Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Pseudomonas Aeruginosa | Research article

Evaluation of antimicrobial activity of chondrillasterol isolated from Vernonia adoensis (Asteraceae)

Authors: Winnie Mozirandi, Dexter Tagwireyi, Stanley Mukanganyama

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Bacteria have developed resistance to most of the current antibiotics. There is evidence suggesting that plant-derived compounds have a potential for interacting with biological processes. One of the plants commonly used in African ethnomedicine is Vernonia adoensis from the Asteraceae family. The leaves of the plant have been reported to have antimicrobial activity. Hence, the aim of this study was to isolate the bioactive compounds from the leaf extract and evaluate their antibacterial activity on Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. In addition, the effect of the isolated compound on biofilms of P. aeruginosa was determined.

Methods

Isolation of phytochemicals from the leaves of V. adoensis was done using column chromatography. Preparative TLC was used to further isolate mixed compounds in the fractions. Nuclear magnetic resonance spectroscopy and mass spectrometry was used to identify the isolated pure compounds. The broth microdilution assay was carried out to evaluate the antibacterial activity of the isolated compound on P. aeruginosa, S. aureus and K. pneumoniae. Crystal violet staining technique was used to evaluate the effect of the isolated compound on biofilms of P. aeruginosa.

Results

The compound isolated from V. adoensis was identified as chondrillasterol. Chondrillasterol exhibited 25, 38 and 65% inhibition of growth on S. aureus, K. pneumoniae and P. aeruginosa respectively. At 1.6 μg/mL chondrillasterol completely disrupted mature biofilm of P. aeruginosa while at 100 μg/mL the compound completely inhibited formation of biofilms of the bacteria.

Conclusion

Chondrillasterol isolated from V. adoensis has antibacterial properties against S. aureus, K. pneumoniae and P. aeruginosa. The compound also has biofilm inhibition and disruption activity against P. aeruginosa biofilms. Thus, the active phytochemical could be a useful template for the development of new antimicrobial agents with both antibacterial and antibiofilm activity.
Appendix
Available only for authorised users
Literature
1.
go back to reference AL-Bari MA, Rahman MA, Mossadik M, Sayeed M. Characterisation and antimicrobial activities of a phenolic acid derivative produced by Streptomyces bangladeshiens a novel species collected in Bangladesh. Res Jounal Med Med plants. 2006;1:77–8. AL-Bari MA, Rahman MA, Mossadik M, Sayeed M. Characterisation and antimicrobial activities of a phenolic acid derivative produced by Streptomyces bangladeshiens a novel species collected in Bangladesh. Res Jounal Med Med plants. 2006;1:77–8.
2.
go back to reference Ara N, Nur MH, Amran MS, Wahid MI, Ahmed M. In vitro antimicrobial and cytotoxic activities of leaves and flowers extracts from Lippia alba. Pakistan J Biol Sci. 2009;12:87–90.CrossRef Ara N, Nur MH, Amran MS, Wahid MI, Ahmed M. In vitro antimicrobial and cytotoxic activities of leaves and flowers extracts from Lippia alba. Pakistan J Biol Sci. 2009;12:87–90.CrossRef
3.
go back to reference Koczan MJ, Lenneman BR, McCathy MJ, Sundin GW. Cell surface attached structures contribute to biofilm formation and xylem colonisation by Erwinia amylovera. Appl Environ Microbiol. 2011;77:7031–9.CrossRef Koczan MJ, Lenneman BR, McCathy MJ, Sundin GW. Cell surface attached structures contribute to biofilm formation and xylem colonisation by Erwinia amylovera. Appl Environ Microbiol. 2011;77:7031–9.CrossRef
4.
go back to reference Vandevelde NM, Tulkens PM, Van Bambeke F. Antibiotic activity against naive and induced streptoccocus pneumonia biofilms in an in vitropharmacodynamic model. Antimicrob agents Chemother. 2014;58:1348–58. Vandevelde NM, Tulkens PM, Van Bambeke F. Antibiotic activity against naive and induced streptoccocus pneumonia biofilms in an in vitropharmacodynamic model. Antimicrob agents Chemother. 2014;58:1348–58.
5.
go back to reference Suci PA, Mittelman MW, Yu FP, Geesey G. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 1994;38:2125–2133l.CrossRef Suci PA, Mittelman MW, Yu FP, Geesey G. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 1994;38:2125–2133l.CrossRef
6.
go back to reference Guarrera PM. Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium). Fitoterapia. 2005;76:1–25.CrossRef Guarrera PM. Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium). Fitoterapia. 2005;76:1–25.CrossRef
7.
go back to reference Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med. 2006;27:1–93.CrossRef Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med. 2006;27:1–93.CrossRef
8.
go back to reference Silva MC, Carvalho J. Plantas medicinais: Fitoterapicos. Anti- inflamatorios. Aspectos quimicos, farmacologicose aplicacoes terapeuticas. Asp Quim Farmacol Apl Ter. 2004;SP. Silva MC, Carvalho J. Plantas medicinais: Fitoterapicos. Anti- inflamatorios. Aspectos quimicos, farmacologicose aplicacoes terapeuticas. Asp Quim Farmacol Apl Ter. 2004;SP.
9.
go back to reference Kisangau DP, Hosea KM, Joseph CC, Lyaruu HVM. In vitro antimicrobial assay of plants used in traditional medicine in Bukoba rural district, Tanzania. African J Tradit Complement Altern Med. 2007;4:510–23.CrossRef Kisangau DP, Hosea KM, Joseph CC, Lyaruu HVM. In vitro antimicrobial assay of plants used in traditional medicine in Bukoba rural district, Tanzania. African J Tradit Complement Altern Med. 2007;4:510–23.CrossRef
10.
go back to reference Toyang JN, Verpoorte R. A review of the medicinal potentials of plants of the genus Vernonia (Asteraceae). J Ethnopharmacol. 2013;146:681–723.CrossRef Toyang JN, Verpoorte R. A review of the medicinal potentials of plants of the genus Vernonia (Asteraceae). J Ethnopharmacol. 2013;146:681–723.CrossRef
11.
go back to reference Kokwaro JO. Medicinal plants of East Africa. Third Edition. Nairobi Univ Press. 2009. p. 478. Kokwaro JO. Medicinal plants of East Africa. Third Edition. Nairobi Univ Press. 2009. p. 478.
12.
go back to reference Stangeland T, Alele P, Katuura E, Lye KA. Plants used to treat malaria in Nyakayojo sub-county, western Uganda. J Ethnopharmacol. 2011;137:154–66.CrossRef Stangeland T, Alele P, Katuura E, Lye KA. Plants used to treat malaria in Nyakayojo sub-county, western Uganda. J Ethnopharmacol. 2011;137:154–66.CrossRef
13.
go back to reference Hyde MA, Wursten BT, Ballings P, Coates PM. Flora of Zimbabwe: species information: Vernonia adoensis; 2012. Hyde MA, Wursten BT, Ballings P, Coates PM. Flora of Zimbabwe: species information: Vernonia adoensis; 2012.
14.
go back to reference Muhindi SW, Ngule CM, Ramesh F. Phytochemical and antibacterial potential of Vernonia Adoensis stem bark to curb cariogenic microorganisms. Am J Phytomedicine Clin Ther. 2016;4:19–27. Muhindi SW, Ngule CM, Ramesh F. Phytochemical and antibacterial potential of Vernonia Adoensis stem bark to curb cariogenic microorganisms. Am J Phytomedicine Clin Ther. 2016;4:19–27.
15.
go back to reference Mautsa R, Mukanganyama S. Vernonia adoensis leaf extracts cause cellular membrane disruption and nucleic acid leakage in Mycobacterium smegmatis. J Biol Act Prod from Nat. 2017;7:140–56. Mautsa R, Mukanganyama S. Vernonia adoensis leaf extracts cause cellular membrane disruption and nucleic acid leakage in Mycobacterium smegmatis. J Biol Act Prod from Nat. 2017;7:140–56.
16.
go back to reference Chitemerere TA, Mukanganyama S. In vitro antibacterial activity of selected medicinal plants from Zimbabwe. African J Plant Sci Biotechnol. 2011;5:1–7. Chitemerere TA, Mukanganyama S. In vitro antibacterial activity of selected medicinal plants from Zimbabwe. African J Plant Sci Biotechnol. 2011;5:1–7.
17.
go back to reference Stangeland T, Wangensteen H, Katuura E, Lye KA, Paulsen BS. Antioxidant and ant-plasmodial activity of extracts from three Ugandan medicinal plants. J Med plants Res. 2010;4:1916–23. Stangeland T, Wangensteen H, Katuura E, Lye KA, Paulsen BS. Antioxidant and ant-plasmodial activity of extracts from three Ugandan medicinal plants. J Med plants Res. 2010;4:1916–23.
18.
go back to reference Luo X, Jiang Y, Fronczek FR, Lin C, Izevbigie EB, Lee KS. Isolation and structure determination of a sesquiterpene lactone (vernodalinol) from Vernonia amygdalina extracts. Pharm Biol. 2011;49:464–70.CrossRef Luo X, Jiang Y, Fronczek FR, Lin C, Izevbigie EB, Lee KS. Isolation and structure determination of a sesquiterpene lactone (vernodalinol) from Vernonia amygdalina extracts. Pharm Biol. 2011;49:464–70.CrossRef
19.
go back to reference Abay SM, Lucantoni L, Dahiya GG, Dori EG, Dembo G, Lupidi. Plasmodium transmission blocking activities of Vernonia amygdalina extracts and isolated compounds. Malar J. 2015;14:288.CrossRef Abay SM, Lucantoni L, Dahiya GG, Dori EG, Dembo G, Lupidi. Plasmodium transmission blocking activities of Vernonia amygdalina extracts and isolated compounds. Malar J. 2015;14:288.CrossRef
20.
go back to reference Erasto P, Grierson DS, Afolayan AJ. Bioactive sesquiterpene lactones from the leaves of Vernonia amygdalina. J Ethnopharmacol. 2006;106:117–20.CrossRef Erasto P, Grierson DS, Afolayan AJ. Bioactive sesquiterpene lactones from the leaves of Vernonia amygdalina. J Ethnopharmacol. 2006;106:117–20.CrossRef
21.
go back to reference Thangiah AS, Obey J, Mutuku NC. Phytochemical analysis of Vernonia adoensis leaves and roots used as a traditional medicinal plant in Kenya. Int J Pharm Biol Sci. 2013;3:46–52. Thangiah AS, Obey J, Mutuku NC. Phytochemical analysis of Vernonia adoensis leaves and roots used as a traditional medicinal plant in Kenya. Int J Pharm Biol Sci. 2013;3:46–52.
22.
go back to reference Rice LB. Progress and challenges in implementing the research on ESKAPE pathogens. Infect Control Hosp Epidemiol. 2010;31:S7–S10. Rice LB. Progress and challenges in implementing the research on ESKAPE pathogens. Infect Control Hosp Epidemiol. 2010;31:S7–S10.
23.
go back to reference Tenover FC. Mechanism of antimicrobial resistance in bacteria. Am J Med. 2006;119:S3–10.CrossRef Tenover FC. Mechanism of antimicrobial resistance in bacteria. Am J Med. 2006;119:S3–10.CrossRef
24.
go back to reference Simona Bratu M, David Landman M, Robin Haag R, Rose Recco M, Antonella Eramo R, Maqsood Alam M, et al. Rapid Spread of Carbapenem-Resistant Klebsiella pneumoniae in New York City. Archives of Internal Medicine. 2014;165:1430–5. Simona Bratu M, David Landman M, Robin Haag R, Rose Recco M, Antonella Eramo R, Maqsood Alam M, et al. Rapid Spread of Carbapenem-Resistant Klebsiella pneumoniae in New York City. Archives of Internal Medicine. 2014;165:1430–5.
25.
go back to reference Chambers HF. The changing epidemiology of Stappylococcus aureus. Emerg Infect Dis. 2001;7:178–82.CrossRef Chambers HF. The changing epidemiology of Stappylococcus aureus. Emerg Infect Dis. 2001;7:178–82.CrossRef
26.
go back to reference Abushanab B, Adwan G, Abu-safiya D, Adwan K. Antibacterial activities of some plant extracts utilised in popular medicine in Palestine. Turkish J Biol. 2004;28:99–102. Abushanab B, Adwan G, Abu-safiya D, Adwan K. Antibacterial activities of some plant extracts utilised in popular medicine in Palestine. Turkish J Biol. 2004;28:99–102.
27.
go back to reference Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev. 2002;15:194–222.CrossRef Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev. 2002;15:194–222.CrossRef
28.
go back to reference Cos P, Sindambiwe L, Vlietink A, Berghe D. Bioassays for antimicrobial and antifungal activities. In: Edited by Mahabir P, Gupta S, Swami H K V, editor. Trieste, International Centre for Science and High Technology; 2006. p. 19–28. Cos P, Sindambiwe L, Vlietink A, Berghe D. Bioassays for antimicrobial and antifungal activities. In: Edited by Mahabir P, Gupta S, Swami H K V, editor. Trieste, International Centre for Science and High Technology; 2006. p. 19–28.
29.
go back to reference Cowan MM. Plant products as antimicrobial agents. Clin Microbiol. 1999;12:564–82.CrossRef Cowan MM. Plant products as antimicrobial agents. Clin Microbiol. 1999;12:564–82.CrossRef
30.
go back to reference Amor ILB, Boubaker MB, Sgaier I, Skandrani, Bhouri W. Phytochemistry and biological activities of Phlomis species. J Ethnopharmacol. 2009;125:183–202.CrossRef Amor ILB, Boubaker MB, Sgaier I, Skandrani, Bhouri W. Phytochemistry and biological activities of Phlomis species. J Ethnopharmacol. 2009;125:183–202.CrossRef
31.
go back to reference Mozirandi W, Mukanganyama S. Antibacterial activity and mode of action of Vernonia adoensis (Asteraceae) extracts against Staphylococcus aureus and Pseudomonas aeruginosa. J Biol Act Prod from Nat. 2017;7:341–57. Mozirandi W, Mukanganyama S. Antibacterial activity and mode of action of Vernonia adoensis (Asteraceae) extracts against Staphylococcus aureus and Pseudomonas aeruginosa. J Biol Act Prod from Nat. 2017;7:341–57.
32.
go back to reference Okeke MI, Iroegbu CU, Eze EN, Okoli AS, Esimone CO. Evaluation of extracts of the root of Landolphia owerrience for antibacterial activity. J Ethnopharmacol. 2001;78:119–27.CrossRef Okeke MI, Iroegbu CU, Eze EN, Okoli AS, Esimone CO. Evaluation of extracts of the root of Landolphia owerrience for antibacterial activity. J Ethnopharmacol. 2001;78:119–27.CrossRef
33.
go back to reference EUCAST (European Committee for Antimicrobial Susceptibility Testing). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect Dis. 2003;9:1–7. EUCAST (European Committee for Antimicrobial Susceptibility Testing). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect Dis. 2003;9:1–7.
34.
go back to reference Mosmann T. Rapid colorimetric assay for cellular growth and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.CrossRef Mosmann T. Rapid colorimetric assay for cellular growth and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.CrossRef
35.
go back to reference El-Nakeeb MA, Abou-Shleib HM, Khalil AM, Omar HG, El-Halfawy O. Membrane permeability alteration of some bacterial clinical isolates by selected antihistaminics. Brazilian J Microbiol. 2011;42:992–1000.CrossRef El-Nakeeb MA, Abou-Shleib HM, Khalil AM, Omar HG, El-Halfawy O. Membrane permeability alteration of some bacterial clinical isolates by selected antihistaminics. Brazilian J Microbiol. 2011;42:992–1000.CrossRef
36.
go back to reference Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukić S, Irkovic I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115:891–9.CrossRef Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukić S, Irkovic I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115:891–9.CrossRef
37.
go back to reference Rasoanaivo LH, Wadouachi A, Andriamampianina TT, Andriamalala GS, Jeannot EB, Raharisololalao A, et al. Triterpenes and steroids from the stem bark of Gambeya boiviniana Pierre. J Pharmacogn Phytochem. 2014;3:68–72. Rasoanaivo LH, Wadouachi A, Andriamampianina TT, Andriamalala GS, Jeannot EB, Raharisololalao A, et al. Triterpenes and steroids from the stem bark of Gambeya boiviniana Pierre. J Pharmacogn Phytochem. 2014;3:68–72.
38.
go back to reference Bajpai V, Kang S. Isolation and characterization of biologically active secondary metabolites from Metasequoia glyptostroboides Miki ex Hu. J Food Saf. 2011;31:276–83.CrossRef Bajpai V, Kang S. Isolation and characterization of biologically active secondary metabolites from Metasequoia glyptostroboides Miki ex Hu. J Food Saf. 2011;31:276–83.CrossRef
39.
go back to reference Bohlmann F, Scheidges C, Misra LN, Jakupovic J. Further glaucolides from south african Vernonia species. Phytochemistry. 1984;23:1795–8.CrossRef Bohlmann F, Scheidges C, Misra LN, Jakupovic J. Further glaucolides from south african Vernonia species. Phytochemistry. 1984;23:1795–8.CrossRef
40.
go back to reference Gonçalves LDA, Hugo R, Oliveira De PM, Lopes NP, Turatti ICC, Fernando C, et al. Contribution for the phytochemical studies of Ageratum fastigiatum. Brazilian J Pharmacogn 2011;21:936–942. Gonçalves LDA, Hugo R, Oliveira De PM, Lopes NP, Turatti ICC, Fernando C, et al. Contribution for the phytochemical studies of Ageratum fastigiatum. Brazilian J Pharmacogn 2011;21:936–942.
41.
go back to reference Itoh T, Kikuchi Y, Tamura T, Matsomoto T. Co-occurrence of chondrillasterol and spinasterol in two Cocurbitaceae seeds as shown by13C NMR. Phytochemistry. 1981;20:761–4.CrossRef Itoh T, Kikuchi Y, Tamura T, Matsomoto T. Co-occurrence of chondrillasterol and spinasterol in two Cocurbitaceae seeds as shown by13C NMR. Phytochemistry. 1981;20:761–4.CrossRef
42.
go back to reference Awolola GV, Chenia H, Baijnath H. A KN. Anti-adhesion potential of non-polar compounds and extracts from Ficus natalensis. Brazilian J Jharmacology. 2017;27:599–602. Awolola GV, Chenia H, Baijnath H. A KN. Anti-adhesion potential of non-polar compounds and extracts from Ficus natalensis. Brazilian J Jharmacology. 2017;27:599–602.
43.
go back to reference Udochukwu U, Omeje FI, Uloma IS, Oseiwe FD. Phytochemical analysis of Vernonia amygdalina and Ocimum gratissimum exrtracts and their antibacterial activity on some drug resistant bacteria. Am J Res Commun. 2015;3:225–35. Udochukwu U, Omeje FI, Uloma IS, Oseiwe FD. Phytochemical analysis of Vernonia amygdalina and Ocimum gratissimum exrtracts and their antibacterial activity on some drug resistant bacteria. Am J Res Commun. 2015;3:225–35.
44.
go back to reference Titilawo O, Ogundare A, Olaitan J. Mechanism of action of the leaf and bark extract of Vernonia ternoreana. Niger J Microbiol. 2011;25:2261–8. Titilawo O, Ogundare A, Olaitan J. Mechanism of action of the leaf and bark extract of Vernonia ternoreana. Niger J Microbiol. 2011;25:2261–8.
45.
go back to reference Miller SI. Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate mmune molecules. Am Soc Microbiol. 2016;7:e01541–16. Miller SI. Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate mmune molecules. Am Soc Microbiol. 2016;7:e01541–16.
46.
go back to reference Ahmad I, Aqil F. In vitro efficacy of bioactive extracts of 15 medicinal plants against ES?L- producing multidrug-resistantenteric bacteria. Microbiol Res. 2007;162:264–75.CrossRef Ahmad I, Aqil F. In vitro efficacy of bioactive extracts of 15 medicinal plants against ES?L- producing multidrug-resistantenteric bacteria. Microbiol Res. 2007;162:264–75.CrossRef
47.
go back to reference Barbour EK, Al Sharif M, Sagherian VK. Screening of selected indigenous plants of Lebanon for antimicrobial activity. J Ethnopharmacol. 2004;93:1–7.CrossRef Barbour EK, Al Sharif M, Sagherian VK. Screening of selected indigenous plants of Lebanon for antimicrobial activity. J Ethnopharmacol. 2004;93:1–7.CrossRef
48.
49.
go back to reference Iwu MW, Duncan AR, Okunji CO. New antimicrobials of plant origin. In: Janick J, editor. Perspectives on new crops and new uses. Alexandria: AHSH Press; 1999. p. 457–62. Iwu MW, Duncan AR, Okunji CO. New antimicrobials of plant origin. In: Janick J, editor. Perspectives on new crops and new uses. Alexandria: AHSH Press; 1999. p. 457–62.
50.
go back to reference Koo H, Jeon JG. Naturally occurring molecules as alternative therapeutic agents against cariogenic biofilms. Adv Dent Res. 2009;21:63–8.CrossRef Koo H, Jeon JG. Naturally occurring molecules as alternative therapeutic agents against cariogenic biofilms. Adv Dent Res. 2009;21:63–8.CrossRef
51.
go back to reference Davies D. Understanding biofilm resistance to antibacterial agents. Natl Rev drug Discov. 2003;2:114–22.CrossRef Davies D. Understanding biofilm resistance to antibacterial agents. Natl Rev drug Discov. 2003;2:114–22.CrossRef
52.
go back to reference Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol. 2007;3:541–8.CrossRef Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol. 2007;3:541–8.CrossRef
53.
go back to reference Smith A. Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Advers Drug Deliv Rev. 2005;57:1539–50.CrossRef Smith A. Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Advers Drug Deliv Rev. 2005;57:1539–50.CrossRef
54.
go back to reference Drenkard E, Ausubel F. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature. 2002;416:740–3.CrossRef Drenkard E, Ausubel F. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature. 2002;416:740–3.CrossRef
55.
go back to reference Chmielewsky RAN, Frank JF. Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf. 2003;2:22–32.CrossRef Chmielewsky RAN, Frank JF. Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf. 2003;2:22–32.CrossRef
56.
go back to reference Sillankorv S, Oliveira R, Vieira MJ, Sutherland I, Azeredo J. Bacteriophage Φ S1 infection of Pseudomonas fluorescens planktonic cells versus biofi lms. J Biofouling. 2004;20:133–8.CrossRef Sillankorv S, Oliveira R, Vieira MJ, Sutherland I, Azeredo J. Bacteriophage Φ S1 infection of Pseudomonas fluorescens planktonic cells versus biofi lms. J Biofouling. 2004;20:133–8.CrossRef
57.
go back to reference Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K. Combating pathogenic microorganisms using plant-derived antimicrobials: a Mini review of the mechanistic basis. Biomed Res Int. 2014;2:761–41. Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K. Combating pathogenic microorganisms using plant-derived antimicrobials: a Mini review of the mechanistic basis. Biomed Res Int. 2014;2:761–41.
58.
go back to reference Samy RP, Gopalakrishnakone P. Therapeutic potential of plants as anti-microbials for drug discovery. Evidence-Based Compl Alt Med. 2008;7:283.CrossRef Samy RP, Gopalakrishnakone P. Therapeutic potential of plants as anti-microbials for drug discovery. Evidence-Based Compl Alt Med. 2008;7:283.CrossRef
59.
go back to reference Schlag S, Nerz C, Birkenstock T, Altenberend F, Got ZF. Inhibition of staphylococcal biofilm formation by nitrite. J Bacteriol. 2007;189:7911–9.CrossRef Schlag S, Nerz C, Birkenstock T, Altenberend F, Got ZF. Inhibition of staphylococcal biofilm formation by nitrite. J Bacteriol. 2007;189:7911–9.CrossRef
60.
go back to reference Brown MRW, Gilbert P. Sensitivity of biofilms to antimicrobial agents. J Appl Bacteriol - Symp Supplemen. 1993;74:87S–97S.CrossRef Brown MRW, Gilbert P. Sensitivity of biofilms to antimicrobial agents. J Appl Bacteriol - Symp Supplemen. 1993;74:87S–97S.CrossRef
61.
go back to reference Steven LP, Bowler GP. Biofilms and their potential role in wound healing; 2004. Steven LP, Bowler GP. Biofilms and their potential role in wound healing; 2004.
62.
go back to reference Davies D, Marques C. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol. 2009;191:1393–403.CrossRef Davies D, Marques C. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol. 2009;191:1393–403.CrossRef
63.
go back to reference Rogers S, Huigens Iii RW, Melander C. A 2-aminobenzimidazole that inhibits and disperses gram-positive biofilms through a zinc-dependent mechanism. J Am Chem Soc. 2009;131:9868–9.CrossRef Rogers S, Huigens Iii RW, Melander C. A 2-aminobenzimidazole that inhibits and disperses gram-positive biofilms through a zinc-dependent mechanism. J Am Chem Soc. 2009;131:9868–9.CrossRef
64.
go back to reference Walters M, Roe F, Bugnicourt A. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin 2003;47. Antimicrob Agents Chemother. 2003;47:317–23.CrossRef Walters M, Roe F, Bugnicourt A. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin 2003;47. Antimicrob Agents Chemother. 2003;47:317–23.CrossRef
65.
go back to reference Tseng B, Zhang W, Harrison JJ. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Enviromental Microbiol. 2013;15:2865–78. Tseng B, Zhang W, Harrison JJ. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Enviromental Microbiol. 2013;15:2865–78.
66.
go back to reference Costerton JW. Bacterial Biofilms : A Common Cause of Persistent Infections. Science (80- ). 1999;284. Costerton JW. Bacterial Biofilms : A Common Cause of Persistent Infections. Science (80- ). 1999;284.
67.
go back to reference Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009;11:1034–43.CrossRef Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009;11:1034–43.CrossRef
68.
go back to reference Ojha A, Anand M, Jacobs WR, Bhatt A, Kreme L, Hatfull G, et al. A dedicated chaperone involved in mycolic acid biosynthesis during mycobacterial growth in biofilms. Cell. 2015;123:861–73.CrossRef Ojha A, Anand M, Jacobs WR, Bhatt A, Kreme L, Hatfull G, et al. A dedicated chaperone involved in mycolic acid biosynthesis during mycobacterial growth in biofilms. Cell. 2015;123:861–73.CrossRef
69.
go back to reference Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun. 1994;62:915–21.PubMedPubMedCentral Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun. 1994;62:915–21.PubMedPubMedCentral
Metadata
Title
Evaluation of antimicrobial activity of chondrillasterol isolated from Vernonia adoensis (Asteraceae)
Authors
Winnie Mozirandi
Dexter Tagwireyi
Stanley Mukanganyama
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2657-7

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue