Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 1/2019

01-02-2019 | Research Article

Quantitative 19F MRI of perfluoro-15-crown-5-ether using uniformity correction of the spin excitation and signal reception

Authors: Ina Vernikouskaya, Alexander Pochert, Mika Lindén, Volker Rasche

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 1/2019

Login to get access

Abstract

Objectives

A common limitation of all 1H contrast agents is that they only allow indirect visualization through modification of the intrinsic properties of the tissue, making quantification of this effect challenging. 19F compounds, on the contrary, are measured directly, without any background signal. There is a linear relationship between the amount of 19F spins and the intensity of the signal. However, non-uniformity of the radiofrequency field may lead to errors in the quantified 19F signal and should be carefully addressed for any quantitative imaging.

Materials and methods

Adaptation of the previously introduced \(B_{1}^{ + }\) mapping technique to the problem of quantifying the 19F signal from perfluoro-15-crown-5-ether (PFCE) is proposed in this work. Initial evaluation of the proposed technique simultaneously accounting for transmit \(B_{1}^{ + }\) and receive \(B_{1}^{ - }\) field inhomogeneities is performed in a PFCE phantom. As a proof of concept, in vivo quantification of the 19F signal is performed in a murine model after application of custom-designed hollow mesoporous silica spheres (HMSS) loaded with PFCE.

Results

A phantom experiment clearly shows that only compensation for both transmit and receive characteristics outperforms inaccurate quantification based on the non- or partly-corrected signal intensities. Furthermore, an optimized protocol is proposed for in vivo application.

Conclusion

The proposed \(B_{1}^{ + }\)/\(B_{1}^{ - }\) mapping technique represents a simple to implement and easy-to-use solution for quantification of the 19F signal from PFCE in the presence of B1-field inhomogeneities.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sinharay S, Pagel MD (2016) Advances in magnetic resonance imaging contrast agents for biomarker detection. Annu Rev Anal Chem (Palo Alto Calif) 9(1):95–115CrossRef Sinharay S, Pagel MD (2016) Advances in magnetic resonance imaging contrast agents for biomarker detection. Annu Rev Anal Chem (Palo Alto Calif) 9(1):95–115CrossRef
2.
go back to reference Hingorani DV, Bernstein AS, Pagel MD (2015) A review of responsive MRI contrast agents: 2005–2014. Contrast Media Mol Imaging 10(4):245–265PubMedCrossRef Hingorani DV, Bernstein AS, Pagel MD (2015) A review of responsive MRI contrast agents: 2005–2014. Contrast Media Mol Imaging 10(4):245–265PubMedCrossRef
3.
go back to reference Zuo Z, Syrovets T, Wu Y, Hafner S, Vernikouskaya I, Liu W et al (2017) The CAM cancer xenograft as a model for initial evaluation of MR labelled compounds. Sci Rep 7:46690PubMedPubMedCentralCrossRef Zuo Z, Syrovets T, Wu Y, Hafner S, Vernikouskaya I, Liu W et al (2017) The CAM cancer xenograft as a model for initial evaluation of MR labelled compounds. Sci Rep 7:46690PubMedPubMedCentralCrossRef
4.
go back to reference Vernikouskaya I, Fekete N, Bannwarth M, Erle A, Rojewski M, Landfester K et al (2014) Iron-loaded PLLA nanoparticles as highly efficient intracellular markers for visualization of mesenchymal stromal cells by MRI. Contrast Media Mol Imaging 9(2):109–121PubMedCrossRef Vernikouskaya I, Fekete N, Bannwarth M, Erle A, Rojewski M, Landfester K et al (2014) Iron-loaded PLLA nanoparticles as highly efficient intracellular markers for visualization of mesenchymal stromal cells by MRI. Contrast Media Mol Imaging 9(2):109–121PubMedCrossRef
5.
6.
go back to reference de Rochefort L, Nguyen T, Brown R, Spincemaille P, Choi G, Weinsaft J et al (2008) In vivo quantification of contrast agent concentration using the induced magnetic field for time-resolved arterial input function measurement with MRI. Med Phys 35(12):5328–5339PubMedCrossRef de Rochefort L, Nguyen T, Brown R, Spincemaille P, Choi G, Weinsaft J et al (2008) In vivo quantification of contrast agent concentration using the induced magnetic field for time-resolved arterial input function measurement with MRI. Med Phys 35(12):5328–5339PubMedCrossRef
7.
go back to reference Chen J, Lanza GM, Wickline SA (2010) Quantitative magnetic resonance fluorine imaging: today and tomorrow. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(4):431–440PubMedPubMedCentralCrossRef Chen J, Lanza GM, Wickline SA (2010) Quantitative magnetic resonance fluorine imaging: today and tomorrow. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(4):431–440PubMedPubMedCentralCrossRef
8.
go back to reference Morawski AM, Winter PM, Yu X, Fuhrhop RW, Scott MJ, Hockett F et al (2004) Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted (19)F nanoparticles. Magn Reson Med 52(6):1255–1262PubMedCrossRef Morawski AM, Winter PM, Yu X, Fuhrhop RW, Scott MJ, Hockett F et al (2004) Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted (19)F nanoparticles. Magn Reson Med 52(6):1255–1262PubMedCrossRef
9.
go back to reference Shukla HP, Mason RP, Bansal N, Antich PP (1996) Regional myocardial oxygen tension: 19F MRI of sequestered perfluorocarbon. Magn Reson Med 35(6):827–833PubMedCrossRef Shukla HP, Mason RP, Bansal N, Antich PP (1996) Regional myocardial oxygen tension: 19F MRI of sequestered perfluorocarbon. Magn Reson Med 35(6):827–833PubMedCrossRef
10.
go back to reference Zhao D, Constantinescu A, Jiang L, Hahn EW, Mason RP (2001) Prognostic radiology: quantitative assessment of tumor oxygen dynamics by MRI. Am J Clin Oncol 24(5):462–466PubMedCrossRef Zhao D, Constantinescu A, Jiang L, Hahn EW, Mason RP (2001) Prognostic radiology: quantitative assessment of tumor oxygen dynamics by MRI. Am J Clin Oncol 24(5):462–466PubMedCrossRef
11.
go back to reference Schlemmer HP, Becker M, Bachert P, Dietz A, Rudat V, Vanselow B et al (1999) Alterations of intratumoral pharmacokinetics of 5-fluorouracil in head and neck carcinoma during simultaneous radiochemotherapy. Cancer Res 59(10):2363–2369PubMed Schlemmer HP, Becker M, Bachert P, Dietz A, Rudat V, Vanselow B et al (1999) Alterations of intratumoral pharmacokinetics of 5-fluorouracil in head and neck carcinoma during simultaneous radiochemotherapy. Cancer Res 59(10):2363–2369PubMed
12.
go back to reference Balducci A, Wen Y, Zhang Y, Helfer BM, Hitchens TK, Meng WS et al (2013) A novel probe for the non-invasive detection of tumor-associated inflammation. Oncoimmunology 2(2):e23034PubMedPubMedCentralCrossRef Balducci A, Wen Y, Zhang Y, Helfer BM, Hitchens TK, Meng WS et al (2013) A novel probe for the non-invasive detection of tumor-associated inflammation. Oncoimmunology 2(2):e23034PubMedPubMedCentralCrossRef
13.
go back to reference Huang MQ, Ye Q, Williams DS, Ho C (2002) MRI of lungs using partial liquid ventilation with water-in-perfluorocarbon emulsions. Magn Reson Med 48(3):487–492PubMedCrossRef Huang MQ, Ye Q, Williams DS, Ho C (2002) MRI of lungs using partial liquid ventilation with water-in-perfluorocarbon emulsions. Magn Reson Med 48(3):487–492PubMedCrossRef
14.
go back to reference Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JW (2011) Fluorine 19F MRS and MRI in biomedicine. NMR Biomed 24(2):114–129PubMedCrossRef Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JW (2011) Fluorine 19F MRS and MRI in biomedicine. NMR Biomed 24(2):114–129PubMedCrossRef
15.
go back to reference Waiczies S, Millward JM, Starke L, Delgado PR, Huelnhagen T, Prinz C et al (2017) Enhanced fluorine-19 MRI sensitivity using a cryogenic radiofrequency probe: technical developments and ex vivo demonstration in a mouse model of neuroinflammation. Sci Rep 7(1):9808PubMedPubMedCentralCrossRef Waiczies S, Millward JM, Starke L, Delgado PR, Huelnhagen T, Prinz C et al (2017) Enhanced fluorine-19 MRI sensitivity using a cryogenic radiofrequency probe: technical developments and ex vivo demonstration in a mouse model of neuroinflammation. Sci Rep 7(1):9808PubMedPubMedCentralCrossRef
16.
go back to reference Srinivas M, Cruz LJ, Bonetto F, Heerschap A, Figdor CG, de Vries IJM (2010) Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging. Biomaterials 31(27):7070–7077PubMedCrossRef Srinivas M, Cruz LJ, Bonetto F, Heerschap A, Figdor CG, de Vries IJM (2010) Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging. Biomaterials 31(27):7070–7077PubMedCrossRef
17.
go back to reference Jacoby C, Temme S, Mayenfels F, Benoit N, Krafft MP, Schubert R et al (2014) Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed 27(3):261–271PubMedCrossRef Jacoby C, Temme S, Mayenfels F, Benoit N, Krafft MP, Schubert R et al (2014) Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed 27(3):261–271PubMedCrossRef
18.
go back to reference Krafft MP (2001) Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv Drug Deliv Rev 47(2–3):209–228PubMedCrossRef Krafft MP (2001) Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv Drug Deliv Rev 47(2–3):209–228PubMedCrossRef
19.
go back to reference Barnett BP, Ruiz-Cabello J, Hota P, Ouwerkerk R, Shamblott MJ, Lauzon C et al (2011) Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets. Contrast Media Mol Imaging 6(4):251–259PubMedCrossRef Barnett BP, Ruiz-Cabello J, Hota P, Ouwerkerk R, Shamblott MJ, Lauzon C et al (2011) Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets. Contrast Media Mol Imaging 6(4):251–259PubMedCrossRef
21.
22.
go back to reference Keipert PE, Otto S, Flaim SF, Weers JG, Schutt EA, Pelura TJ et al (1994) Influence of perflubron emulsion particle size on blood half-life and febrile response in rats. Artif Cells Blood Substit Immobil Biotechnol 22(4):1169–1174PubMedCrossRef Keipert PE, Otto S, Flaim SF, Weers JG, Schutt EA, Pelura TJ et al (1994) Influence of perflubron emulsion particle size on blood half-life and febrile response in rats. Artif Cells Blood Substit Immobil Biotechnol 22(4):1169–1174PubMedCrossRef
23.
go back to reference Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41(7):2590–2605PubMedCrossRef Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41(7):2590–2605PubMedCrossRef
24.
go back to reference Nakamura T, Sugihara F, Matsushita H, Yoshioka Y, Mizukami S, Kikuchi K (2015) Mesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery. Chem Sci 6:1986–1990PubMedCrossRef Nakamura T, Sugihara F, Matsushita H, Yoshioka Y, Mizukami S, Kikuchi K (2015) Mesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery. Chem Sci 6:1986–1990PubMedCrossRef
25.
go back to reference Ye F, Laurent S, Fornara A, Astolfi L, Qin J, Roch A et al (2008) Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T(2) contrast agent with tunable proton relaxivities. Contrast Media Mol Imaging 7(5):460–468CrossRef Ye F, Laurent S, Fornara A, Astolfi L, Qin J, Roch A et al (2008) Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T(2) contrast agent with tunable proton relaxivities. Contrast Media Mol Imaging 7(5):460–468CrossRef
26.
go back to reference Hsiao J-K, Tsai C-P, Chung T-H, Hung Y, Yao M, Liu H-M et al (2008) Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. Small 4(9):1445–1452PubMedCrossRef Hsiao J-K, Tsai C-P, Chung T-H, Hung Y, Yao M, Liu H-M et al (2008) Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. Small 4(9):1445–1452PubMedCrossRef
27.
go back to reference Vernikouskaya I, Pochert A, Linden M, Rasche V (2015) Perfluoro-15-crown-5-ether-loaded hollow mesoporous silica spheres for 19F in vivo MRI. In: Proceedings of the 23th scientific meeting, International Society for Magnetic Resonance in medicine, Toronto, 1902 Vernikouskaya I, Pochert A, Linden M, Rasche V (2015) Perfluoro-15-crown-5-ether-loaded hollow mesoporous silica spheres for 19F in vivo MRI. In: Proceedings of the 23th scientific meeting, International Society for Magnetic Resonance in medicine, Toronto, 1902
28.
go back to reference Pochert A, Vernikouskaya I, Pascher F, Rasche V, Lindén M (2017) Cargo-influences on the biodistribution of hollow mesoporous silica nanoparticles as studied by quantitative 19F-magnetic resonance imaging. J Colloid Interface Sci 488:1–9PubMedCrossRef Pochert A, Vernikouskaya I, Pascher F, Rasche V, Lindén M (2017) Cargo-influences on the biodistribution of hollow mesoporous silica nanoparticles as studied by quantitative 19F-magnetic resonance imaging. J Colloid Interface Sci 488:1–9PubMedCrossRef
29.
go back to reference Jiru F, Klose U (2006) Fast 3D radiofrequency field mapping using echo-planar imaging. Magn Reson Med 56(6):1375–1379PubMedCrossRef Jiru F, Klose U (2006) Fast 3D radiofrequency field mapping using echo-planar imaging. Magn Reson Med 56(6):1375–1379PubMedCrossRef
30.
go back to reference Insko EK, Bolinger L (1993) Mapping of the radiofrequency field. J Magn Reson Ser A 103(1):82–85CrossRef Insko EK, Bolinger L (1993) Mapping of the radiofrequency field. J Magn Reson Ser A 103(1):82–85CrossRef
31.
go back to reference Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57(1):192–200PubMedCrossRef Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57(1):192–200PubMedCrossRef
32.
go back to reference Dowell NG, Tofts PS (2007) Fast, accurate, and precise mapping of the RF field in vivo using the 180 degrees signal null. Magn Reson Med 58(3):622–630PubMedCrossRef Dowell NG, Tofts PS (2007) Fast, accurate, and precise mapping of the RF field in vivo using the 180 degrees signal null. Magn Reson Med 58(3):622–630PubMedCrossRef
34.
go back to reference Sung K, Saranathan M, Daniel BL, Hargreaves BA (2013) Simultaneous T(1) and B(1) (+) mapping using reference region variable flip angle imaging. Magn Reson Med 70(4):954–961PubMedPubMedCentralCrossRef Sung K, Saranathan M, Daniel BL, Hargreaves BA (2013) Simultaneous T(1) and B(1) (+) mapping using reference region variable flip angle imaging. Magn Reson Med 70(4):954–961PubMedPubMedCentralCrossRef
35.
go back to reference Brookes JA, Redpath TW, Gilbert FJ, Murray AD, Staff RT (1999) Accuracy of T1 measurement in dynamic contrast-enhanced breast MRI using two- and three-dimensional variable flip angle fast low-angle shot. J Magn Reson Imaging 9(2):163–171PubMedCrossRef Brookes JA, Redpath TW, Gilbert FJ, Murray AD, Staff RT (1999) Accuracy of T1 measurement in dynamic contrast-enhanced breast MRI using two- and three-dimensional variable flip angle fast low-angle shot. J Magn Reson Imaging 9(2):163–171PubMedCrossRef
36.
go back to reference Gupta S, Schmidt E, Mulkern R, Fedorov A, Hancu I, Zhu Y, et al (2012) A method for correcting T1 maps of prostate at 3T obtained by variable flip angle imaging. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in medicine, Melbourne, 1962 Gupta S, Schmidt E, Mulkern R, Fedorov A, Hancu I, Zhu Y, et al (2012) A method for correcting T1 maps of prostate at 3T obtained by variable flip angle imaging. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in medicine, Melbourne, 1962
37.
go back to reference Ma J (2004) Breath-hold water and fat imaging using a dual-echo two-point Dixon technique with an efficient and robust phase-correction algorithm. Magn Reson Med 52(2):415–419PubMedCrossRef Ma J (2004) Breath-hold water and fat imaging using a dual-echo two-point Dixon technique with an efficient and robust phase-correction algorithm. Magn Reson Med 52(2):415–419PubMedCrossRef
38.
go back to reference Kuhl CK, Kooijman H, Gieseke J, Schild HH (2007) Effect of B1 inhomogeneity on breast MR imaging at 3.0 T. Radiology 244(3):929–930PubMedCrossRef Kuhl CK, Kooijman H, Gieseke J, Schild HH (2007) Effect of B1 inhomogeneity on breast MR imaging at 3.0 T. Radiology 244(3):929–930PubMedCrossRef
39.
go back to reference Sung K, Daniel BL, Hargreaves BA (2013) Transmit B1 + field inhomogeneity and T1 estimation errors in breast DCE-MRI at 3 tesla. J Magn Reson Imaging 38(2):454–459PubMedPubMedCentralCrossRef Sung K, Daniel BL, Hargreaves BA (2013) Transmit B1 + field inhomogeneity and T1 estimation errors in breast DCE-MRI at 3 tesla. J Magn Reson Imaging 38(2):454–459PubMedPubMedCentralCrossRef
40.
go back to reference Collins CM, Yang QX, Wang JH, Zhang X, Liu H, Michaeli S et al (2002) Different excitation and reception distributions with a single-loop transmit-receive surface coil near a head-sized spherical phantom at 300 MHz. Magn Reson Med 47(5):1026–1028PubMedCrossRef Collins CM, Yang QX, Wang JH, Zhang X, Liu H, Michaeli S et al (2002) Different excitation and reception distributions with a single-loop transmit-receive surface coil near a head-sized spherical phantom at 300 MHz. Magn Reson Med 47(5):1026–1028PubMedCrossRef
41.
go back to reference Hoult DI (2000) The principle of reciprocity in signal strength calculations—a mathematical guide. Concepts Magn Reson 12(4):173–187CrossRef Hoult DI (2000) The principle of reciprocity in signal strength calculations—a mathematical guide. Concepts Magn Reson 12(4):173–187CrossRef
42.
go back to reference Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR et al (1985) Comparison of linear and circular polarization for magnetic resonance imaging. J Magn Reson 64(2):255–270 Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR et al (1985) Comparison of linear and circular polarization for magnetic resonance imaging. J Magn Reson 64(2):255–270
45.
go back to reference Kadayakkara DK, Damodaran K, Hitchens TK, Bulte JW, Ahrens ET (2014) (19)F spin-lattice relaxation of perfluoropolyethers: dependence on temperature and magnetic field strength (7.0-14.1T. J Magn Reson 242:18–22PubMedCrossRef Kadayakkara DK, Damodaran K, Hitchens TK, Bulte JW, Ahrens ET (2014) (19)F spin-lattice relaxation of perfluoropolyethers: dependence on temperature and magnetic field strength (7.0-14.1T. J Magn Reson 242:18–22PubMedCrossRef
46.
go back to reference Ji Y, Waiczies H, Winter L, Neumanova P, Hofmann D, Rieger J et al (2015) Eight-channel transceiver RF coil array tailored for 1H/19F MR of the human knee and fluorinated drugs at 7.0 T. NMR Biomed 28(6):726–737PubMedCrossRef Ji Y, Waiczies H, Winter L, Neumanova P, Hofmann D, Rieger J et al (2015) Eight-channel transceiver RF coil array tailored for 1H/19F MR of the human knee and fluorinated drugs at 7.0 T. NMR Biomed 28(6):726–737PubMedCrossRef
47.
go back to reference Zhong J, Sakaki M, Okada H, Ahrens ET (2013) In vivo intracellular oxygen dynamics in murine brain glioma and immunotherapeutic response of cytotoxic T cells observed by fluorine-19 magnetic resonance imaging. PLoS One 8(5):e59479PubMedPubMedCentralCrossRef Zhong J, Sakaki M, Okada H, Ahrens ET (2013) In vivo intracellular oxygen dynamics in murine brain glioma and immunotherapeutic response of cytotoxic T cells observed by fluorine-19 magnetic resonance imaging. PLoS One 8(5):e59479PubMedPubMedCentralCrossRef
48.
go back to reference Colotti R, Bastiaansen JAM, Wilson A, Flögel U, Gonzales C, Schwitter J et al (2017) Characterization of perfluorocarbon relaxation times and their influence on the optimization of fluorine-19 MRI at 3 tesla. Magn Reson Med 77(6):2263–2271PubMedCrossRef Colotti R, Bastiaansen JAM, Wilson A, Flögel U, Gonzales C, Schwitter J et al (2017) Characterization of perfluorocarbon relaxation times and their influence on the optimization of fluorine-19 MRI at 3 tesla. Magn Reson Med 77(6):2263–2271PubMedCrossRef
49.
go back to reference Fox MS, Gaudet JM, Foster PJ (2016) Fluorine-19 MRI contrast agents for cell tracking and lung imaging. Magn Reson Insights 8(Suppl 1):53–67PubMedPubMedCentral Fox MS, Gaudet JM, Foster PJ (2016) Fluorine-19 MRI contrast agents for cell tracking and lung imaging. Magn Reson Insights 8(Suppl 1):53–67PubMedPubMedCentral
50.
go back to reference Partlow KC, Chen J, Brant JA, Neubauer AM, Meyerrose TE, Creer MH et al (2007) 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 21(8):1647–1654PubMedCrossRef Partlow KC, Chen J, Brant JA, Neubauer AM, Meyerrose TE, Creer MH et al (2007) 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 21(8):1647–1654PubMedCrossRef
51.
go back to reference Ruiz-Cabello J, Walczak P, Kedziorek DA, Chacko VP, Schmieder AH, Wickline SA et al (2008) In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magn Reson Med 60(6):1506–1511PubMedPubMedCentralCrossRef Ruiz-Cabello J, Walczak P, Kedziorek DA, Chacko VP, Schmieder AH, Wickline SA et al (2008) In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magn Reson Med 60(6):1506–1511PubMedPubMedCentralCrossRef
52.
go back to reference Yu T, Hubbard D, Ray A, Ghandehari H (2012) In vivo biodistribution and pharmacokinetics of silica nanoparticles as a function of geometry, porosity and surface characteristics. J Control Release 163(1):46–54PubMedPubMedCentralCrossRef Yu T, Hubbard D, Ray A, Ghandehari H (2012) In vivo biodistribution and pharmacokinetics of silica nanoparticles as a function of geometry, porosity and surface characteristics. J Control Release 163(1):46–54PubMedPubMedCentralCrossRef
53.
go back to reference Xie G, Sun J, Zhong G, Shi L, Zhang D (2010) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84(3):183–190PubMedCrossRef Xie G, Sun J, Zhong G, Shi L, Zhang D (2010) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84(3):183–190PubMedCrossRef
54.
go back to reference Huang X, Li L, Liu T, Hao N, Liu H, Chen D et al (2011) The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5(7):5390–5399PubMedCrossRef Huang X, Li L, Liu T, Hao N, Liu H, Chen D et al (2011) The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5(7):5390–5399PubMedCrossRef
55.
go back to reference Miller L, Winter G, Baur B, Witulla B, Solbach C, Reske S et al (2014) Synthesis, characterization, and biodistribution of multiple 89Zr-labeled pore-expanded mesoporous silica nanoparticles for PET. Nanoscale 6(9):4928–4935PubMedCrossRef Miller L, Winter G, Baur B, Witulla B, Solbach C, Reske S et al (2014) Synthesis, characterization, and biodistribution of multiple 89Zr-labeled pore-expanded mesoporous silica nanoparticles for PET. Nanoscale 6(9):4928–4935PubMedCrossRef
56.
go back to reference Matsushita H, Mizukami S, Sugihara F, Nakanishi Y, Yoshioka Y, Kikuchi K (2014) Multifunctional core-shell silica nanoparticles for highly sensitive 19F magnetic resonance imaging. Angew Chem Int Ed 53(4):1008–1011CrossRef Matsushita H, Mizukami S, Sugihara F, Nakanishi Y, Yoshioka Y, Kikuchi K (2014) Multifunctional core-shell silica nanoparticles for highly sensitive 19F magnetic resonance imaging. Angew Chem Int Ed 53(4):1008–1011CrossRef
57.
go back to reference von Eckardstein A, Nofer JR, Assmann G (2001) High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 21(1):13–27CrossRef von Eckardstein A, Nofer JR, Assmann G (2001) High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 21(1):13–27CrossRef
58.
go back to reference Rosenholm J, Meinander A, Peuhu E, Niemi R, Eriksson J, Sahlgren C et al (2009) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3(1):197–206PubMedCrossRef Rosenholm J, Meinander A, Peuhu E, Niemi R, Eriksson J, Sahlgren C et al (2009) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3(1):197–206PubMedCrossRef
59.
go back to reference Pochert A, Stiller D, Rasche V, Linden M (2013) Hollow mesoporous silica spheres as 19F-MRI imaging agents. In: Proceedings of the 6th World Molecular Imaging Congress, Savannah, LBAP 012 Pochert A, Stiller D, Rasche V, Linden M (2013) Hollow mesoporous silica spheres as 19F-MRI imaging agents. In: Proceedings of the 6th World Molecular Imaging Congress, Savannah, LBAP 012
Metadata
Title
Quantitative 19F MRI of perfluoro-15-crown-5-ether using uniformity correction of the spin excitation and signal reception
Authors
Ina Vernikouskaya
Alexander Pochert
Mika Lindén
Volker Rasche
Publication date
01-02-2019
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 1/2019
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-018-0696-6

Other articles of this Issue 1/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 1/2019 Go to the issue