Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Pulmonary Nodule | Research

PB-LNet: a model for predicting pathological subtypes of pulmonary nodules on CT images

Authors: Yuchong Zhang, Hui Qu, Yumeng Tian, Fangjian Na, Jinshan Yan, Ying Wu, Xiaoyu Cui, Zhi Li, Mingfang Zhao

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Objective

To investigate the correlation between CT imaging features and pathological subtypes of pulmonary nodules and construct a prediction model using deep learning.

Methods

We collected information of patients with pulmonary nodules treated by surgery and the reference standard for diagnosis was post-operative pathology. After using elastic distortion for data augmentation, the CT images were divided into a training set, a validation set and a test set in a ratio of 6:2:2. We used PB-LNet to analyze the nodules in pre-operative CT and predict their pathological subtypes. Accuracy was used as the model evaluation index and Class Activation Map was applied to interpreting the results. Comparative experiments with other models were carried out to achieve the best results. Finally, images from the test set without data augmentation were analyzed to judge the clinical utility.

Results

Four hundred seventy-seven patients were included and the nodules were divided into six groups: benign lesions, precursor glandular lesions, minimally invasive adenocarcinoma, invasive adenocarcinoma Grade 1, Grade 2 and Grade 3. The accuracy of the test set was 0.84. Class Activation Map confirmed that PB-LNet classified the nodules mainly based on the lungs in CT images, which is in line with the actual situation in clinical practice. In comparative experiments, PB-LNet obtained the highest accuracy. Finally, 96 images from the test set without data augmentation were analyzed and the accuracy was 0.89.

Conclusions

In classifying CT images of lung nodules into six categories based on pathological subtypes, PB-LNet demonstrates satisfactory accuracy without the need of delineating nodules, while the results are interpretable. A high level of accuracy was also obtained when validating on real data, therefore demonstrates its usefulness in clinical practice.
Literature
1.
go back to reference Mazzone PJ, Lam L. Evaluating the Patient With a Pulmonary Nodule: A Review. JAMA. 2022;327(3):264–73.CrossRefPubMed Mazzone PJ, Lam L. Evaluating the Patient With a Pulmonary Nodule: A Review. JAMA. 2022;327(3):264–73.CrossRefPubMed
2.
go back to reference Gould MK, Donington J, Lynch WR, Mazzone PJ, Midthun DE, Naidich DP, Wiener RS. Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e93S-e120S.CrossRefPubMedPubMedCentral Gould MK, Donington J, Lynch WR, Mazzone PJ, Midthun DE, Naidich DP, Wiener RS. Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e93S-e120S.CrossRefPubMedPubMedCentral
3.
go back to reference MacMahon H, Naidich DP, Goo JM, Lee KS, Leung ANC, Mayo JR, Mehta AC, Ohno Y, Powell CA, Prokop M, et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology. 2017;284(1):228–43.CrossRefPubMed MacMahon H, Naidich DP, Goo JM, Lee KS, Leung ANC, Mayo JR, Mehta AC, Ohno Y, Powell CA, Prokop M, et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology. 2017;284(1):228–43.CrossRefPubMed
4.
go back to reference Moreira AL, Ocampo PSS, Xia Y, Zhong H, Russell PA, Minami Y, Cooper WA, Yoshida A, Bubendorf L, Papotti M, et al. A Grading System for Invasive Pulmonary Adenocarcinoma: A Proposal From the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol. 2020;15(10):1599–610.CrossRefPubMedPubMedCentral Moreira AL, Ocampo PSS, Xia Y, Zhong H, Russell PA, Minami Y, Cooper WA, Yoshida A, Bubendorf L, Papotti M, et al. A Grading System for Invasive Pulmonary Adenocarcinoma: A Proposal From the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol. 2020;15(10):1599–610.CrossRefPubMedPubMedCentral
5.
go back to reference Yoshida C, Yokomise H, Ibuki E, Go T, Haba R, Kadota K. High-grade tumor classified by new system is a prognostic predictor in resected lung adenocarcinoma. Gen Thorac Cardiovasc Surg. 2022;70(5):455–62.CrossRefPubMed Yoshida C, Yokomise H, Ibuki E, Go T, Haba R, Kadota K. High-grade tumor classified by new system is a prognostic predictor in resected lung adenocarcinoma. Gen Thorac Cardiovasc Surg. 2022;70(5):455–62.CrossRefPubMed
6.
go back to reference Xie X, Fu CC, Lv L, Ye Q, Yu Y, Fang Q, Zhang L, Hou L, Wu C. Deep convolutional neural network-based classification of cancer cells on cytological pleural effusion images. Mod Pathol. 2022;35(5):609–14.CrossRefPubMedPubMedCentral Xie X, Fu CC, Lv L, Ye Q, Yu Y, Fang Q, Zhang L, Hou L, Wu C. Deep convolutional neural network-based classification of cancer cells on cytological pleural effusion images. Mod Pathol. 2022;35(5):609–14.CrossRefPubMedPubMedCentral
7.
go back to reference Jiang B, Li N, Shi X, Zhang S, Li J, de Bock GH, Vliegenthart R, Xie X. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT. Radiology. 2022;303(1):202–12.CrossRefPubMed Jiang B, Li N, Shi X, Zhang S, Li J, de Bock GH, Vliegenthart R, Xie X. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT. Radiology. 2022;303(1):202–12.CrossRefPubMed
8.
go back to reference Shi F, Chen B, Cao Q, Wei Y, Zhou Q, Zhang R, Zhou Y, Yang W, Wang X, Fan R, et al. Semi-Supervised Deep Transfer Learning for Benign-Malignant Diagnosis of Pulmonary Nodules in Chest CT Images. IEEE Trans Med Imaging. 2021;41(4):771–81.CrossRef Shi F, Chen B, Cao Q, Wei Y, Zhou Q, Zhang R, Zhou Y, Yang W, Wang X, Fan R, et al. Semi-Supervised Deep Transfer Learning for Benign-Malignant Diagnosis of Pulmonary Nodules in Chest CT Images. IEEE Trans Med Imaging. 2021;41(4):771–81.CrossRef
9.
go back to reference Alis D, Alis C, Yergin M, Topel C, Asmakutlu O, Bagcilar O, Senli YD, Ustundag A, Salt V, Dogan SN, et al. A joint convolutional-recurrent neural network with an attention mechanism for detecting intracranial hemorrhage on noncontrast head CT. Sci Rep. 2022;12(1):2084.CrossRefPubMedPubMedCentral Alis D, Alis C, Yergin M, Topel C, Asmakutlu O, Bagcilar O, Senli YD, Ustundag A, Salt V, Dogan SN, et al. A joint convolutional-recurrent neural network with an attention mechanism for detecting intracranial hemorrhage on noncontrast head CT. Sci Rep. 2022;12(1):2084.CrossRefPubMedPubMedCentral
10.
go back to reference Krizhevsky A, Sutskever I. Hinton GEJCotA. ImageNet classification with deep convolutional neural networks. 2017;60(6):84–90. Krizhevsky A, Sutskever I. Hinton GEJCotA. ImageNet classification with deep convolutional neural networks. 2017;60(6):84–90.
11.
go back to reference Simonyan K, Zisserman AJ. Very deep convolutional networks for large-scale image recognition. 2014. Simonyan K, Zisserman AJ. Very deep convolutional networks for large-scale image recognition. 2014.
12.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 1–9. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 1–9.
13.
go back to reference He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 770–8. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 770–8.
14.
go back to reference Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 1492–500. Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 1492–500.
15.
go back to reference Wang S, Minku LL, Yao X. A systematic study of online class imbalance learning with concept drift. IEEE Transact Neural Netw Learning Syst. 2018;29(10):4802–21.CrossRef Wang S, Minku LL, Yao X. A systematic study of online class imbalance learning with concept drift. IEEE Transact Neural Netw Learning Syst. 2018;29(10):4802–21.CrossRef
16.
go back to reference Spindelbock T, Ranftl S, von der Linden W. Cross-Entropy Learning for Aortic Pathology Classification of Artificial Multi-Sensor Impedance Cardiography Signals. Entropy (Basel). 2021;23(12):1661.CrossRefPubMedPubMedCentral Spindelbock T, Ranftl S, von der Linden W. Cross-Entropy Learning for Aortic Pathology Classification of Artificial Multi-Sensor Impedance Cardiography Signals. Entropy (Basel). 2021;23(12):1661.CrossRefPubMedPubMedCentral
17.
go back to reference Zhang G, Yang Z, Gong L, Jiang S, Wang L, Zhang H. Classification of lung nodules based on CT images using squeeze-and-excitation network and aggregated residual transformations. Radiol Med (Torino). 2020;125(4):374–83.CrossRefPubMed Zhang G, Yang Z, Gong L, Jiang S, Wang L, Zhang H. Classification of lung nodules based on CT images using squeeze-and-excitation network and aggregated residual transformations. Radiol Med (Torino). 2020;125(4):374–83.CrossRefPubMed
18.
go back to reference Ye W, Gu W, Guo X, Yi P, Meng Y, Han F, Yu L, Chen Y, Zhang G, Wang X. Detection of pulmonary ground-glass opacity based on deep learning computer artificial intelligence. Biomed Eng Online. 2019;18(1):6.CrossRefPubMedPubMedCentral Ye W, Gu W, Guo X, Yi P, Meng Y, Han F, Yu L, Chen Y, Zhang G, Wang X. Detection of pulmonary ground-glass opacity based on deep learning computer artificial intelligence. Biomed Eng Online. 2019;18(1):6.CrossRefPubMedPubMedCentral
19.
go back to reference Yu T, Lin N, Zhong X, Zhang X, Zhang X, Chen Y, Liu J, Hu W, Duan H, Si J. Multi-label recognition of cancer-related lesions with clinical priors on white-light endoscopy. Comput Biol Med. 2022;143:105255.CrossRefPubMed Yu T, Lin N, Zhong X, Zhang X, Zhang X, Chen Y, Liu J, Hu W, Duan H, Si J. Multi-label recognition of cancer-related lesions with clinical priors on white-light endoscopy. Comput Biol Med. 2022;143:105255.CrossRefPubMed
20.
go back to reference Veluswamy RR, Ezer N, Mhango G, Goodman E, Bonomi M, Neugut AI, Swanson S, Powell CA, Beasley MB, Wisnivesky JP. Limited Resection Versus Lobectomy for Older Patients With Early-Stage Lung Cancer: Impact of Histology. J Clin Oncol. 2015;33(30):3447–53.CrossRefPubMedPubMedCentral Veluswamy RR, Ezer N, Mhango G, Goodman E, Bonomi M, Neugut AI, Swanson S, Powell CA, Beasley MB, Wisnivesky JP. Limited Resection Versus Lobectomy for Older Patients With Early-Stage Lung Cancer: Impact of Histology. J Clin Oncol. 2015;33(30):3447–53.CrossRefPubMedPubMedCentral
21.
go back to reference Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg. 1995;60(3):615–22 (discussion 622-613).CrossRefPubMed Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg. 1995;60(3):615–22 (discussion 622-613).CrossRefPubMed
22.
go back to reference Yendamuri S, Sharma R, Demmy M, Groman A, Hennon M, Dexter E, Nwogu C, Miller A, Demmy T. Temporal trends in outcomes following sublobar and lobar resections for small (</= 2 cm) non-small cell lung cancers–a Surveillance Epidemiology End Results database analysis. J Surg Res. 2013;183(1):27–32.CrossRefPubMed Yendamuri S, Sharma R, Demmy M, Groman A, Hennon M, Dexter E, Nwogu C, Miller A, Demmy T. Temporal trends in outcomes following sublobar and lobar resections for small (</= 2 cm) non-small cell lung cancers–a Surveillance Epidemiology End Results database analysis. J Surg Res. 2013;183(1):27–32.CrossRefPubMed
23.
go back to reference Tsubokawa N, Tsutani Y, Miyata Y, Handa Y, Misumi K, Hanaki H, Hida E, Okada M. Segmentectomy Versus Lobectomy for Radiologically Pure Solid Clinical T1a-bN0M0 Lung Cancer. World J Surg. 2018;42(8):2493–501.CrossRefPubMed Tsubokawa N, Tsutani Y, Miyata Y, Handa Y, Misumi K, Hanaki H, Hida E, Okada M. Segmentectomy Versus Lobectomy for Radiologically Pure Solid Clinical T1a-bN0M0 Lung Cancer. World J Surg. 2018;42(8):2493–501.CrossRefPubMed
25.
go back to reference Nitadori J, Bograd AJ, Kadota K, Sima CS, Rizk NP, Morales EA, Rusch VW, Travis WD, Adusumilli PS. Impact of micropapillary histologic subtype in selecting limited resection vs lobectomy for lung adenocarcinoma of 2cm or smaller. J Natl Cancer Inst. 2013;105(16):1212–20.CrossRefPubMedPubMedCentral Nitadori J, Bograd AJ, Kadota K, Sima CS, Rizk NP, Morales EA, Rusch VW, Travis WD, Adusumilli PS. Impact of micropapillary histologic subtype in selecting limited resection vs lobectomy for lung adenocarcinoma of 2cm or smaller. J Natl Cancer Inst. 2013;105(16):1212–20.CrossRefPubMedPubMedCentral
26.
go back to reference Kondo K, Yoshizawa A, Nakajima N, Sumiyoshi S, Teramoto Y, Rokutan-Kurata M, Sonobe M, Menju T, Date H, Haga H. Large nest micropapillary pattern of lung adenocarcinoma has poorer prognosis than typical floret pattern: analysis of 1,062 resected tumors. Transl Lung Cancer Res. 2020;9(3):587–602.CrossRefPubMedPubMedCentral Kondo K, Yoshizawa A, Nakajima N, Sumiyoshi S, Teramoto Y, Rokutan-Kurata M, Sonobe M, Menju T, Date H, Haga H. Large nest micropapillary pattern of lung adenocarcinoma has poorer prognosis than typical floret pattern: analysis of 1,062 resected tumors. Transl Lung Cancer Res. 2020;9(3):587–602.CrossRefPubMedPubMedCentral
27.
go back to reference Lee G, Lee HY, Jeong JY, Han J, Cha MJ, Lee KS, Kim J, Shim YM. Clinical impact of minimal micropapillary pattern in invasive lung adenocarcinoma: prognostic significance and survival outcomes. Am J Surg Pathol. 2015;39(5):660–6.CrossRefPubMed Lee G, Lee HY, Jeong JY, Han J, Cha MJ, Lee KS, Kim J, Shim YM. Clinical impact of minimal micropapillary pattern in invasive lung adenocarcinoma: prognostic significance and survival outcomes. Am J Surg Pathol. 2015;39(5):660–6.CrossRefPubMed
28.
go back to reference Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e278S-e313S.CrossRefPubMed Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e278S-e313S.CrossRefPubMed
29.
go back to reference McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, Yasufuku K, Martel S, Laberge F, Gingras M, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013;369(10):910–9.CrossRefPubMedPubMedCentral McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, Yasufuku K, Martel S, Laberge F, Gingras M, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013;369(10):910–9.CrossRefPubMedPubMedCentral
30.
go back to reference Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W. Cnn-rnn: A unified framework for multi-label image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 2285–94. Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W. Cnn-rnn: A unified framework for multi-label image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 2285–94.
31.
34.
go back to reference Cosma G, McArdle SE, Foulds GA, Hood SP, Reeder S, Johnson C, Khan MA, Pockley AG. Prostate Cancer: Early Detection and Assessing Clinical Risk Using Deep Machine Learning of High Dimensional Peripheral Blood Flow Cytometric Phenotyping Data. Front Immunol. 2021;12:786828.CrossRefPubMedPubMedCentral Cosma G, McArdle SE, Foulds GA, Hood SP, Reeder S, Johnson C, Khan MA, Pockley AG. Prostate Cancer: Early Detection and Assessing Clinical Risk Using Deep Machine Learning of High Dimensional Peripheral Blood Flow Cytometric Phenotyping Data. Front Immunol. 2021;12:786828.CrossRefPubMedPubMedCentral
35.
go back to reference Burduja M, Ionescu RT, Verga N. Accurate and Efficient Intracranial Hemorrhage Detection and Subtype Classification in 3D CT Scans with Convolutional and Long Short-Term Memory Neural Networks. Sensors (Basel). 2020;20(19):5611.CrossRefPubMedPubMedCentral Burduja M, Ionescu RT, Verga N. Accurate and Efficient Intracranial Hemorrhage Detection and Subtype Classification in 3D CT Scans with Convolutional and Long Short-Term Memory Neural Networks. Sensors (Basel). 2020;20(19):5611.CrossRefPubMedPubMedCentral
36.
go back to reference Ko J, Han J, Yoon J, Park JI, Hwang JS, Han JM, Park KH, Hwang DD. Assessing central serous chorioretinopathy with deep learning and multiple optical coherence tomography images. Sci Rep. 2022;12(1):1831.CrossRefPubMedPubMedCentral Ko J, Han J, Yoon J, Park JI, Hwang JS, Han JM, Park KH, Hwang DD. Assessing central serous chorioretinopathy with deep learning and multiple optical coherence tomography images. Sci Rep. 2022;12(1):1831.CrossRefPubMedPubMedCentral
37.
go back to reference Ozturk S, Ozkaya U. Residual LSTM layered CNN for classification of gastrointestinal tract diseases. J Biomed Inform. 2021;113:103638.CrossRefPubMed Ozturk S, Ozkaya U. Residual LSTM layered CNN for classification of gastrointestinal tract diseases. J Biomed Inform. 2021;113:103638.CrossRefPubMed
Metadata
Title
PB-LNet: a model for predicting pathological subtypes of pulmonary nodules on CT images
Authors
Yuchong Zhang
Hui Qu
Yumeng Tian
Fangjian Na
Jinshan Yan
Ying Wu
Xiaoyu Cui
Zhi Li
Mingfang Zhao
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11364-6

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine