Skip to main content
Top
Published in: BMC Cancer 1/2005

Open Access 01-12-2005 | Research article

Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension

Authors: Fabio Grizzi, Carlo Russo, Piergiuseppe Colombo, Barbara Franceschini, Eldo E Frezza, Everardo Cobos, Maurizio Chiriva-Internati

Published in: BMC Cancer | Issue 1/2005

Login to get access

Abstract

Background

Modeling the complex development and growth of tumor angiogenesis using mathematics and biological data is a burgeoning area of cancer research. Architectural complexity is the main feature of every anatomical system, including organs, tissues, cells and sub-cellular entities. The vascular system is a complex network whose geometrical characteristics cannot be properly defined using the principles of Euclidean geometry, which is only capable of interpreting regular and smooth objects that are almost impossible to find in Nature. However, fractal geometry is a more powerful means of quantifying the spatial complexity of real objects.

Methods

This paper introduces the surface fractal dimension (D s ) as a numerical index of the two-dimensional (2-D) geometrical complexity of tumor vascular networks, and their behavior during computer-simulated changes in vessel density and distribution.

Results

We show that D s significantly depends on the number of vessels and their pattern of distribution. This demonstrates that the quantitative evaluation of the 2-D geometrical complexity of tumor vascular systems can be useful not only to measure its complex architecture, but also to model its development and growth.

Conclusions

Studying the fractal properties of neovascularity induces reflections upon the real significance of the complex form of branched anatomical structures, in an attempt to define more appropriate methods of describing them quantitatively. This knowledge can be used to predict the aggressiveness of malignant tumors and design compounds that can halt the process of angiogenesis and influence tumor growth.
Appendix
Available only for authorised users
Literature
1.
go back to reference Carmeliet P: Angiogenesis in health and disease. Nature Medicine. 2003, 9: 653-670. 10.1038/nm0603-653.CrossRefPubMed Carmeliet P: Angiogenesis in health and disease. Nature Medicine. 2003, 9: 653-670. 10.1038/nm0603-653.CrossRefPubMed
2.
go back to reference Woolf N: Pathology. Basic and Systemic. 1998, WB Saunders Company, London Woolf N: Pathology. Basic and Systemic. 1998, WB Saunders Company, London
3.
go back to reference Fidler IJ, Ellis LM: Neoplastic angiogenesis – not all blood vessels are created equal. New England Journal of Medicine. 2004, 351: 215-216. 10.1056/NEJMp048080.CrossRefPubMed Fidler IJ, Ellis LM: Neoplastic angiogenesis – not all blood vessels are created equal. New England Journal of Medicine. 2004, 351: 215-216. 10.1056/NEJMp048080.CrossRefPubMed
4.
go back to reference Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK, Seed B: Tumor induction of VEGF promoter activity in stromal cells. Cell. 1998, 94: 715-725. 10.1016/S0092-8674(00)81731-6.CrossRefPubMed Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK, Seed B: Tumor induction of VEGF promoter activity in stromal cells. Cell. 1998, 94: 715-725. 10.1016/S0092-8674(00)81731-6.CrossRefPubMed
5.
go back to reference Tandle A, Blazer DG, Libutti SK: Antiangiogenic gene therapy of cancer: recent developments. Journal of Translational Medicine. 2004, 2: 22-10.1186/1479-5876-2-22.CrossRefPubMedPubMedCentral Tandle A, Blazer DG, Libutti SK: Antiangiogenic gene therapy of cancer: recent developments. Journal of Translational Medicine. 2004, 2: 22-10.1186/1479-5876-2-22.CrossRefPubMedPubMedCentral
6.
go back to reference Hogan BL, Kolodziej PA: Organogenesis: molecular mechanisms of tubulogenesis. Nat Rev Genet. 2002, 3: 513-23. 10.1038/nrg840.CrossRefPubMed Hogan BL, Kolodziej PA: Organogenesis: molecular mechanisms of tubulogenesis. Nat Rev Genet. 2002, 3: 513-23. 10.1038/nrg840.CrossRefPubMed
7.
go back to reference Lubarsky B, Krasnow MA: Tube morphogenesis: making and shaping biological tubes. Cell. 2003, 112: 19-28. 10.1016/S0092-8674(02)01283-7.CrossRefPubMed Lubarsky B, Krasnow MA: Tube morphogenesis: making and shaping biological tubes. Cell. 2003, 112: 19-28. 10.1016/S0092-8674(02)01283-7.CrossRefPubMed
8.
go back to reference Parker LH, Schmidt M, Jin SW, Gray AM, Beis D, Pham T, Frantz G, Palmieri S, Hillan K, Stainier DY, De Sauvage FJ, Ye W: The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature. 2004, 428: 754-758. 10.1038/nature02416.CrossRefPubMed Parker LH, Schmidt M, Jin SW, Gray AM, Beis D, Pham T, Frantz G, Palmieri S, Hillan K, Stainier DY, De Sauvage FJ, Ye W: The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature. 2004, 428: 754-758. 10.1038/nature02416.CrossRefPubMed
9.
go back to reference Abraham R: Complex dynamics. 1991, Aerial Press, Santa Cruz Abraham R: Complex dynamics. 1991, Aerial Press, Santa Cruz
10.
go back to reference Abraham R, Shaw C: Dynamics, The geometry of behavior. 1992, Addison-Wesley, Reading MA, Second Abraham R, Shaw C: Dynamics, The geometry of behavior. 1992, Addison-Wesley, Reading MA, Second
12.
go back to reference Colville-Nash PR, Willoughby DA: Growth factors in angiogenesis: current interest and therapeutic potential. Molecular Medicine Today. 1997, 3: 14-23. 10.1016/S1357-4310(96)10048-4.CrossRefPubMed Colville-Nash PR, Willoughby DA: Growth factors in angiogenesis: current interest and therapeutic potential. Molecular Medicine Today. 1997, 3: 14-23. 10.1016/S1357-4310(96)10048-4.CrossRefPubMed
13.
go back to reference Jain RK, Schlenger K, Hockel M, Yuan F: Quantitative angiogenesis assays: progress and problems. Nature Medicine. 1997, 3: 1203-1208. 10.1038/nm1197-1203.CrossRefPubMed Jain RK, Schlenger K, Hockel M, Yuan F: Quantitative angiogenesis assays: progress and problems. Nature Medicine. 1997, 3: 1203-1208. 10.1038/nm1197-1203.CrossRefPubMed
14.
go back to reference Harris AL: Hypoxia – a key regulatory factor in tumor growth. Nat Rev Cancer. 2002, 2: 38-47. 10.1038/nrc704.CrossRefPubMed Harris AL: Hypoxia – a key regulatory factor in tumor growth. Nat Rev Cancer. 2002, 2: 38-47. 10.1038/nrc704.CrossRefPubMed
15.
go back to reference Munn LL: Aberrant vascular architecture in tumors and its importance in drug-based therapies. Drug Discovery Today. 2003, 8: 396-403. 10.1016/S1359-6446(03)02686-2.CrossRefPubMed Munn LL: Aberrant vascular architecture in tumors and its importance in drug-based therapies. Drug Discovery Today. 2003, 8: 396-403. 10.1016/S1359-6446(03)02686-2.CrossRefPubMed
16.
go back to reference Stergiopulos N, Porret CA, De Brouwer S, Meister JJ: Arterial vasomotion: effect of flow and evidence of nonlinear dynamics. Am J Physiol. 1998, 274: H1858-64.PubMed Stergiopulos N, Porret CA, De Brouwer S, Meister JJ: Arterial vasomotion: effect of flow and evidence of nonlinear dynamics. Am J Physiol. 1998, 274: H1858-64.PubMed
17.
go back to reference Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O, Schwarzinger I: Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. New England Journal of Medicine. 2004, 351: 250-259. 10.1056/NEJMoa033153.CrossRefPubMed Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O, Schwarzinger I: Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. New England Journal of Medicine. 2004, 351: 250-259. 10.1056/NEJMoa033153.CrossRefPubMed
18.
go back to reference Hlatky L, Hahnfeldt P, Folkman J: Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. Journal National Cancer Institute. 2002, 94: 883-893.CrossRef Hlatky L, Hahnfeldt P, Folkman J: Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. Journal National Cancer Institute. 2002, 94: 883-893.CrossRef
19.
go back to reference Grizzi F, Colombo P, Barbieri B, Franceschini B, Roncalli M, Chiriva-Internati M, Muzzio PC, Dioguardi N: Correspondence re: E. Sabo et al., Microscopic analysis and significance of vascular architectural complexity in renal cell carcinoma. Clinical Cancer Research. 2001, 7: 3305-3307.PubMed Grizzi F, Colombo P, Barbieri B, Franceschini B, Roncalli M, Chiriva-Internati M, Muzzio PC, Dioguardi N: Correspondence re: E. Sabo et al., Microscopic analysis and significance of vascular architectural complexity in renal cell carcinoma. Clinical Cancer Research. 2001, 7: 3305-3307.PubMed
20.
go back to reference Mandelbrot BB: Les objets fractals: forme, hasard et dimension. 1975, Flammarion, Paris Mandelbrot BB: Les objets fractals: forme, hasard et dimension. 1975, Flammarion, Paris
21.
go back to reference Mandelbrot BB: The Fractal Geometry of Nature. 1982, Freeman, San Francisco Mandelbrot BB: The Fractal Geometry of Nature. 1982, Freeman, San Francisco
22.
go back to reference Grizzi F, Franceschini B, Chiriva-Internati M, Hermonat PL, Shah G, Muzzio PC, Dioguardi N: The complexity and the Microscopy in the anatomical sciences. Science, Technology and Education of Microscopy: an Overview. 2003, Formatex, Spain Grizzi F, Franceschini B, Chiriva-Internati M, Hermonat PL, Shah G, Muzzio PC, Dioguardi N: The complexity and the Microscopy in the anatomical sciences. Science, Technology and Education of Microscopy: an Overview. 2003, Formatex, Spain
23.
go back to reference Bassingthwaighte JB, Liebovitch LS, West BJ: Fractal physiology. 1994, Oxford University Press, New YorkCrossRef Bassingthwaighte JB, Liebovitch LS, West BJ: Fractal physiology. 1994, Oxford University Press, New YorkCrossRef
24.
go back to reference Losa GA: Fractal morphometry of cell complexity. Rivista di Biologia. 2002, Biology Forum, 95: 239-250. Losa GA: Fractal morphometry of cell complexity. Rivista di Biologia. 2002, Biology Forum, 95: 239-250.
25.
go back to reference Nonnenmacher TF, Baumann G, Barth A, Losa GA: Digital image analysis of self-similar cell profiles. Int J Biomed Comput. 1994, 37: 131-138.CrossRefPubMed Nonnenmacher TF, Baumann G, Barth A, Losa GA: Digital image analysis of self-similar cell profiles. Int J Biomed Comput. 1994, 37: 131-138.CrossRefPubMed
26.
go back to reference Losa GA, Nonnenmacher TF: Self-similarity and fractal irregularity in pathologic tissues. Mod Pathol. 1996, 9: 174-182.PubMed Losa GA, Nonnenmacher TF: Self-similarity and fractal irregularity in pathologic tissues. Mod Pathol. 1996, 9: 174-182.PubMed
27.
go back to reference Dollinger JW, Metzler R, Nonnemacher TF: Bi-asymptotic fractals: Fractals between lower and upper bounds. J Phys A: Math Gen. 1998, 31: 3839-3847. 10.1088/0305-4470/31/16/012.CrossRef Dollinger JW, Metzler R, Nonnemacher TF: Bi-asymptotic fractals: Fractals between lower and upper bounds. J Phys A: Math Gen. 1998, 31: 3839-3847. 10.1088/0305-4470/31/16/012.CrossRef
28.
go back to reference Paumgartner D, Losa G, Weibel ER: Resolution effect on the stereological estimation of surface and volume and ist interpretation in terms of fractal dimension. Journal of Microscopy. 1981, 121: 51-CrossRefPubMed Paumgartner D, Losa G, Weibel ER: Resolution effect on the stereological estimation of surface and volume and ist interpretation in terms of fractal dimension. Journal of Microscopy. 1981, 121: 51-CrossRefPubMed
29.
go back to reference Cross SS: Fractals in pathology. J Pathol. 1988, 182: 1-8. 10.1002/(SICI)1096-9896(199705)182:1<1::AID-PATH808>3.3.CO;2-2.CrossRef Cross SS: Fractals in pathology. J Pathol. 1988, 182: 1-8. 10.1002/(SICI)1096-9896(199705)182:1<1::AID-PATH808>3.3.CO;2-2.CrossRef
30.
go back to reference Massoud TF, Hademenos GJ, Young WL, Gao E, Pile-Spellman J, Vinuela F: Principles and philosophy of modeling in biomedical research. FASEB Journal. 1998, 12: 275-285.PubMed Massoud TF, Hademenos GJ, Young WL, Gao E, Pile-Spellman J, Vinuela F: Principles and philosophy of modeling in biomedical research. FASEB Journal. 1998, 12: 275-285.PubMed
31.
go back to reference Weiss JN, Qu Z, Garfinkel A: Understanding biological complexity: lessons from the past. FASEB Journal. 2003, 17: 1-6. 10.1096/fj.02-0408rev.CrossRefPubMed Weiss JN, Qu Z, Garfinkel A: Understanding biological complexity: lessons from the past. FASEB Journal. 2003, 17: 1-6. 10.1096/fj.02-0408rev.CrossRefPubMed
32.
go back to reference McGhee GR: Theoretical morphology: the concept and its applications. 1998, Columbia University Press, New York McGhee GR: Theoretical morphology: the concept and its applications. 1998, Columbia University Press, New York
33.
go back to reference Szathmary E, Jordan F, Csaba P: Can genes explain biological complexity?. Science. 2001, 292: 1315-1316. 10.1126/science.1060852.CrossRefPubMed Szathmary E, Jordan F, Csaba P: Can genes explain biological complexity?. Science. 2001, 292: 1315-1316. 10.1126/science.1060852.CrossRefPubMed
34.
go back to reference Golbeter A: Biochemical oscillations and cellular rhythms. The molecular bases of periodic and chaotic behavior. 1996, Cambridge University PressCrossRef Golbeter A: Biochemical oscillations and cellular rhythms. The molecular bases of periodic and chaotic behavior. 1996, Cambridge University PressCrossRef
35.
36.
go back to reference Baish JW, Jain RK: Fractals and cancer. Cancer Research. 2000, 60: 3683-3688.PubMed Baish JW, Jain RK: Fractals and cancer. Cancer Research. 2000, 60: 3683-3688.PubMed
37.
38.
go back to reference Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK: Pathology: cancer cells compress intratumor vessels. Nature. 2004, 427: 695-10.1038/427695a.CrossRefPubMed Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK: Pathology: cancer cells compress intratumor vessels. Nature. 2004, 427: 695-10.1038/427695a.CrossRefPubMed
39.
go back to reference Uzzan B, Nicolas P, Cucherat M, Perret GY: Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Research. 2004, 64: 2941-2955.CrossRefPubMed Uzzan B, Nicolas P, Cucherat M, Perret GY: Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Research. 2004, 64: 2941-2955.CrossRefPubMed
40.
go back to reference Hansen S, Sorensen FB, Vach W, Grabau DA, Bak M, Rose C: Microvessel density compared with the Chalkley count in a prognostic study of angiogenesis in breast cancer patients. Histopathology. 2004, 44: 428-436. 10.1111/j.1365-2559.2004.01848.x.CrossRefPubMed Hansen S, Sorensen FB, Vach W, Grabau DA, Bak M, Rose C: Microvessel density compared with the Chalkley count in a prognostic study of angiogenesis in breast cancer patients. Histopathology. 2004, 44: 428-436. 10.1111/j.1365-2559.2004.01848.x.CrossRefPubMed
41.
go back to reference Fox SB: Tumor angiogenesis and prognosis. Histopathology. 1997, 30: 294-301. 10.1046/j.1365-2559.1997.d01-606.x.CrossRefPubMed Fox SB: Tumor angiogenesis and prognosis. Histopathology. 1997, 30: 294-301. 10.1046/j.1365-2559.1997.d01-606.x.CrossRefPubMed
Metadata
Title
Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension
Authors
Fabio Grizzi
Carlo Russo
Piergiuseppe Colombo
Barbara Franceschini
Eldo E Frezza
Everardo Cobos
Maurizio Chiriva-Internati
Publication date
01-12-2005
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2005
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-5-14

Other articles of this Issue 1/2005

BMC Cancer 1/2005 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine