Skip to main content
Top
Published in: Tumor Biology 5/2016

01-05-2016 | Original Article

MiR-195 inhibits the proliferation of human cervical cancer cells by directly targeting cyclin D1

Authors: Zhen Li, Hua Wang, Zhiqiang Wang, Hongbing Cai

Published in: Tumor Biology | Issue 5/2016

Login to get access

Abstract

MicroRNAs are important regulators of multiple cellular processes, and aberrant miRNA expression has been observed in human cervical cancer (CC). The present study was to evaluate the level of miR-195 and cyclin D1 in CC tissues and cells. We further investigated the molecular mechanisms of miR-195 and cyclin D1 in CC cell lines HeLa and SiHa. Here, we found that miR-195 expression was down-regulated in CC tissues, and HeLa and SiHa cells (all p < 0.001). By contrast, cyclin D1 was up-regulated. Furthermore, the expression of miR-195 was inversely proportional to that of cyclin D1 mRNA or protein (p = 0.013, p = 0.015, respectively). In vitro studies demonstrated that the overexpression of miR-195 played a suppressor role in the proliferation of HeLa and SiHa cells and promoted cell apoptosis. Luciferase reporter assays confirmed that miR-195 binding to the 3′-UTR regions of cyclin D1 inhibited the expression of cyclin D1 in HeLa and SiHa cells. However, the inhibitor of miR-195 promoted the expression of cyclin D1 and cell proliferation. In conclusion, our data suggest that miR-195 may have the potential role in treatment of CC patients, as well as miR-195 is a novel regulator of invasiveness and tumorigenicity in CC cells by targeting cyclin D1. MiR-195/cyclin D1 pathway may be a useful therapeutic agent in CC patients.
Literature
1.
go back to reference Shen MR, Hsu YM, Hsu KF, Chen YF, Tang MJ, Chou CY. Insulin like growth factor 1 is a potent stimulator of cervical cancer cell invasiveness and proliferation that is modulated by alphavbeta3 integrin signaling. Carcinogenesis. 2006;27:962–71.CrossRefPubMed Shen MR, Hsu YM, Hsu KF, Chen YF, Tang MJ, Chou CY. Insulin like growth factor 1 is a potent stimulator of cervical cancer cell invasiveness and proliferation that is modulated by alphavbeta3 integrin signaling. Carcinogenesis. 2006;27:962–71.CrossRefPubMed
2.
go back to reference Pan Y, Zhang Y, Chen L, Liu Y, Feng Y, Yan J. The critical role of Rab31 in cell proliferation and apoptosis in cancer progression. Mol Neurobiol. 2015. Pan Y, Zhang Y, Chen L, Liu Y, Feng Y, Yan J. The critical role of Rab31 in cell proliferation and apoptosis in cancer progression. Mol Neurobiol. 2015.
3.
go back to reference Galloway TJ, Ridge JA. Management of squamous cancer metastatic to cervical nodes with an unknown primary site. J Clin Oncol. 2015;33(29):3328–37.CrossRefPubMed Galloway TJ, Ridge JA. Management of squamous cancer metastatic to cervical nodes with an unknown primary site. J Clin Oncol. 2015;33(29):3328–37.CrossRefPubMed
4.
go back to reference Biglia N, Bounous VE, Sgro LG, D’Alonzo M, Gallo M. Treatment of climacteric symptoms in survivors of gynaecological cancer. Maturitas. 2015;82(3):296–8.CrossRefPubMed Biglia N, Bounous VE, Sgro LG, D’Alonzo M, Gallo M. Treatment of climacteric symptoms in survivors of gynaecological cancer. Maturitas. 2015;82(3):296–8.CrossRefPubMed
5.
go back to reference Yan J, Zhang Y, Ren C, Shi W, Chen L. Involvement of nuclear protein C23 in activation of EGFR signaling in cervical cancer. Tumour Biol. 2015. Yan J, Zhang Y, Ren C, Shi W, Chen L. Involvement of nuclear protein C23 in activation of EGFR signaling in cervical cancer. Tumour Biol. 2015.
6.
go back to reference Yanokura M, Banno K, Iida M, Irie H, Umene K, Masuda K, et al. MicroRNAS in endometrial cancer: recent advances and potential clinical applications. EXCLI J. 2015;14:190–8.PubMedPubMedCentral Yanokura M, Banno K, Iida M, Irie H, Umene K, Masuda K, et al. MicroRNAS in endometrial cancer: recent advances and potential clinical applications. EXCLI J. 2015;14:190–8.PubMedPubMedCentral
7.
go back to reference Das SS, Karmakar P, Nandi AK, Sanan-Mishra N. Small RNA mediated regulation of seed germination. Front Plant Sci. 2015;6:828.PubMedPubMedCentral Das SS, Karmakar P, Nandi AK, Sanan-Mishra N. Small RNA mediated regulation of seed germination. Front Plant Sci. 2015;6:828.PubMedPubMedCentral
8.
go back to reference Gardiner AS, Twiss JL, Perrone-Bizzozero NI. Competing interactions of RNA-binding proteins, microRNAs, and their targets control neuronal development and function. Biomolecules. 2015;5(4):2903–18.CrossRefPubMedPubMedCentral Gardiner AS, Twiss JL, Perrone-Bizzozero NI. Competing interactions of RNA-binding proteins, microRNAs, and their targets control neuronal development and function. Biomolecules. 2015;5(4):2903–18.CrossRefPubMedPubMedCentral
9.
go back to reference He JF, Luo YM, Wan XH, Jiang D. Biogenesis of MiRNA-195 and its role in biogenesis, the cell cycle, and apoptosis. J Biochem Mol Toxicol. 2011;25(6):404–8.CrossRefPubMed He JF, Luo YM, Wan XH, Jiang D. Biogenesis of MiRNA-195 and its role in biogenesis, the cell cycle, and apoptosis. J Biochem Mol Toxicol. 2011;25(6):404–8.CrossRefPubMed
10.
go back to reference Chabre O, Libe R, Assie G, Barreau O, Barreau O, Bertherat J, et al. Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients. Endocr Relat Cancer. 2013;20:579–94.PubMed Chabre O, Libe R, Assie G, Barreau O, Barreau O, Bertherat J, et al. Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients. Endocr Relat Cancer. 2013;20:579–94.PubMed
11.
go back to reference Mao JH, Zhou RP, Peng AF, Liu ZL, Huang SH, Long XH, et al. microRNA-195 suppresses osteosarcoma cell invasion and migration in vitro by targeting FASN. Oncol Lett. 2012;4:1125–9.PubMedPubMedCentral Mao JH, Zhou RP, Peng AF, Liu ZL, Huang SH, Long XH, et al. microRNA-195 suppresses osteosarcoma cell invasion and migration in vitro by targeting FASN. Oncol Lett. 2012;4:1125–9.PubMedPubMedCentral
12.
go back to reference Lv S, Sun B, Dai C, Shi R, Zhou X, Lv W, et al. The downregulation of microRNA-146a modulates TGF-β signaling pathways activity in glioblastoma. Mol Neurobiol. 2015;52(3):1257–62.CrossRefPubMed Lv S, Sun B, Dai C, Shi R, Zhou X, Lv W, et al. The downregulation of microRNA-146a modulates TGF-β signaling pathways activity in glioblastoma. Mol Neurobiol. 2015;52(3):1257–62.CrossRefPubMed
13.
go back to reference Liu H, Ren G, Zhu L, Liu X, He X. The upregulation of miRNA-146a inhibited biological behaviors of ESCC through inhibition of IRS2. Tumour Biol. 2015. Liu H, Ren G, Zhu L, Liu X, He X. The upregulation of miRNA-146a inhibited biological behaviors of ESCC through inhibition of IRS2. Tumour Biol. 2015.
14.
go back to reference Lange C, Huttner WB, Calegari F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell. 2009;5:320e331.CrossRef Lange C, Huttner WB, Calegari F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell. 2009;5:320e331.CrossRef
15.
go back to reference Yao C, Li P, Song H, Song F, Qu Y, Ma X, et al. CXCL12/CXCR4 axis upregulates twist to induce EMT in human glioblastoma. Mol Neurobiol. 2015. Yao C, Li P, Song H, Song F, Qu Y, Ma X, et al. CXCL12/CXCR4 axis upregulates twist to induce EMT in human glioblastoma. Mol Neurobiol. 2015.
17.
go back to reference Li K, Xu B, Xu G, Liu R. CCR7 regulates Twist to induce the epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma. Tumour Biol. 2015. Li K, Xu B, Xu G, Liu R. CCR7 regulates Twist to induce the epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma. Tumour Biol. 2015.
18.
go back to reference Goradia A, Wasik MA, Klein-Szanto AJ, Pontano L, Gladden AB, Nuskey B, et al. Nuclear accumulation of cyclin D1 during S phase inhibits Cul4-dependent Cdt1 proteolysis and triggers p53-dependent DNA rereplication. Genes Dev. 2007;21:2908–e2922.CrossRefPubMedPubMedCentral Goradia A, Wasik MA, Klein-Szanto AJ, Pontano L, Gladden AB, Nuskey B, et al. Nuclear accumulation of cyclin D1 during S phase inhibits Cul4-dependent Cdt1 proteolysis and triggers p53-dependent DNA rereplication. Genes Dev. 2007;21:2908–e2922.CrossRefPubMedPubMedCentral
19.
go back to reference Kaukoniemi KM, Rauhala HE, Scaravilli M, Latonen L, Annala M, Vessella RL, et al. Epigenetically altered miR-193b targets cyclin D1 in prostate cancer. Cancer Med. 2015;4(9):1417–25.CrossRefPubMedPubMedCentral Kaukoniemi KM, Rauhala HE, Scaravilli M, Latonen L, Annala M, Vessella RL, et al. Epigenetically altered miR-193b targets cyclin D1 in prostate cancer. Cancer Med. 2015;4(9):1417–25.CrossRefPubMedPubMedCentral
20.
go back to reference Li X, Gong X, Chen J, Zhang J, Sun J, Guo M. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2. Biochem Biophys Res Commun. 2015;460(3):670–7.CrossRefPubMed Li X, Gong X, Chen J, Zhang J, Sun J, Guo M. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2. Biochem Biophys Res Commun. 2015;460(3):670–7.CrossRefPubMed
Metadata
Title
MiR-195 inhibits the proliferation of human cervical cancer cells by directly targeting cyclin D1
Authors
Zhen Li
Hua Wang
Zhiqiang Wang
Hongbing Cai
Publication date
01-05-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4540-6

Other articles of this Issue 5/2016

Tumor Biology 5/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine