Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2017

Open Access 01-12-2017 | Research article

Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture

Authors: Laura C. Graham, Samantha L. Eaton, Paula J. Brunton, Abdelmadjid Atrih, Colin Smith, Douglas J. Lamont, Thomas H. Gillingwater, Giuseppa Pennetta, Paul Skehel, Thomas M. Wishart

Published in: Molecular Neurodegeneration | Issue 1/2017

Login to get access

Abstract

Background

Neurons are highly polarized cells consisting of three distinct functional domains: the cell body (and associated dendrites), the axon and the synapse. Previously, it was believed that the clinical phenotypes of neurodegenerative diseases were caused by the loss of entire neurons, however it has recently become apparent that these neuronal sub-compartments can degenerate independently, with synapses being particularly vulnerable to a broad range of stimuli. Whilst the properties governing the differential degenerative mechanisms remain unknown, mitochondria consistently appear in the literature, suggesting these somewhat promiscuous organelles may play a role in affecting synaptic stability. Synaptic and non-synaptic mitochondrial subpools are known to have different enzymatic properties (first demonstrated by Lai et al., 1977). However, the molecular basis underpinning these alterations, and their effects on morphology, has not been well documented.

Methods

The current study has employed electron microscopy, label-free proteomics and in silico analyses to characterize the morphological and biochemical properties of discrete sub-populations of mitochondria. The physiological relevance of these findings was confirmed in-vivo using a molecular genetic approach at the Drosophila neuromuscular junction.

Results

Here, we demonstrate that mitochondria at the synaptic terminal are indeed morphologically different to non-synaptic mitochondria, in both rodents and human patients. Furthermore, generation of proteomic profiles reveals distinct molecular fingerprints – highlighting that the properties of complex I may represent an important specialisation of synaptic mitochondria. Evidence also suggests that at least 30% of the mitochondrial enzymatic activity differences previously reported can be accounted for by protein abundance. Finally, we demonstrate that the molecular differences between discrete mitochondrial sub-populations are capable of selectively influencing synaptic morphology in-vivo. We offer several novel mitochondrial candidates that have the propensity to significantly alter the synaptic architecture in-vivo.

Conclusions

Our study demonstrates discrete proteomic profiles exist dependent upon mitochondrial subcellular localization and selective alteration of intrinsic mitochondrial proteins alters synaptic morphology in-vivo.
Appendix
Available only for authorised users
Literature
2.
go back to reference Wishart TM, Parson SH, Gillingwater TH. Synaptic vulnerability in neurodegenerative disease. J Neuropathol Exp Neurol. 2006;65(8):733–9.CrossRefPubMed Wishart TM, Parson SH, Gillingwater TH. Synaptic vulnerability in neurodegenerative disease. J Neuropathol Exp Neurol. 2006;65(8):733–9.CrossRefPubMed
3.
go back to reference Wang J, He Z. NAD and axon degeneration: from the Wlds gene to neurochemistry. Cell Adhes Migr. 2009;3(1):77–87.CrossRef Wang J, He Z. NAD and axon degeneration: from the Wlds gene to neurochemistry. Cell Adhes Migr. 2009;3(1):77–87.CrossRef
5.
go back to reference Simonin Y, Ferrer-Alcon M, Ferri A, Kato AC. The neuroprotective effects of the WldS gene are correlated with proteasome expression rather than apoptosis. Eur J Neurosci. 2007;25(8):2269–74.CrossRefPubMed Simonin Y, Ferrer-Alcon M, Ferri A, Kato AC. The neuroprotective effects of the WldS gene are correlated with proteasome expression rather than apoptosis. Eur J Neurosci. 2007;25(8):2269–74.CrossRefPubMed
6.
go back to reference Gillingwater TH, Wishart TM. Mechanisms underlying synaptic vulnerability and degeneration in neurodegenerative disease. Neuropathol Appl Neurobiol. 2013;39(4):320–34.CrossRefPubMed Gillingwater TH, Wishart TM. Mechanisms underlying synaptic vulnerability and degeneration in neurodegenerative disease. Neuropathol Appl Neurobiol. 2013;39(4):320–34.CrossRefPubMed
7.
go back to reference McKinnon C, Tabrizi SJ. The ubiquitin-proteasome system in neurodegeneration. Antioxid Redox Signal. 2014;21(17):2302–21.CrossRefPubMed McKinnon C, Tabrizi SJ. The ubiquitin-proteasome system in neurodegeneration. Antioxid Redox Signal. 2014;21(17):2302–21.CrossRefPubMed
8.
go back to reference Campello S, Strappazzon F, Cecconi F. Mitochondrial dismissal in mammals, from protein degradation to mitophagy. Biochim Biophys Acta. 2014;1837(4):451–60.CrossRefPubMed Campello S, Strappazzon F, Cecconi F. Mitochondrial dismissal in mammals, from protein degradation to mitophagy. Biochim Biophys Acta. 2014;1837(4):451–60.CrossRefPubMed
9.
go back to reference Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134(1):112–23.CrossRefPubMedPubMedCentral Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134(1):112–23.CrossRefPubMedPubMedCentral
10.
go back to reference Bertoni-Freddari C, Fattoretti P, Casoli T, Spagna C, Meier-Ruge W, Ulrich J. Morphological plasticity of synaptic mitochondria during aging. Brain Res. 1993;628(1-2):193–200.CrossRefPubMed Bertoni-Freddari C, Fattoretti P, Casoli T, Spagna C, Meier-Ruge W, Ulrich J. Morphological plasticity of synaptic mitochondria during aging. Brain Res. 1993;628(1-2):193–200.CrossRefPubMed
11.
go back to reference Chang DT, Reynolds IJ. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol. 2006;80(5):241–68.CrossRefPubMed Chang DT, Reynolds IJ. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol. 2006;80(5):241–68.CrossRefPubMed
12.
go back to reference Van Laar VS, Berman SB. The interplay of neuronal mitochondrial dynamics and bioenergetics: implications for Parkinson’s disease. Neurobiol Dis. 2013;51:43–55.CrossRefPubMed Van Laar VS, Berman SB. The interplay of neuronal mitochondrial dynamics and bioenergetics: implications for Parkinson’s disease. Neurobiol Dis. 2013;51:43–55.CrossRefPubMed
13.
go back to reference Chang DT, Honick AS, Reynolds IJ. Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci. 2006;26(26):7035–45.CrossRefPubMed Chang DT, Honick AS, Reynolds IJ. Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci. 2006;26(26):7035–45.CrossRefPubMed
14.
16.
go back to reference Flynn JM, Choi SW, Day NU, Gerencser AA, Hubbard A, Melov S. Impaired spare respiratory capacity in cortical synaptosomes from Sod2 null mice. Free Radic Biol Med. 2011;50(7):866–73.CrossRefPubMedPubMedCentral Flynn JM, Choi SW, Day NU, Gerencser AA, Hubbard A, Melov S. Impaired spare respiratory capacity in cortical synaptosomes from Sod2 null mice. Free Radic Biol Med. 2011;50(7):866–73.CrossRefPubMedPubMedCentral
17.
go back to reference Lai JC, Walsh JM, Dennis SC, Clark JB. Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization. J Neurochem. 1977;28(3):625–31.CrossRefPubMed Lai JC, Walsh JM, Dennis SC, Clark JB. Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization. J Neurochem. 1977;28(3):625–31.CrossRefPubMed
18.
go back to reference Brown MR, Sullivan PG, Geddes JW. Synaptic mitochondria are more susceptible to Ca2+overload than nonsynaptic mitochondria. J Biol Chem. 2006;281(17):11658–68.CrossRefPubMed Brown MR, Sullivan PG, Geddes JW. Synaptic mitochondria are more susceptible to Ca2+overload than nonsynaptic mitochondria. J Biol Chem. 2006;281(17):11658–68.CrossRefPubMed
19.
go back to reference Friberg H, Connern C, Halestrap AP, Wieloch T. Differences in the activation of the mitochondrial permeability transition among brain regions in the rat correlate with selective vulnerability. J Neurochem. 1999;72(6):2488–97.CrossRefPubMed Friberg H, Connern C, Halestrap AP, Wieloch T. Differences in the activation of the mitochondrial permeability transition among brain regions in the rat correlate with selective vulnerability. J Neurochem. 1999;72(6):2488–97.CrossRefPubMed
20.
go back to reference Wishart TM, Paterson JM, Short DM, Meredith S, Robertson KA, Sutherland C, et al. Differential proteomics analysis of synaptic proteins identifies potential cellular targets and protein mediators of synaptic neuroprotection conferred by the slow Wallerian degeneration (Wlds) gene. Mol Cell Proteomics. 2007;6(8):1318–30.CrossRefPubMedPubMedCentral Wishart TM, Paterson JM, Short DM, Meredith S, Robertson KA, Sutherland C, et al. Differential proteomics analysis of synaptic proteins identifies potential cellular targets and protein mediators of synaptic neuroprotection conferred by the slow Wallerian degeneration (Wlds) gene. Mol Cell Proteomics. 2007;6(8):1318–30.CrossRefPubMedPubMedCentral
21.
go back to reference Savli H, Szendroi A, Romics I, Nagy B. Gene network and canonical pathway analysis in prostate cancer: a microarray study. Exp Mol Med. 2008;40(2):176–85.CrossRefPubMedPubMedCentral Savli H, Szendroi A, Romics I, Nagy B. Gene network and canonical pathway analysis in prostate cancer: a microarray study. Exp Mol Med. 2008;40(2):176–85.CrossRefPubMedPubMedCentral
22.
go back to reference Eaton SL, Roche SL, Llavero Hurtado M, Oldknow KJ, Farquharson C, Gillingwater TH, et al. Total protein analysis as a reliable loading control for quantitative fluorescent western blotting. PLoS One. 2013;8(8):e72457.CrossRefPubMedPubMedCentral Eaton SL, Roche SL, Llavero Hurtado M, Oldknow KJ, Farquharson C, Gillingwater TH, et al. Total protein analysis as a reliable loading control for quantitative fluorescent western blotting. PLoS One. 2013;8(8):e72457.CrossRefPubMedPubMedCentral
23.
go back to reference Kay KR, Smith C, Wright AK, Serrano-Pozo A, Pooler AM, Koffie R, et al. Studying synapses in human brain with array tomography and electron microscopy. Nat Protoc. 2013;8(7):1366–80.CrossRefPubMedPubMedCentral Kay KR, Smith C, Wright AK, Serrano-Pozo A, Pooler AM, Koffie R, et al. Studying synapses in human brain with array tomography and electron microscopy. Nat Protoc. 2013;8(7):1366–80.CrossRefPubMedPubMedCentral
24.
go back to reference Hu Y, Flockhart I, Vinayagam A, Bergwitz C, Berger B, Perrimon N, et al. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics. 2011;12:357.CrossRefPubMedPubMedCentral Hu Y, Flockhart I, Vinayagam A, Bergwitz C, Berger B, Perrimon N, et al. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics. 2011;12:357.CrossRefPubMedPubMedCentral
25.
26.
go back to reference Andlauer TF, Sigrist SJ. Quantitative analysis of drosophila larval neuromuscular junction morphology. Cold Spring Harb Protoc. 2012;2012(4):490–3.PubMed Andlauer TF, Sigrist SJ. Quantitative analysis of drosophila larval neuromuscular junction morphology. Cold Spring Harb Protoc. 2012;2012(4):490–3.PubMed
27.
go back to reference Mukherjee K, Clark HR, Chavan V, Benson EK, Kidd GJ, Srivastava S. Analysis of brain mitochondria using serial block-face scanning electron microscopy. J Vis Exp. 2016;113 Mukherjee K, Clark HR, Chavan V, Benson EK, Kidd GJ, Srivastava S. Analysis of brain mitochondria using serial block-face scanning electron microscopy. J Vis Exp. 2016;113
28.
go back to reference Miyazaki N, Esaki M, Ogura T, Murata K. Serial block-face scanning electron microscopy for three-dimensional analysis of morphological changes in mitochondria regulated by Cdc48p/p97 ATPase. J Struct Biol. 2014;187(2):187–93.CrossRefPubMed Miyazaki N, Esaki M, Ogura T, Murata K. Serial block-face scanning electron microscopy for three-dimensional analysis of morphological changes in mitochondria regulated by Cdc48p/p97 ATPase. J Struct Biol. 2014;187(2):187–93.CrossRefPubMed
29.
go back to reference Bereiter-Hahn J, Voth M, Mai S, Jendrach M. Structural implications of mitochondrial dynamics. Biotechnol J. 2008;3(6):765–80.CrossRefPubMed Bereiter-Hahn J, Voth M, Mai S, Jendrach M. Structural implications of mitochondrial dynamics. Biotechnol J. 2008;3(6):765–80.CrossRefPubMed
30.
go back to reference Picard M, Shirihai OS, Gentil BJ, Burelle Y. Mitochondrial morphology transitions and functions: implications for retrograde signaling? Am J Physiol Regul Integr Comp Physiol. 2013;304(6):R393–406.CrossRefPubMedPubMedCentral Picard M, Shirihai OS, Gentil BJ, Burelle Y. Mitochondrial morphology transitions and functions: implications for retrograde signaling? Am J Physiol Regul Integr Comp Physiol. 2013;304(6):R393–406.CrossRefPubMedPubMedCentral
31.
go back to reference Theocharidis A, van Dongen S, Enright AJ, Freeman TC. Network visualization and analysis of gene expression data using BioLayout express(3D). Nat Protoc 2009;4(10):1535-1550. Theocharidis A, van Dongen S, Enright AJ, Freeman TC. Network visualization and analysis of gene expression data using BioLayout express(3D). Nat Protoc 2009;4(10):1535-1550.
32.
go back to reference Menon KP, Carrillo RA, Zinn K. Development and plasticity of the drosophila larval neuromuscular junction. Wiley Interdiscip Rev Dev Biol. 2013;2(5):647–70.CrossRefPubMedPubMedCentral Menon KP, Carrillo RA, Zinn K. Development and plasticity of the drosophila larval neuromuscular junction. Wiley Interdiscip Rev Dev Biol. 2013;2(5):647–70.CrossRefPubMedPubMedCentral
33.
go back to reference Pandey UB, Nichols CD. Human disease models in Drosophila Melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 2011;63(2):411–36.CrossRefPubMedPubMedCentral Pandey UB, Nichols CD. Human disease models in Drosophila Melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 2011;63(2):411–36.CrossRefPubMedPubMedCentral
34.
go back to reference Budnik V. GLS. Neuromuscular Junctions in Drosophila. 1 ed. San Diego: Academic Press; 1999. Budnik V. GLS. Neuromuscular Junctions in Drosophila. 1 ed. San Diego: Academic Press; 1999.
35.
36.
go back to reference Pennetta G, Hiesinger PR, Fabian-Fine R, Meinertzhagen IA, Bellen HJ. Drosophila VAP-33A directs bouton formation at neuromuscular junctions in a dosage-dependent manner. Neuron. 2002;35(2):291–306.CrossRefPubMed Pennetta G, Hiesinger PR, Fabian-Fine R, Meinertzhagen IA, Bellen HJ. Drosophila VAP-33A directs bouton formation at neuromuscular junctions in a dosage-dependent manner. Neuron. 2002;35(2):291–306.CrossRefPubMed
37.
go back to reference Sanhueza M, Kubasik-Thayil A, Pennetta G. Why quantification matters: characterization of phenotypes at the drosophila larval neuromuscular junction. J Vis Exp. 2016;111 Sanhueza M, Kubasik-Thayil A, Pennetta G. Why quantification matters: characterization of phenotypes at the drosophila larval neuromuscular junction. J Vis Exp. 2016;111
38.
go back to reference Wey MC, Fernandez E, Martinez PA, Sullivan P, Goldstein DS, Strong R. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson's disease. PLoS One. 2012;7(2):e31522.CrossRefPubMedPubMedCentral Wey MC, Fernandez E, Martinez PA, Sullivan P, Goldstein DS, Strong R. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson's disease. PLoS One. 2012;7(2):e31522.CrossRefPubMedPubMedCentral
39.
go back to reference Wishart TM, Rooney TM, Lamont DJ, Wright AK, Morton AJ, Jackson M, et al. Combining comparative proteomics and molecular genetics uncovers regulators of synaptic and axonal stability and degeneration in vivo. PLoS Genet. 2012;8(8):e1002936.CrossRefPubMedPubMedCentral Wishart TM, Rooney TM, Lamont DJ, Wright AK, Morton AJ, Jackson M, et al. Combining comparative proteomics and molecular genetics uncovers regulators of synaptic and axonal stability and degeneration in vivo. PLoS Genet. 2012;8(8):e1002936.CrossRefPubMedPubMedCentral
40.
go back to reference Anderson DW, Schray RC, Duester G, Schneider JS. Functional significance of aldehyde dehydrogenase ALDH1A1 to the nigrostriatal dopamine system. Brain Res. 2011;1408:81–7.CrossRefPubMedPubMedCentral Anderson DW, Schray RC, Duester G, Schneider JS. Functional significance of aldehyde dehydrogenase ALDH1A1 to the nigrostriatal dopamine system. Brain Res. 2011;1408:81–7.CrossRefPubMedPubMedCentral
41.
go back to reference Liu G, Yu J, Ding J, Xie C, Sun L, Rudenko I, et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. J Clin Invest. 2014;124(7):3032–46. Liu G, Yu J, Ding J, Xie C, Sun L, Rudenko I, et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. J Clin Invest. 2014;124(7):3032–46.
42.
go back to reference Miller KE, Sheetz MP. Axonal mitochondrial transport and potential are correlated. J Cell Sci. 2004;117(Pt 13):2791–804.CrossRefPubMed Miller KE, Sheetz MP. Axonal mitochondrial transport and potential are correlated. J Cell Sci. 2004;117(Pt 13):2791–804.CrossRefPubMed
43.
go back to reference Rowland KC, Irby NK, Spirou GA. Specialized synapse-associated structures within the calyx of held. J Neurosci. 2000;20(24):9135–44.PubMed Rowland KC, Irby NK, Spirou GA. Specialized synapse-associated structures within the calyx of held. J Neurosci. 2000;20(24):9135–44.PubMed
Metadata
Title
Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture
Authors
Laura C. Graham
Samantha L. Eaton
Paula J. Brunton
Abdelmadjid Atrih
Colin Smith
Douglas J. Lamont
Thomas H. Gillingwater
Giuseppa Pennetta
Paul Skehel
Thomas M. Wishart
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2017
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-017-0221-9

Other articles of this Issue 1/2017

Molecular Neurodegeneration 1/2017 Go to the issue