Elaziz, H. R. (2014). Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. Journal of Physiology and Biochemistry, 70(3), 701–711.CrossRefPubMed
14.
go back to reference Kwatra, M., Kumar, V., Jangra, A., Mishra, M., Ahmed, S., Ghosh, P., et al. (2016). Ameliorative effect of naringin against doxorubicin-induced acute cardiac toxicity in rats. Pharmaceutical Biology, 54(4), 637–647.CrossRefPubMed Kwatra, M., Kumar, V., Jangra, A., Mishra, M., Ahmed, S., Ghosh, P., et al. (2016). Ameliorative effect of naringin against doxorubicin-induced acute cardiac toxicity in rats. Pharmaceutical Biology, 54(4), 637–647.CrossRefPubMed
15.
go back to reference Sakanashi, Y., Oyama, K., Matsui, H., Oyama, T. B., Oyama, T. M., Nishimura, Y., et al. (2008). Possible use of quercetin, an antioxidant, for protection of cells suffering from overload of intracellular Ca2+: A model experiment. Life Sciences, 83(5), 164–169.CrossRefPubMed Sakanashi, Y., Oyama, K., Matsui, H., Oyama, T. B., Oyama, T. M., Nishimura, Y., et al. (2008). Possible use of quercetin, an antioxidant, for protection of cells suffering from overload of intracellular Ca2+: A model experiment. Life Sciences, 83(5), 164–169.CrossRefPubMed
16.
go back to reference van der Woude, H., ter Veld, M. G., Jacobs, N., van der Saag, P. T., Murk, A. J., & Rietjens, I. M. (2005). The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor. Molecular Nutrition & Food Research, 49(8), 763–771.CrossRef van der Woude, H., ter Veld, M. G., Jacobs, N., van der Saag, P. T., Murk, A. J., & Rietjens, I. M. (2005). The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor. Molecular Nutrition & Food Research, 49(8), 763–771.CrossRef
17.
go back to reference Resende, F. A., de Oliveira, A. P. S., de Camargo, M. S., Vilegas, W., & Varanda, E. A. (2013). Evaluation of estrogenic potential of flavonoids using a recombinant yeast strain and MCF7/BUS cell proliferation assay. PLoS ONE, 8(10), e74881.CrossRefPubMedPubMedCentral Resende, F. A., de Oliveira, A. P. S., de Camargo, M. S., Vilegas, W., & Varanda, E. A. (2013). Evaluation of estrogenic potential of flavonoids using a recombinant yeast strain and MCF7/BUS cell proliferation assay. PLoS ONE, 8(10), e74881.CrossRefPubMedPubMedCentral
18.
go back to reference Lin, X., Lin, C. H., Zhao, T., Zuo, D., Ye, Z., Liu, L., et al. (2017). Quercetin protects against heat stroke-induced myocardial injury in male rats: Antioxidative and antiinflammatory mechanisms. Chemico-Biological Interactions, 265, 47–54.CrossRefPubMed Lin, X., Lin, C. H., Zhao, T., Zuo, D., Ye, Z., Liu, L., et al. (2017). Quercetin protects against heat stroke-induced myocardial injury in male rats: Antioxidative and antiinflammatory mechanisms. Chemico-Biological Interactions, 265, 47–54.CrossRefPubMed
19.
go back to reference Velázquez, K. T., Enos, R. T., Narsale, A. A., Puppa, M. J., Davis, J. M., Murphy, E. A., et al. (2014). Quercetin supplementation attenuates the progression of cancer cachexia in ApcMin/+ mice. The Journal of Nutrition, 144(6), 868–875.CrossRefPubMedPubMedCentral Velázquez, K. T., Enos, R. T., Narsale, A. A., Puppa, M. J., Davis, J. M., Murphy, E. A., et al. (2014). Quercetin supplementation attenuates the progression of cancer cachexia in ApcMin/+ mice. The Journal of Nutrition, 144(6), 868–875.CrossRefPubMedPubMedCentral
20.
go back to reference Russo, G. L., Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S., & Iannitti, R., et al. (2014). Quercetin: A pleiotropic kinase inhibitor against cancer. In V. Zappia, S. Panico, G. Russo, A. Budillon, & F. Della Ragione (Eds.), Advances in nutrition and cancer (pp. 185–205). Berlin, Heidelberg. Russo, G. L., Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S., & Iannitti, R., et al. (2014). Quercetin: A pleiotropic kinase inhibitor against cancer. In V. Zappia, S. Panico, G. Russo, A. Budillon, & F. Della Ragione (Eds.), Advances in nutrition and cancer (pp. 185–205). Berlin, Heidelberg.
21.
go back to reference Dong, Q., Chen, L., Lu, Q., Sharma, S., Li, L., Morimoto, S., et al. (2014). Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression. British Journal of Pharmacology, 171(19), 4440–4454.CrossRefPubMedPubMedCentral Dong, Q., Chen, L., Lu, Q., Sharma, S., Li, L., Morimoto, S., et al. (2014). Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression. British Journal of Pharmacology, 171(19), 4440–4454.CrossRefPubMedPubMedCentral
22.
go back to reference Tokarska-Schlattner, M., Wallimann, T., & Schlattner, U. (2006). Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin. Comptes Rendus Biologies, 329(9), 657–668.CrossRefPubMed Tokarska-Schlattner, M., Wallimann, T., & Schlattner, U. (2006). Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin. Comptes Rendus Biologies, 329(9), 657–668.CrossRefPubMed
23.
go back to reference Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52(6), 1213–1225.CrossRefPubMed Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52(6), 1213–1225.CrossRefPubMed
24.
go back to reference Wu, R., Wang, H. L., Yu, H. L., Cui, X. H., Xu, M. T., Xu, X., et al. (2016). Doxorubicin toxicity changes myocardial energy metabolism in rats. Chemico-Biological Interactions, 244, 149–158.CrossRefPubMed Wu, R., Wang, H. L., Yu, H. L., Cui, X. H., Xu, M. T., Xu, X., et al. (2016). Doxorubicin toxicity changes myocardial energy metabolism in rats. Chemico-Biological Interactions, 244, 149–158.CrossRefPubMed
25.
go back to reference Sanchez-Gonzalez, P. D., Lopez-Hernandez, F. J., Perez-Barriocanal, F., Morales, A. I., & Lopez-Novoa, J. M. (2011). Quercetin reduces cisplatin nephrotoxicity in rats without compromising its anti-tumour activity. Nephrology, Dialysis, Transplantation, 26(11), 3484–3495.CrossRefPubMed Sanchez-Gonzalez, P. D., Lopez-Hernandez, F. J., Perez-Barriocanal, F., Morales, A. I., & Lopez-Novoa, J. M. (2011). Quercetin reduces cisplatin nephrotoxicity in rats without compromising its anti-tumour activity. Nephrology, Dialysis, Transplantation, 26(11), 3484–3495.CrossRefPubMed
26.
go back to reference Siveski-Iliskovic, N., Kaul, N., & Singal, P. K. (1994). Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation, 89(6), 2829–2835.CrossRefPubMed Siveski-Iliskovic, N., Kaul, N., & Singal, P. K. (1994). Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation, 89(6), 2829–2835.CrossRefPubMed
27.
go back to reference Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247(10), 3170–3175.PubMed Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247(10), 3170–3175.PubMed
28.
29.
go back to reference Beutler, E., Duron, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–888.PubMed Beutler, E., Duron, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–888.PubMed
30.
go back to reference Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.CrossRefPubMed Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.CrossRefPubMed
31.
go back to reference Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175(1), 184–191.CrossRefPubMed Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175(1), 184–191.CrossRefPubMed
32.
go back to reference Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods, 25(4), 402–408.CrossRefPubMed Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods, 25(4), 402–408.CrossRefPubMed
33.
go back to reference Bancroft, J. D., Stevens, A., & Turner, D. R. (1996). Theory and practice of histological techniques (4th ed.). New York: Churchill Living Stone. Bancroft, J. D., Stevens, A., & Turner, D. R. (1996). Theory and practice of histological techniques (4th ed.). New York: Churchill Living Stone.
34.
go back to reference Goeptar, A. R., Te Koppele, J. M., Lamme, E. K., Piqué, J. M., & Vermeulen, N. P. (1993). Cytochrome P450 2B1-mediated one-electron reduction of adriamycin: A study with rat liver microsomes and purified enzymes. Molecular Pharmacology, 44(6), 1267–1277.PubMed Goeptar, A. R., Te Koppele, J. M., Lamme, E. K., Piqué, J. M., & Vermeulen, N. P. (1993). Cytochrome P450 2B1-mediated one-electron reduction of adriamycin: A study with rat liver microsomes and purified enzymes. Molecular Pharmacology, 44(6), 1267–1277.PubMed
35.
go back to reference Bast, A., Haenen, G. R., Bruynzeel, A. M., & Van der Vijgh, W. J. (2007). Protection by flavonoids against anthracycline cardiotoxicity: From chemistry to clinical trials. Cardiovascular Toxicology, 7(2), 154–159.CrossRefPubMed Bast, A., Haenen, G. R., Bruynzeel, A. M., & Van der Vijgh, W. J. (2007). Protection by flavonoids against anthracycline cardiotoxicity: From chemistry to clinical trials. Cardiovascular Toxicology, 7(2), 154–159.CrossRefPubMed
36.
go back to reference Geret, F., Serafim, A., Barreira, L., & Bebianno, M. J. (2002). Effect of cadmium on antioxidant enzyme activities and lipid peroxidation in the gills of the clam Ruditapes decussatus. Biomarkers, 7(3), 242–256.CrossRefPubMed Geret, F., Serafim, A., Barreira, L., & Bebianno, M. J. (2002). Effect of cadmium on antioxidant enzyme activities and lipid peroxidation in the gills of the clam Ruditapes decussatus. Biomarkers, 7(3), 242–256.CrossRefPubMed
37.
go back to reference Verma, R. S., Mehta, A., & Srivastava, N. (2009). Comparative studies on chlorpyrifos and methyl parathion induced oxidative stress in different parts of rat brain: Attenuation by antioxidant vitamins. Pesticide Biochemistry and Physiology, 95(3), 152–158.CrossRef Verma, R. S., Mehta, A., & Srivastava, N. (2009). Comparative studies on chlorpyrifos and methyl parathion induced oxidative stress in different parts of rat brain: Attenuation by antioxidant vitamins. Pesticide Biochemistry and Physiology, 95(3), 152–158.CrossRef
38.
go back to reference Zern, T. L., & Fernandez, M. L. (2005). Cardioprotective effects of dietary polyphenols. The Journal of Nutrition, 135(10), 2291–2294.CrossRefPubMed Zern, T. L., & Fernandez, M. L. (2005). Cardioprotective effects of dietary polyphenols. The Journal of Nutrition, 135(10), 2291–2294.CrossRefPubMed
39.
go back to reference Cao, H. H., Tse, A. K. W., Kwan, H. Y., Yu, H., Cheng, C. Y., Su, T., et al. (2014). Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochemical Pharmacology, 87(3), 424–434.CrossRefPubMed Cao, H. H., Tse, A. K. W., Kwan, H. Y., Yu, H., Cheng, C. Y., Su, T., et al. (2014). Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochemical Pharmacology, 87(3), 424–434.CrossRefPubMed
40.
go back to reference Day, A. J., Cañada, F. J., Díaz, J. C., Kroon, P. A., Mclauchlan, R., Faulds, C. B., et al. (2000). Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letters, 468(2–3), 166–170.CrossRefPubMed Day, A. J., Cañada, F. J., Díaz, J. C., Kroon, P. A., Mclauchlan, R., Faulds, C. B., et al. (2000). Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letters, 468(2–3), 166–170.CrossRefPubMed
41.
go back to reference Myhrstad, M. C., Carlsen, H., Nordström, O., Blomhoff, R., & Moskaug, J. Ø. (2002). Flavonoids increase the intracellular glutathione level by transactivation of the γ-glutamylcysteine synthetase catalytical subunit promoter. Free Radical Biology and Medicine, 32(5), 386–393.CrossRefPubMed Myhrstad, M. C., Carlsen, H., Nordström, O., Blomhoff, R., & Moskaug, J. Ø. (2002). Flavonoids increase the intracellular glutathione level by transactivation of the γ-glutamylcysteine synthetase catalytical subunit promoter. Free Radical Biology and Medicine, 32(5), 386–393.CrossRefPubMed
42.
go back to reference Chacko, S. M., Nevin, K. G., Dhanyakrishnan, R., & Kumar, B. P. (2015). Protective effect of p-coumaric acid against doxorubicin induced toxicity in H9c2 cardiomyoblast cell lines. Toxicology Reports, 2, 1213–1221.CrossRefPubMedPubMedCentral Chacko, S. M., Nevin, K. G., Dhanyakrishnan, R., & Kumar, B. P. (2015). Protective effect of p-coumaric acid against doxorubicin induced toxicity in H9c2 cardiomyoblast cell lines. Toxicology Reports, 2, 1213–1221.CrossRefPubMedPubMedCentral
43.
go back to reference Patil, S. L., Mallaiah, S. H., & Patil, R. K. (2013). Antioxidative and radioprotective potential of rutin and quercetin in Swiss albino mice exposed to gamma radiation. Journal of Medical Physics/Association of Medical Physicists of India, 38(2), 87.PubMedCentral Patil, S. L., Mallaiah, S. H., & Patil, R. K. (2013). Antioxidative and radioprotective potential of rutin and quercetin in Swiss albino mice exposed to gamma radiation. Journal of Medical Physics/Association of Medical Physicists of India, 38(2), 87.PubMedCentral
44.
go back to reference Chen, J. Y., Hu, R. Y., & Chou, H. C. (2013). Quercetin-induced cardioprotection against doxorubicin cytotoxicity. Journal of Biomedical Science, 20(1), 95.CrossRefPubMedPubMedCentral Chen, J. Y., Hu, R. Y., & Chou, H. C. (2013). Quercetin-induced cardioprotection against doxorubicin cytotoxicity. Journal of Biomedical Science, 20(1), 95.CrossRefPubMedPubMedCentral
45.
go back to reference Williams, R. J., Spencer, J. P., & Rice-Evans, C. (2004). Flavonoids: Antioxidants or signalling molecules? Free Radical Biology and Medicine, 36(7), 838–849.CrossRefPubMed Williams, R. J., Spencer, J. P., & Rice-Evans, C. (2004). Flavonoids: Antioxidants or signalling molecules? Free Radical Biology and Medicine, 36(7), 838–849.CrossRefPubMed
46.
go back to reference Kang, C. H., Choi, Y. H., Moon, S. K., Kim, W. J., & Kim, G. Y. (2013). Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. International Immunopharmacology, 17(3), 808–813.CrossRefPubMed Kang, C. H., Choi, Y. H., Moon, S. K., Kim, W. J., & Kim, G. Y. (2013). Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. International Immunopharmacology, 17(3), 808–813.CrossRefPubMed
48.
go back to reference Carling, D. (2004). The AMP-activated protein kinase cascade—A unifying system for energy control. Trends in Biochemical Sciences, 29(1), 18–24.CrossRefPubMed Carling, D. (2004). The AMP-activated protein kinase cascade—A unifying system for energy control. Trends in Biochemical Sciences, 29(1), 18–24.CrossRefPubMed
49.
go back to reference Chen, W. L., Chen, Y. L., Chiang, Y. M., Wang, S. G., & Lee, H. M. (2012). Fenofibrate lowers lipid accumulation in myotubes by modulating the PPARα/AMPK/FoxO1/ATGL pathway. Biochemical Pharmacology, 84(4), 522–531.CrossRefPubMed Chen, W. L., Chen, Y. L., Chiang, Y. M., Wang, S. G., & Lee, H. M. (2012). Fenofibrate lowers lipid accumulation in myotubes by modulating the PPARα/AMPK/FoxO1/ATGL pathway. Biochemical Pharmacology, 84(4), 522–531.CrossRefPubMed
50.
go back to reference Yang, Y., Zhang, H., Li, X., Yang, T., & Jiang, Q. (2015). Effects of PPARα/PGC-1α on the energy metabolism remodeling and apoptosis in the doxorubicin induced mice cardiomyocytes in vitro. International Journal of Clinical and Experimental Pathology, 8(10), 12216.PubMedPubMedCentral Yang, Y., Zhang, H., Li, X., Yang, T., & Jiang, Q. (2015). Effects of PPARα/PGC-1α on the energy metabolism remodeling and apoptosis in the doxorubicin induced mice cardiomyocytes in vitro. International Journal of Clinical and Experimental Pathology, 8(10), 12216.PubMedPubMedCentral
51.
go back to reference Kuznetsov, A. V., Margreiter, R., Amberger, A., Saks, V., & Grimm, M. (2011). Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813(6), 1144–1152.CrossRef Kuznetsov, A. V., Margreiter, R., Amberger, A., Saks, V., & Grimm, M. (2011). Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813(6), 1144–1152.CrossRef
52.
go back to reference Thompson, K. L., Rosenzweig, B. A., Zhang, J., Knapton, A. D., Honchel, R., Lipshultz, S. E., et al. (2010). Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemotherapy and Pharmacology, 66(2), 303–314.CrossRefPubMed Thompson, K. L., Rosenzweig, B. A., Zhang, J., Knapton, A. D., Honchel, R., Lipshultz, S. E., et al. (2010). Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemotherapy and Pharmacology, 66(2), 303–314.CrossRefPubMed
Metadata
Title
Quercetin Reverses Altered Energy Metabolism in the Heart of Rats Receiving Adriamycin Chemotherapy
Authors
Naglaa Zakaria
Samah R. Khalil
Ashraf Awad
Ghada M. Khairy
Publication date
01-04-2018
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 2/2018
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-017-9420-4

Other articles of this Issue 2/2018

Cardiovascular Toxicology 2/2018 Go to the issue