Skip to main content
Top
Published in: Tumor Biology 5/2016

01-05-2016 | Original Article

PRSS1 mutations and the proteinase/antiproteinase imbalance in the pathogenesis of pancreatic cancer

Authors: Qiang Yi, Feng Dong, Liqing Lin, Qicai Liu, Shu Chen, Feng Gao, Qingliang He

Published in: Tumor Biology | Issue 5/2016

Login to get access

Abstract

This study aimed to investigate the mutations in the serine protease 1 gene (PRSS1) and the imbalance between trypsin and α1-antitrypsin in patients with pancreatic cancer. Polymerase chain reaction (PCR) was performed to amplify the sequences of PRSS1 from 65 patients with pancreatic cancer and 260 healthy controls, direct sequencing was performed, and the clinical features were analyzed. In addition, enzyme-linked immunosorbent assay (ELISA) was employed to detect serum trypsin and α1-antitrypsin in pancreatic cancer patients and healthy controls in the same period. Mutations were found at the promoter and exon 3 of the PRSS1 in patients with pancreatic cancer. That is, five patients had c.410 C > T mutation causing p.Thr 137 Met, and three patients had c. −338 T > G mutation at the promoter of the PRSS1. In patients with PRSS1 mutations, serum trypsin was 34.5 ± 18.3 ng/mL, which was significantly higher than that in normal controls (10.65 ± 6.03 ng/mL) and other pancreatic cancer (28.61 ± 8.96 ng/mL). What is more, in pancreatic cancer patients, serum α1-antitrypsin was 1.69 ± 0.86 g/L, which was comparable to that in normal controls (1.55 ± 0.53 g/L), while the ratio of serum trypsin to α1-antitrypsin was 1.46-fold to normal controls. The results presented here have provided a greater insight into the PRSS1 mutations and proteinase-inhibitor interactions occurring in pancreatic cancer.
Literature
1.
go back to reference Grant RC, Selander I, Connor AA, et al. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology. 2015;148:556–64.CrossRefPubMed Grant RC, Selander I, Connor AA, et al. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology. 2015;148:556–64.CrossRefPubMed
2.
3.
go back to reference Gao J, Wang LH, Xu JK, et al. Aberrant DNA methyltransferase expression in pancreatic ductal adenocarcinoma development and progression. J Exp Clin Cancer Res. 2013;32:86–95.CrossRefPubMedPubMedCentral Gao J, Wang LH, Xu JK, et al. Aberrant DNA methyltransferase expression in pancreatic ductal adenocarcinoma development and progression. J Exp Clin Cancer Res. 2013;32:86–95.CrossRefPubMedPubMedCentral
5.
go back to reference Chen QQ, Gao F, Zhuang ZH, et al. Trypsin-1-antitrypsin imbalance in immune escape and clonal proliferation of pancreatic cancer. J Genet Syndr Gene Ther. 2013;4:11–5. Chen QQ, Gao F, Zhuang ZH, et al. Trypsin-1-antitrypsin imbalance in immune escape and clonal proliferation of pancreatic cancer. J Genet Syndr Gene Ther. 2013;4:11–5.
6.
go back to reference Hunt JM, Tuder R. Alpha 1 anti-trypsin: one protein, many functions. Curr Mol Med. 2012;12:827–35.CrossRefPubMed Hunt JM, Tuder R. Alpha 1 anti-trypsin: one protein, many functions. Curr Mol Med. 2012;12:827–35.CrossRefPubMed
7.
go back to reference Yamamoto H, Iku S, Adachi Y, et al. Association of trypsin expression with tumour progression and matrilysin expression in human colorectal cancer. J Pathol. 2003;199:176–84.CrossRefPubMed Yamamoto H, Iku S, Adachi Y, et al. Association of trypsin expression with tumour progression and matrilysin expression in human colorectal cancer. J Pathol. 2003;199:176–84.CrossRefPubMed
8.
go back to reference Mohammed A, Janakiram NB, Pant S, et al. Molecular targeted intervention for pancreatic cancer. Cancers (Basel). 2015;7:1499–542.CrossRef Mohammed A, Janakiram NB, Pant S, et al. Molecular targeted intervention for pancreatic cancer. Cancers (Basel). 2015;7:1499–542.CrossRef
9.
go back to reference Zeng K, Liu QC, Lin JH, et al. Novel mutations of PRSS1 gene in patients with pancreatic cancer among Han population. Chin Med J (Engl). 2011;124:2065–7. Zeng K, Liu QC, Lin JH, et al. Novel mutations of PRSS1 gene in patients with pancreatic cancer among Han population. Chin Med J (Engl). 2011;124:2065–7.
10.
go back to reference Applebaum-Shapiro SE, Peters JA, O’Connell JA, et al. Motivations and concerns of patients with access to genetic testing for hereditary pancreatitis. Am J Gastroenterol. 2001;96:1610–7.CrossRefPubMed Applebaum-Shapiro SE, Peters JA, O’Connell JA, et al. Motivations and concerns of patients with access to genetic testing for hereditary pancreatitis. Am J Gastroenterol. 2001;96:1610–7.CrossRefPubMed
11.
go back to reference Lin K, Gao F, Chen QQ, et al. Framework for interpretation of trypsin-antitrypsin imbalance and genetic heterogeneity in pancreatitis. Saudi J Gastroenterol. 2015;21:198–207.CrossRefPubMedPubMedCentral Lin K, Gao F, Chen QQ, et al. Framework for interpretation of trypsin-antitrypsin imbalance and genetic heterogeneity in pancreatitis. Saudi J Gastroenterol. 2015;21:198–207.CrossRefPubMedPubMedCentral
12.
go back to reference Itkonen O. Human trypsinogens in the pancreas and in cancer. Scand J Clin Lab Invest. 2010;70:136–43.CrossRefPubMed Itkonen O. Human trypsinogens in the pancreas and in cancer. Scand J Clin Lab Invest. 2010;70:136–43.CrossRefPubMed
13.
go back to reference Koskensalo S, Hagstrom J, Louhimo J, et al. Tumour-associated trypsin inhibitor TATI is a prognostic marker in colorectal cancer. Oncology. 2012;82:234–41.CrossRefPubMed Koskensalo S, Hagstrom J, Louhimo J, et al. Tumour-associated trypsin inhibitor TATI is a prognostic marker in colorectal cancer. Oncology. 2012;82:234–41.CrossRefPubMed
14.
go back to reference Parker LA, Porta M, Lumbreras B, et al. Clinical validity of detecting K-ras mutations for the diagnosis of exocrine pancreatic cancer: a prospective study in a clinically-relevant spectrum of patients. Eur J Epidemiol. 2011;26:229–36.CrossRefPubMed Parker LA, Porta M, Lumbreras B, et al. Clinical validity of detecting K-ras mutations for the diagnosis of exocrine pancreatic cancer: a prospective study in a clinically-relevant spectrum of patients. Eur J Epidemiol. 2011;26:229–36.CrossRefPubMed
15.
go back to reference Johansen D, Manjer J, Regner S, et al. Pre-diagnostic levels of anionic trypsinogen, cationic trypsinogen, and pancreatic secretory trypsin inhibitor in relation to pancreatic cancer risk. Pancreatology. 2010;10:229–37.CrossRefPubMed Johansen D, Manjer J, Regner S, et al. Pre-diagnostic levels of anionic trypsinogen, cationic trypsinogen, and pancreatic secretory trypsin inhibitor in relation to pancreatic cancer risk. Pancreatology. 2010;10:229–37.CrossRefPubMed
16.
go back to reference Tawara I, Sun Y, Lewis EC, et al. Alpha-1-1-antitrypsin monotherapy reduces graft-versus-host disease after experimental allogeneic bone marrow transplantation. Proc Natl Acad Sci U S A. 2012;109:564–9.CrossRefPubMed Tawara I, Sun Y, Lewis EC, et al. Alpha-1-1-antitrypsin monotherapy reduces graft-versus-host disease after experimental allogeneic bone marrow transplantation. Proc Natl Acad Sci U S A. 2012;109:564–9.CrossRefPubMed
17.
go back to reference Cenac N, Cellars L, Steinhoff M, et al. Proteinase-activated receptor-1 is an anti-inflammatory signal for colitis mediated by a type 2 immune response. Inflamm Bowel Dis. 2005;11:792–8.CrossRefPubMed Cenac N, Cellars L, Steinhoff M, et al. Proteinase-activated receptor-1 is an anti-inflammatory signal for colitis mediated by a type 2 immune response. Inflamm Bowel Dis. 2005;11:792–8.CrossRefPubMed
18.
go back to reference Kereszturi E, Sahin-Toth M. Intracellular autoactivation of human cationic trypsinogen mutants causes reduced trypsinogen secretion and acinar cell death. J Biol Chem. 2009;284:33392–9.CrossRefPubMedPubMedCentral Kereszturi E, Sahin-Toth M. Intracellular autoactivation of human cationic trypsinogen mutants causes reduced trypsinogen secretion and acinar cell death. J Biol Chem. 2009;284:33392–9.CrossRefPubMedPubMedCentral
19.
go back to reference Tang D, Gao J, Wang S, et al. Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer. Tumour Biol. 2015;36:5617–26.CrossRefPubMed Tang D, Gao J, Wang S, et al. Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer. Tumour Biol. 2015;36:5617–26.CrossRefPubMed
20.
go back to reference Caruso R, Pallone F, Fina D, et al. Protease-activated receptor-2 activation in gastric cancer cells promotes epidermal growth factor trans-activation and proliferation. Am J Pathol. 2006;169:268–78.CrossRefPubMedPubMedCentral Caruso R, Pallone F, Fina D, et al. Protease-activated receptor-2 activation in gastric cancer cells promotes epidermal growth factor trans-activation and proliferation. Am J Pathol. 2006;169:268–78.CrossRefPubMedPubMedCentral
21.
go back to reference Dangi-Garimella SB, Krantz MR, Barron MA, et al. Three-dimensional collagen I promotes gemcitabine resistance in pancreatic cancer through MT1-MMP-mediated expression of HMGA2. Cancer Res. 2011;71:1019–28.CrossRefPubMed Dangi-Garimella SB, Krantz MR, Barron MA, et al. Three-dimensional collagen I promotes gemcitabine resistance in pancreatic cancer through MT1-MMP-mediated expression of HMGA2. Cancer Res. 2011;71:1019–28.CrossRefPubMed
Metadata
Title
PRSS1 mutations and the proteinase/antiproteinase imbalance in the pathogenesis of pancreatic cancer
Authors
Qiang Yi
Feng Dong
Liqing Lin
Qicai Liu
Shu Chen
Feng Gao
Qingliang He
Publication date
01-05-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3982-1

Other articles of this Issue 5/2016

Tumor Biology 5/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine