Skip to main content
Top
Published in: BMC Cancer 1/2005

Open Access 01-12-2005 | Research article

Application of serum SELDI proteomic patterns in diagnosis of lung cancer

Authors: Shuan-ying Yang, Xue-yuan Xiao, Wang-gang Zhang, Li-juan Zhang, Wei Zhang, Bin Zhou, Guoan Chen, Da-cheng He

Published in: BMC Cancer | Issue 1/2005

Login to get access

Abstract

Background

Currently, no satisfactory biomarkers are available to screen for lung cancer. Surface-Enhanced Laser Desorption/ionization Time-of- Flight Mass Spectrometry ProteinChip system (SELDI-TOF-MS) is one of the currently used techniques to identify biomarkers for cancers. The aim of this study is to explore the application of serum SELDI proteomic patterns to distinguish lung cancer patients from healthy individuals.

Methods

A total of 208 serum samples, including 158 lung cancer patients and 50 healthy individuals, were randomly divided into a training set (including 11 sera from patients with stages I/II lung cancer, 63 from patients with stages III/IV lung cancer and 20 from healthy controls) and a blinded test set (including 43 sera from patients with stages I/II lung cancer, 41 from patients with stages III/IV lung cancer and 30 from healthy controls). All samples were analyzed by SELDI technology. The spectra were generated on weak cation exchange (WCX2) chips, and protein peaks clustering and classification analyses were made using Ciphergen Biomarker Wizard and Biomarker Pattern software, respectively. We additionally determined Cyfra21-1 and NSE in the 208 serum samples included in this study using an electrochemiluminescent immunoassay.

Results

Five protein peaks at 11493, 6429, 8245, 5335 and 2538 Da were automatically chosen as a biomarker pattern in the training set. When the SELDI marker pattern was tested with the blinded test set, it yielded a sensitivity of 86.9%, a specificity of 80.0% and a positive predictive value of 92.4%. The sensitivities provided by Cyfra21-1 and NSE used individually or in combination were significantly lower than that of the SELDI marker pattern (P < 0.005 or 0.05, respectively). Based on the results of the test set, we found that the SELDI marker pattern showed a sensitivity of 91.4% in the detection of non-small cell lung cancers (NSCLC), which was significantly higher than that in the detection of small cell lung cancers (P < 0.05); The pattern also had a sensitivity of 79.1% in the detection of lung cancers in stages I/II.

Conclusion

These results suggest that serum SELDI protein profiling can distinguish lung cancer patients, especially NSCLC patients, from normal subjects with relatively high sensitivity and specificity, and the SELDI-TOF-MS is a potential tool for the screening of lung cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Spira A, Ettinger DS: Multidisciplinary management of lung cancer. N Engl J Med. 2004, 350: 379-392. 10.1056/NEJMra035536.CrossRefPubMed Spira A, Ettinger DS: Multidisciplinary management of lung cancer. N Engl J Med. 2004, 350: 379-392. 10.1056/NEJMra035536.CrossRefPubMed
2.
go back to reference Stieber P, Aronsson AC, Bialk P: Tumor markers in lung cancer: EGTM recommendations. Anticancer Res. 1999, 19: 2817-2819. Stieber P, Aronsson AC, Bialk P: Tumor markers in lung cancer: EGTM recommendations. Anticancer Res. 1999, 19: 2817-2819.
3.
go back to reference Swensen SJ, Jett JR, Hartman TE, Midthun DE, Sloan JA, Sykes AM, Aughenbaugh GL, Clemens MA: Lung cancer screening with CT: Mayo clinic experience. Radiology. 2003, 226: 756-761.CrossRefPubMed Swensen SJ, Jett JR, Hartman TE, Midthun DE, Sloan JA, Sykes AM, Aughenbaugh GL, Clemens MA: Lung cancer screening with CT: Mayo clinic experience. Radiology. 2003, 226: 756-761.CrossRefPubMed
4.
go back to reference Kulpa J, Wojcik E, Reinfuss M, Kolodziejski L: Carcinoembryonic antigen, squamous cell carcinoma antigen, CYFRA21-1, and neuro-specific enolase in squamous cell lung cancer patients. Clin Chem. 2002, 48: 1931-1937.PubMed Kulpa J, Wojcik E, Reinfuss M, Kolodziejski L: Carcinoembryonic antigen, squamous cell carcinoma antigen, CYFRA21-1, and neuro-specific enolase in squamous cell lung cancer patients. Clin Chem. 2002, 48: 1931-1937.PubMed
5.
go back to reference Zhong L, Peng X, Hidalgo GE, Doherty DE, Stromberg AJ, Hirschowitz EA: Identification of circulating antibodies to tumor-associated proteins for combined use as markers of non-small cell lung cancer. Proteomics. 2004, 4: 1216-1225. 10.1002/pmic.200200679.CrossRefPubMed Zhong L, Peng X, Hidalgo GE, Doherty DE, Stromberg AJ, Hirschowitz EA: Identification of circulating antibodies to tumor-associated proteins for combined use as markers of non-small cell lung cancer. Proteomics. 2004, 4: 1216-1225. 10.1002/pmic.200200679.CrossRefPubMed
6.
go back to reference Lam S, Kennedy T, Unger M, Miller YE, Gelmont D, Rusch V, Gipe B, Howard D, LeRiche JC, Coldman A, Gazdar AF: Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy. Chest. 1998, 113: 696-702.CrossRefPubMed Lam S, Kennedy T, Unger M, Miller YE, Gelmont D, Rusch V, Gipe B, Howard D, LeRiche JC, Coldman A, Gazdar AF: Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy. Chest. 1998, 113: 696-702.CrossRefPubMed
7.
go back to reference Hutchen TW, Yip TT: New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom. 1993, 7: 576-580. 10.1002/rcm.1290070703.CrossRef Hutchen TW, Yip TT: New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom. 1993, 7: 576-580. 10.1002/rcm.1290070703.CrossRef
8.
go back to reference Wadsworth JT, Somers KD, Cazares LH, Malik G, Adam BL, Stack BC, Wright GL, Semmes OJ: Serum protein profiles to identify head and neck cancer. Clin Cancer Res. 2004, 10: 1625-1632.CrossRefPubMed Wadsworth JT, Somers KD, Cazares LH, Malik G, Adam BL, Stack BC, Wright GL, Semmes OJ: Serum protein profiles to identify head and neck cancer. Clin Cancer Res. 2004, 10: 1625-1632.CrossRefPubMed
9.
go back to reference Rosty C, Christa L, Kuzdzal S, Baldwin WM, Zahurak ML, Carnot F, Chan DW, Canto M, Lillemoe KD, Cameron JL, Yeo CJ, Hruban RH, Goggins M: Identification of hepatocarcinoma-intestine-pancreas/pancreatitis – associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res. 2002, 62: 1868-1875.PubMed Rosty C, Christa L, Kuzdzal S, Baldwin WM, Zahurak ML, Carnot F, Chan DW, Canto M, Lillemoe KD, Cameron JL, Yeo CJ, Hruban RH, Goggins M: Identification of hepatocarcinoma-intestine-pancreas/pancreatitis – associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res. 2002, 62: 1868-1875.PubMed
10.
go back to reference Cazares LH, Adam BL, Ward MD, Nasim S, Schellhammer PF, Semmes OJ, Wright GL: Normal benign, preneoplastic, and malignant prostate cells have distinct protein expression profiles resolved by Surface Enhanced Laser Desorption/Ionization Mass Spectrometry. Clin Cancer Res. 2002, 8: 2541-2552.PubMed Cazares LH, Adam BL, Ward MD, Nasim S, Schellhammer PF, Semmes OJ, Wright GL: Normal benign, preneoplastic, and malignant prostate cells have distinct protein expression profiles resolved by Surface Enhanced Laser Desorption/Ionization Mass Spectrometry. Clin Cancer Res. 2002, 8: 2541-2552.PubMed
11.
go back to reference Koopmann J, Zhang Z, White N, Rosenzweig J, Fedarko N, Jagannath S, Canto MI, Yeo CJ, Chan DW, Goggins M: Serum diagnosis of pancreatic adenocarcinoma using Surface Enhanced Laser Desorption/Ionization Mass Spectrometry. Clin Cancer Res. 2004, 10: 860-868.CrossRefPubMed Koopmann J, Zhang Z, White N, Rosenzweig J, Fedarko N, Jagannath S, Canto MI, Yeo CJ, Chan DW, Goggins M: Serum diagnosis of pancreatic adenocarcinoma using Surface Enhanced Laser Desorption/Ionization Mass Spectrometry. Clin Cancer Res. 2004, 10: 860-868.CrossRefPubMed
12.
go back to reference Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA: Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002, 359: 572-577. 10.1016/S0140-6736(02)07746-2.CrossRefPubMed Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA: Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002, 359: 572-577. 10.1016/S0140-6736(02)07746-2.CrossRefPubMed
13.
go back to reference Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, Semmes OJ, Schellhammer PF, Yasui Y, Feng Z, Wright GL: Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 2002, 62: 3609-3614.PubMed Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, Semmes OJ, Schellhammer PF, Yasui Y, Feng Z, Wright GL: Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 2002, 62: 3609-3614.PubMed
14.
go back to reference Vlahou A, Schellhammer PF, Mendrinos S, Patel K, Kondylis FI, Gong L, Nasim S, Wright GL: Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am J Pathol. 2001, 158: 1491-1502.CrossRefPubMedPubMedCentral Vlahou A, Schellhammer PF, Mendrinos S, Patel K, Kondylis FI, Gong L, Nasim S, Wright GL: Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am J Pathol. 2001, 158: 1491-1502.CrossRefPubMedPubMedCentral
15.
go back to reference Alfonso P, Catala M, Rico-Morales ML, Durante-Rodriguez G, Moro-Rodriguez E, Fernandez-Garcia H, Escribano JM, Alvarez-Fernandez E, Garcia-Poblete E: Proteomic analysis of lung biopsies: Differential protein expression profile between peritumoral and tumoral tissue. Proteomics. 2004, 4: 442-447. 10.1002/pmic.200300647.CrossRefPubMed Alfonso P, Catala M, Rico-Morales ML, Durante-Rodriguez G, Moro-Rodriguez E, Fernandez-Garcia H, Escribano JM, Alvarez-Fernandez E, Garcia-Poblete E: Proteomic analysis of lung biopsies: Differential protein expression profile between peritumoral and tumoral tissue. Proteomics. 2004, 4: 442-447. 10.1002/pmic.200300647.CrossRefPubMed
16.
go back to reference Xiao X, Liu D, Tang Y, Guo F, Xia L, Liu J, He D: Development of proteomic patterns for detecting lung cancer. Dis Markers. 2003, 19: 33-39.CrossRefPubMed Xiao X, Liu D, Tang Y, Guo F, Xia L, Liu J, He D: Development of proteomic patterns for detecting lung cancer. Dis Markers. 2003, 19: 33-39.CrossRefPubMed
17.
go back to reference Luo S, Wang M, Li Y: Clinical significance in diagnosing lung cancer with the combined determination of serum tumor markers. J tumor Marker Oncology. 2004, 19: 90-10.1159/000074964. Luo S, Wang M, Li Y: Clinical significance in diagnosing lung cancer with the combined determination of serum tumor markers. J tumor Marker Oncology. 2004, 19: 90-10.1159/000074964.
18.
go back to reference Gao Q, Li Y, Omoli H: Clinical value of a cancer marker cytokeratin 19 for diagnosis of lung cancer. J Chin Med Univ. 1999, 28: 293-294. Gao Q, Li Y, Omoli H: Clinical value of a cancer marker cytokeratin 19 for diagnosis of lung cancer. J Chin Med Univ. 1999, 28: 293-294.
Metadata
Title
Application of serum SELDI proteomic patterns in diagnosis of lung cancer
Authors
Shuan-ying Yang
Xue-yuan Xiao
Wang-gang Zhang
Li-juan Zhang
Wei Zhang
Bin Zhou
Guoan Chen
Da-cheng He
Publication date
01-12-2005
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2005
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-5-83

Other articles of this Issue 1/2005

BMC Cancer 1/2005 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine