Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 2/2013

01-02-2013 | Original Paper

Quantification of mitral valve regurgitation with color flow Doppler using baseline shift

Authors: Hannah Heß, Sarah Eibel, Chirojit Mukherjee, Udo X. Kaisers, Joerg Ender

Published in: The International Journal of Cardiovascular Imaging | Issue 2/2013

Login to get access

Abstract

Vena contracta width (VCW) and effective regurgitant orifice area (EROA) are well established methods for evaluating mitral regurgitation using transesophageal echocardiography (TEE). For color-flow Doppler (CF) measurements Nyquist limit of 50–60 cm/s is recommended. Aim of the study was to investigate the effectiveness of a baseline shift of the Nyquist limit for these measurements. After a comprehensive 2-dimensional (2D) TEE examination, the mitral regurgitation jet was acquired with a Nyquist limit of 50 cm/s (NL50) along with a baseline shift to 37.5 cm/s (NL37.5) using CF. Moreover a real time 3-dimensional (RT 3D) color complete volume dataset was stored with a Nyquist limit of 50 cm/s (NL50) and 37.5 cm/s (NL37.5). Vena contracta width (VCW) as well as Proximal Isovelocity Surface Area (PISA) derived EROA were measured based on 2D TEE and compared to RT 3D echo measurements for vena contracta area (VCA) using planimetry method. Correlation between VCA 3D NL50 and VCW NL50 was 0.29 (p < 0.05) compared to 0.6 (p < 0.05) using NL37.5. Correlation between VCA 3D NL50 and EROA 2D NL50 was 0.46 (p < 0.05) vs. 0.6 (p < 0.05) EROA 2D NL37.5. Correlation between VCA 3D NL37.5 and VCW NL50 was 0.45 (p < 0.05) compared to 0.65 (p < 0.05) using VCW NL37.5. Correlation between VCA 3D NL37.5 and EROA 2D NL50 was 0.41 (p < 0.05) vs. 0.53 (p < 0.05) using EROA 2D NL37.5. Baseline shift of the NL to 37.5 cm/s improves the correlation for VCW and EROA when compared to RT 3D NL50 planimetry of the vena contracta area. Baseline shift in RT 3D to a NL of 37.5 cm/s shows similar results like NL50.
Literature
1.
go back to reference Enriquez-Sarano M, Sundt TM III (2010) Early surgery is recommended for mitral regurgitation. Circulation 121:804–811PubMedCrossRef Enriquez-Sarano M, Sundt TM III (2010) Early surgery is recommended for mitral regurgitation. Circulation 121:804–811PubMedCrossRef
2.
go back to reference Bonow RO, Carabello BA, Chatterjee K et al (2008) 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 52:e1–e142PubMedCrossRef Bonow RO, Carabello BA, Chatterjee K et al (2008) 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 52:e1–e142PubMedCrossRef
3.
go back to reference Fehske W, Omran H, Manz M et al (1994) Color-coded Doppler imaging of the vena contracta as a basis for quantification of pure mitral regurgitation. Am J Cardiol 73:268–274PubMedCrossRef Fehske W, Omran H, Manz M et al (1994) Color-coded Doppler imaging of the vena contracta as a basis for quantification of pure mitral regurgitation. Am J Cardiol 73:268–274PubMedCrossRef
4.
go back to reference Hall SA, Brickner ME, Willett DL et al (1997) Assessment of mitral regurgitation severity by Doppler color flow mapping of the vena contracta. Circulation 95:636–642PubMedCrossRef Hall SA, Brickner ME, Willett DL et al (1997) Assessment of mitral regurgitation severity by Doppler color flow mapping of the vena contracta. Circulation 95:636–642PubMedCrossRef
5.
go back to reference Zoghbi WA, Enriquez-Sarano M, Foster E et al (2003) Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802PubMedCrossRef Zoghbi WA, Enriquez-Sarano M, Foster E et al (2003) Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802PubMedCrossRef
6.
go back to reference Schwammenthal E, Chen C, Benning F et al (1994) Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation 90:307–322PubMedCrossRef Schwammenthal E, Chen C, Benning F et al (1994) Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation 90:307–322PubMedCrossRef
7.
go back to reference Simpson IA, Shiota T, Gharib M, Sahn DJ (1996) Current status of flow convergence for clinical applications: is it a leaning tower of “PISA”? J Am Coll Cardiol 27:504–509PubMedCrossRef Simpson IA, Shiota T, Gharib M, Sahn DJ (1996) Current status of flow convergence for clinical applications: is it a leaning tower of “PISA”? J Am Coll Cardiol 27:504–509PubMedCrossRef
8.
go back to reference Kahlert P, Plicht B, Schenk IM et al (2008) Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 21:912–921PubMedCrossRef Kahlert P, Plicht B, Schenk IM et al (2008) Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 21:912–921PubMedCrossRef
9.
go back to reference Veronesi F, Corsi C, Sugeng L et al (2008) Quantification of mitral apparatus dynamics in functional and ischemic mitral regurgitation using real-time 3-dimensional echocardiography. J Am Soc Echocardiogr 21:347–354PubMedCrossRef Veronesi F, Corsi C, Sugeng L et al (2008) Quantification of mitral apparatus dynamics in functional and ischemic mitral regurgitation using real-time 3-dimensional echocardiography. J Am Soc Echocardiogr 21:347–354PubMedCrossRef
10.
go back to reference Sugeng L, Chandra S, Lang RM (2009) Three-dimensional echocardiography for assessment of mitral valve regurgitation. Curr Opin Cardiol 24:420–425PubMedCrossRef Sugeng L, Chandra S, Lang RM (2009) Three-dimensional echocardiography for assessment of mitral valve regurgitation. Curr Opin Cardiol 24:420–425PubMedCrossRef
11.
go back to reference Altiok E, Hamada S, van HS et al (2011) Comparison of direct planimetry of mitral valve regurgitation orifice area by three-dimensional transesophageal echocardiography to effective regurgitant orifice area obtained by proximal flow convergence method and vena contracta area determined by color Doppler echocardiography. Am J Cardiol 107:452–458PubMedCrossRef Altiok E, Hamada S, van HS et al (2011) Comparison of direct planimetry of mitral valve regurgitation orifice area by three-dimensional transesophageal echocardiography to effective regurgitant orifice area obtained by proximal flow convergence method and vena contracta area determined by color Doppler echocardiography. Am J Cardiol 107:452–458PubMedCrossRef
12.
go back to reference Shanewise JS, Cheung AT, Aronson S et al (1999) ASE/SCA guidelines for performing a comprehensive intraoperative multiplane transesophageal echocardiography examination: recommendations of the American Society of Echocardiography Council for Intraoperative Echocardiography and the Society of Cardiovascular Anesthesiologists Task Force for Certification in Perioperative Transesophageal Echocardiography. Anesth Analg 89:870–884PubMed Shanewise JS, Cheung AT, Aronson S et al (1999) ASE/SCA guidelines for performing a comprehensive intraoperative multiplane transesophageal echocardiography examination: recommendations of the American Society of Echocardiography Council for Intraoperative Echocardiography and the Society of Cardiovascular Anesthesiologists Task Force for Certification in Perioperative Transesophageal Echocardiography. Anesth Analg 89:870–884PubMed
13.
go back to reference Carpentier A (1983) Cardiac valve surgery–the “French correction”. J Thorac Cardiovasc Surg 86:323–337PubMed Carpentier A (1983) Cardiac valve surgery–the “French correction”. J Thorac Cardiovasc Surg 86:323–337PubMed
14.
go back to reference Grigioni F, Enriquez-Sarano M, Zehr KJ et al (2001) Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103:1759–1764PubMedCrossRef Grigioni F, Enriquez-Sarano M, Zehr KJ et al (2001) Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103:1759–1764PubMedCrossRef
15.
go back to reference Zeng X, Levine RA, Hua L et al (2011) Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color doppler 3D echocardiography. Circ Cardiovasc Imaging 4:506–513PubMedCrossRef Zeng X, Levine RA, Hua L et al (2011) Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color doppler 3D echocardiography. Circ Cardiovasc Imaging 4:506–513PubMedCrossRef
16.
go back to reference Khanna D, Vengala S, Miller AP et al (2004) Quantification of mitral regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography 21:737–743PubMedCrossRef Khanna D, Vengala S, Miller AP et al (2004) Quantification of mitral regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography 21:737–743PubMedCrossRef
17.
go back to reference Iwakura K, Ito H, Kawano S et al (2006) Comparison of orifice area by transthoracic three-dimensional Doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am J Cardiol 97:1630–1637PubMedCrossRef Iwakura K, Ito H, Kawano S et al (2006) Comparison of orifice area by transthoracic three-dimensional Doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am J Cardiol 97:1630–1637PubMedCrossRef
18.
go back to reference Yosefy C, Hung J, Chua S et al (2009) Direct measurement of vena contracta area by real-time 3-dimensional echocardiography for assessing severity of mitral regurgitation. Am J Cardiol 104:978–983PubMedCrossRef Yosefy C, Hung J, Chua S et al (2009) Direct measurement of vena contracta area by real-time 3-dimensional echocardiography for assessing severity of mitral regurgitation. Am J Cardiol 104:978–983PubMedCrossRef
19.
go back to reference Hien MD, Weymann A, Rauch H, et al. (2012) Comparison of intraoperative three-dimensional doppler color flow mapping to assess mitral regurgitation. Echocardiography. epub ahead of print Hien MD, Weymann A, Rauch H, et al. (2012) Comparison of intraoperative three-dimensional doppler color flow mapping to assess mitral regurgitation. Echocardiography. epub ahead of print
20.
go back to reference Marsan NA, Westenberg JJM, Ypenburg C et al (2009) Quantification of functional mitral regurgitation by real-time 3d echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging 2:1245–1252PubMedCrossRef Marsan NA, Westenberg JJM, Ypenburg C et al (2009) Quantification of functional mitral regurgitation by real-time 3d echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging 2:1245–1252PubMedCrossRef
21.
go back to reference Buck T, Plicht B, Kahlert P et al (2008) Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal isovelocity surface area method. J Am Coll Cardiol 52:767–778PubMedCrossRef Buck T, Plicht B, Kahlert P et al (2008) Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal isovelocity surface area method. J Am Coll Cardiol 52:767–778PubMedCrossRef
22.
go back to reference Biner S, Rafique A, Rafii F et al (2010) Reproducibility of proximal isovelocity surface area, vena contracta, and regurgitant jet area for assessment of mitral regurgitation severity. JACC Cardiovasc Imaging 3:235–243PubMedCrossRef Biner S, Rafique A, Rafii F et al (2010) Reproducibility of proximal isovelocity surface area, vena contracta, and regurgitant jet area for assessment of mitral regurgitation severity. JACC Cardiovasc Imaging 3:235–243PubMedCrossRef
23.
go back to reference Utsunomiya T, Doshi R, Patel D et al (1993) Calculation of volume flow rate by the proximal isovelocity surface area method: simplified approach using color Doppler zero baseline shift. J Am Coll Cardiol 22:277–282PubMedCrossRef Utsunomiya T, Doshi R, Patel D et al (1993) Calculation of volume flow rate by the proximal isovelocity surface area method: simplified approach using color Doppler zero baseline shift. J Am Coll Cardiol 22:277–282PubMedCrossRef
24.
go back to reference Shanks M, Siebelink HM, Delgado V et al (2010) Quantitative assessment of mitral regurgitation: comparison between three-dimensional transesophageal echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging 3:694–700PubMedCrossRef Shanks M, Siebelink HM, Delgado V et al (2010) Quantitative assessment of mitral regurgitation: comparison between three-dimensional transesophageal echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging 3:694–700PubMedCrossRef
25.
go back to reference Grayburn PA, Bhella P (2010) Grading severity of mitral regurgitation by echocardiography: science or art? JACC Cardiovasc Imaging 3:244–246PubMedCrossRef Grayburn PA, Bhella P (2010) Grading severity of mitral regurgitation by echocardiography: science or art? JACC Cardiovasc Imaging 3:244–246PubMedCrossRef
Metadata
Title
Quantification of mitral valve regurgitation with color flow Doppler using baseline shift
Authors
Hannah Heß
Sarah Eibel
Chirojit Mukherjee
Udo X. Kaisers
Joerg Ender
Publication date
01-02-2013
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 2/2013
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-012-0084-7

Other articles of this Issue 2/2013

The International Journal of Cardiovascular Imaging 2/2013 Go to the issue