Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2018

Open Access 01-12-2018 | Research

Protein phosphatase 2A activation mechanism contributes to JS-K induced caspase-dependent apoptosis in human hepatocellular carcinoma cells

Authors: Ling Liu, Zile Huang, Jingjing Chen, Jiangang Wang, Shuying Wang

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2018

Login to get access

Abstract

Background

JS-K is a nitric oxide (NO) donor and could generate intracellularly high levels of NO. The study explores PP2A as a tumor suppressor is a major determinant mediating JS-K-caused apoptosis in human hepatocellular carcinoma (HCC) cells.

Methods

The human HCC cell lines (PLC5, Huh-7, Bel-7402, SMMC-7721 and HepG2) were used to assess effects of JS-K on cell viability, apoptosis induction and PP2A activation. Effects of JS-K on cell morphology, mitochondrial membrane potential, apoptosis and NO levels were determined in HCC cells expressing PP2A. Simultaneously, the expression of PP2A family including PP2A-A(α/β), PP2A-B55, PP2A-C(α/β) and the substrates of PP2A, such as β-catenin, c-Myc and p-Bcl-2 (Ser70) were detected in sensitive HCC cells. Furthermore, the role of NO in mediating the expression of PP2A was further validated with Z-VAD-FMK (a caspase inhibitor), Carboxy-PTIO (a NO scavenger), okadaic acid (OA, a PP2A inhibitor) and FTY720 (a PP2A agonist) in JS-K treated cells. In addition, the genetic manuplation of PP2A including overexpression and knockdown have been also performed in JS-K treated cells. Moreover, the rat model of primary hepatic carcinoma was established with diethylnitrosamine for 16 weeks to verify the anti-tumor effects of JS-K in vivo. Immunohistochemical and Western blot analysis were used to determine the expression of proteins in rat primary hepatic carcinoma tissues.

Results

JS-K significantly inhibited cell proliferation, increased apoptosis rate and activated PP2A activity in five HCC cells viability, especially SMMC7721 and HepG2 cells. It was characterized by loss of mitochondrial membrane potential, significant externalization of phosphatidylserine, nuclear morphological changes. Moreover, JS-K enhanced Bax-to-Bcl-2 ratio, released cytochrome c (Cyt c) from mitochondria, activated cleaved-caspase-9/3 and the cleavage of PARP, and decreased the expression of X-linked inhibitor of apoptosis protein (XIAP). Both Z-VAD-FMK and Carboxy-PTIO suppressed the activation of cleaved-caspase-9/3 and of cleaved-PARP in JS-K-treated sensitive HCC cells. Simultaneously, JS-K treatment could lead to the activation of protein phosphatase 2A-C (PP2A-C) but not PP2A-A and PP2A-B55, which subsequently inactivated and dephosphorylated the PP2A substrates including β-catenin, c-Myc, and p-Bcl-2 (Ser70). However, silencing PP2A-C could abolish both the activation of PP2A-C and down-regulation of β-catenin, c-Myc and p-Bcl-2 (Ser70) in sensitive HCC cells. Conversely, PP2A overexpression could enhance the effects of JS-K on activation of PP2A and down-regulation of β-catenin, c-Myc and p-Bcl-2 (Ser70). In addition, adding okadaic acid (OA), a PP2A inhibitor, abolished the effects of JS-K on apoptosis induction, PP2A activation and the substrates of PP2A dephosphorylation; FTY720, a PP2A agonist, enhanced the effects of JS-K including apoptosis induction, PP2A activation and the substrates of PP2A dephosphorylation. The mice exhibited a lower number and smaller tumor nodules in response to JS-K-treated group. A marked increase in the number of hepatocytes with PCNA-positive nuclei (proliferating cells) was evident in DEN group and tended to decrease with JS-K treatment. Furthermore, JS-K treatment could induce PP2A activation and the substrates of PP2A inactivation such as β-catenin, c-Myc and p-Bcl-2(Ser70) in DEN-induced hepatocarcinogenesis.

Conclusions

High levels of NO released from JS-K induces a caspase-dependent apoptosis through PP2A activation.
Literature
2.
go back to reference Grech G, Baldacchino S, Saliba C, Grixti MP, Gauci R, Petroni V, Fenech AG, Scerri C. Deregulation of the protein phosphatase 2a, pp2a in cancer: complexity and therapeutic options. Tumour Biol. 2016;37:11691–700.CrossRefPubMed Grech G, Baldacchino S, Saliba C, Grixti MP, Gauci R, Petroni V, Fenech AG, Scerri C. Deregulation of the protein phosphatase 2a, pp2a in cancer: complexity and therapeutic options. Tumour Biol. 2016;37:11691–700.CrossRefPubMed
3.
go back to reference Lei N, Peng B, Zhang JY. Cip2a regulates cell proliferation via the akt signaling pathway in human lung cancer. Oncol Rep. 2014;32:1689–94.PubMed Lei N, Peng B, Zhang JY. Cip2a regulates cell proliferation via the akt signaling pathway in human lung cancer. Oncol Rep. 2014;32:1689–94.PubMed
4.
go back to reference Sangodkar J, Farrington CC, McClinch K, Galsky MD, Kastrinsky DB, Narla G. All roads lead to pp2a: exploiting the therapeutic potential of this phosphatase. FEBS J. 2016;283:1004–24.CrossRefPubMed Sangodkar J, Farrington CC, McClinch K, Galsky MD, Kastrinsky DB, Narla G. All roads lead to pp2a: exploiting the therapeutic potential of this phosphatase. FEBS J. 2016;283:1004–24.CrossRefPubMed
5.
go back to reference Khanna A, Pimanda JE, Westermarck J. Cancerous inhibitor of protein phosphatase 2a, an emerging human oncoprotein and a potential cancer therapy target. Cancer Res. 2013;73:6548–53.CrossRefPubMed Khanna A, Pimanda JE, Westermarck J. Cancerous inhibitor of protein phosphatase 2a, an emerging human oncoprotein and a potential cancer therapy target. Cancer Res. 2013;73:6548–53.CrossRefPubMed
6.
go back to reference Cristobal I, Madoz-Gurpide J, Manso R, Gonzalez-Alonso P, Rojo F, Garcia-Foncillas J. Potential anti-tumor effects of fty720 associated with pp2a activation: a brief review. Curr Med Res Opin. 2016;32:1137–41.CrossRefPubMed Cristobal I, Madoz-Gurpide J, Manso R, Gonzalez-Alonso P, Rojo F, Garcia-Foncillas J. Potential anti-tumor effects of fty720 associated with pp2a activation: a brief review. Curr Med Res Opin. 2016;32:1137–41.CrossRefPubMed
7.
go back to reference Chen L, Luo LF, Lu J, Li L, Liu YF, Wang J, Liu H, Song H, Jiang H, Chen SJ, Luo C, Li KK. Fty720 induces apoptosis of m2 subtype acute myeloid leukemia cells by targeting sphingolipid metabolism and increasing endogenous ceramide levels. PLoS One. 2014;9:e103033.CrossRefPubMedPubMedCentral Chen L, Luo LF, Lu J, Li L, Liu YF, Wang J, Liu H, Song H, Jiang H, Chen SJ, Luo C, Li KK. Fty720 induces apoptosis of m2 subtype acute myeloid leukemia cells by targeting sphingolipid metabolism and increasing endogenous ceramide levels. PLoS One. 2014;9:e103033.CrossRefPubMedPubMedCentral
9.
go back to reference Kim SW, Kim HJ, Chun YJ, Kim MY. Ceramide produces apoptosis through induction of p27(kip1) by protein phosphatase 2a-dependent akt dephosphorylation in pc-3 prostate cancer cells. J Toxicol Environ Health A. 2010;73:1465–76.CrossRefPubMed Kim SW, Kim HJ, Chun YJ, Kim MY. Ceramide produces apoptosis through induction of p27(kip1) by protein phosphatase 2a-dependent akt dephosphorylation in pc-3 prostate cancer cells. J Toxicol Environ Health A. 2010;73:1465–76.CrossRefPubMed
10.
go back to reference Bos CL, Kodach LL, van den Brink GR, Diks SH, van Santen MM, Richel DJ, Peppelenbosch MP, Hardwick JC. Effect of aspirin on the wnt/beta-catenin pathway is mediated via protein phosphatase 2a. Oncogene. 2006;25:6447–56.CrossRefPubMed Bos CL, Kodach LL, van den Brink GR, Diks SH, van Santen MM, Richel DJ, Peppelenbosch MP, Hardwick JC. Effect of aspirin on the wnt/beta-catenin pathway is mediated via protein phosphatase 2a. Oncogene. 2006;25:6447–56.CrossRefPubMed
11.
go back to reference Meng G, Wang W, Chai K, Yang S, Li F, Jiang K. Combination treatment with triptolide and hydroxycamptothecin synergistically enhances apoptosis in a549 lung adenocarcinoma cells through pp2a-regulated erk, p38 mapks and akt signaling pathways. Int J Oncol. 2015;46:1007–17.CrossRefPubMedPubMedCentral Meng G, Wang W, Chai K, Yang S, Li F, Jiang K. Combination treatment with triptolide and hydroxycamptothecin synergistically enhances apoptosis in a549 lung adenocarcinoma cells through pp2a-regulated erk, p38 mapks and akt signaling pathways. Int J Oncol. 2015;46:1007–17.CrossRefPubMedPubMedCentral
12.
go back to reference Rabender CS, Alam A, Sundaresan G, Cardnell RJ, Yakovlev VA, Mukhopadhyay ND, Graves P, Zweit J, Mikkelsen RB. The role of nitric oxide synthase uncoupling in tumor progression. Mol Cancer Res. 2015;13:1034–43.CrossRefPubMedPubMedCentral Rabender CS, Alam A, Sundaresan G, Cardnell RJ, Yakovlev VA, Mukhopadhyay ND, Graves P, Zweit J, Mikkelsen RB. The role of nitric oxide synthase uncoupling in tumor progression. Mol Cancer Res. 2015;13:1034–43.CrossRefPubMedPubMedCentral
13.
go back to reference Nath N, Chattopadhyay M, Pospishil L, Cieciura LZ, Goswami S, Kodela R, Saavedra JE, Keefer LK, Kashfi K. Js-k, a nitric oxide-releasing prodrug, modulates ss-catenin/tcf signaling in leukemic jurkat cells: evidence of an s-nitrosylated mechanism. Biochem Pharmacol. 2010;80:1641–9.CrossRefPubMed Nath N, Chattopadhyay M, Pospishil L, Cieciura LZ, Goswami S, Kodela R, Saavedra JE, Keefer LK, Kashfi K. Js-k, a nitric oxide-releasing prodrug, modulates ss-catenin/tcf signaling in leukemic jurkat cells: evidence of an s-nitrosylated mechanism. Biochem Pharmacol. 2010;80:1641–9.CrossRefPubMed
14.
go back to reference Liu Z, Li G, Gou Y, Xiao D, Luo G, Saavedra JE, Liu J, Wang H. Js-k, a nitric oxide prodrug, induces DNA damage and apoptosis in hbv-positive hepatocellular carcinoma hepg2.2.15 cell. Biomed Pharmacother. 2017;92:989–97.CrossRefPubMed Liu Z, Li G, Gou Y, Xiao D, Luo G, Saavedra JE, Liu J, Wang H. Js-k, a nitric oxide prodrug, induces DNA damage and apoptosis in hbv-positive hepatocellular carcinoma hepg2.2.15 cell. Biomed Pharmacother. 2017;92:989–97.CrossRefPubMed
15.
go back to reference Tan G, Qiu M, Chen L, Zhang S, Ke L, Liu J. Js-k, a nitric oxide pro-drug, regulates growth and apoptosis through the ubiquitin-proteasome pathway in prostate cancer cells. BMC Cancer. 2017;17:376.CrossRefPubMedPubMedCentral Tan G, Qiu M, Chen L, Zhang S, Ke L, Liu J. Js-k, a nitric oxide pro-drug, regulates growth and apoptosis through the ubiquitin-proteasome pathway in prostate cancer cells. BMC Cancer. 2017;17:376.CrossRefPubMedPubMedCentral
16.
go back to reference Kaczmarek MZ, Holland RJ, Lavanier SA, Troxler JA, Fesenkova VI, Hanson CA, Cmarik JL, Saavedra JE, Keefer LK, Ruscetti SK. Mechanism of action for the cytotoxic effects of the nitric oxide prodrug js-k in murine erythroleukemia cells. Leuk Res. 2014;38:377–82.CrossRefPubMed Kaczmarek MZ, Holland RJ, Lavanier SA, Troxler JA, Fesenkova VI, Hanson CA, Cmarik JL, Saavedra JE, Keefer LK, Ruscetti SK. Mechanism of action for the cytotoxic effects of the nitric oxide prodrug js-k in murine erythroleukemia cells. Leuk Res. 2014;38:377–82.CrossRefPubMed
17.
go back to reference Shami PJ, Saavedra JE, Bonifant CL, Chu J, Udupi V, Malaviya S, Carr BI, Kar S, Wang M, Jia L, Ji X, Keefer LK. Antitumor activity of js-k [o2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] and related o2-aryl diazeniumdiolates in vitro and in vivo. J Med Chem. 2006;49:4356–66.CrossRefPubMed Shami PJ, Saavedra JE, Bonifant CL, Chu J, Udupi V, Malaviya S, Carr BI, Kar S, Wang M, Jia L, Ji X, Keefer LK. Antitumor activity of js-k [o2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] and related o2-aryl diazeniumdiolates in vitro and in vivo. J Med Chem. 2006;49:4356–66.CrossRefPubMed
18.
go back to reference Shami PJ, Saavedra JE, Wang LY, Bonifant CL, Diwan BA, Singh SV, Gu Y, Fox SD, Buzard GS, Citro ML, Waterhouse DJ, Davies KM, Ji X, Keefer LK. Js-k, a glutathione/glutathione s-transferase-activated nitric oxide donor of the diazeniumdiolate class with potent antineoplastic activity. Mol Cancer Ther. 2003;2:409–17.PubMed Shami PJ, Saavedra JE, Wang LY, Bonifant CL, Diwan BA, Singh SV, Gu Y, Fox SD, Buzard GS, Citro ML, Waterhouse DJ, Davies KM, Ji X, Keefer LK. Js-k, a glutathione/glutathione s-transferase-activated nitric oxide donor of the diazeniumdiolate class with potent antineoplastic activity. Mol Cancer Ther. 2003;2:409–17.PubMed
19.
go back to reference Ren Z, Kar S, Wang Z, Wang M, Saavedra JE, Carr BI. Js-k, a novel non-ionic diazeniumdiolate derivative, inhibits hep 3b hepatoma cell growth and induces c-Jun phosphorylation via multiple map kinase pathways. J Cell Physiol. 2003;197:426–34.CrossRefPubMed Ren Z, Kar S, Wang Z, Wang M, Saavedra JE, Carr BI. Js-k, a novel non-ionic diazeniumdiolate derivative, inhibits hep 3b hepatoma cell growth and induces c-Jun phosphorylation via multiple map kinase pathways. J Cell Physiol. 2003;197:426–34.CrossRefPubMed
20.
go back to reference Laschak M, Spindler KD, Schrader AJ, Hessenauer A, Streicher W, Schrader M, Cronauer MV. Js-k, a glutathione/glutathione s-transferase-activated nitric oxide releasing prodrug inhibits androgen receptor and wnt-signaling in prostate cancer cells. BMC Cancer. 2012;12:130.CrossRefPubMedPubMedCentral Laschak M, Spindler KD, Schrader AJ, Hessenauer A, Streicher W, Schrader M, Cronauer MV. Js-k, a glutathione/glutathione s-transferase-activated nitric oxide releasing prodrug inhibits androgen receptor and wnt-signaling in prostate cancer cells. BMC Cancer. 2012;12:130.CrossRefPubMedPubMedCentral
21.
go back to reference Perrotta C, De Palma C, Clementi E. Nitric oxide and sphingolipids: mechanisms of interaction and role in cellular pathophysiology. Biol Chem. 2008;389:1391–7.CrossRefPubMed Perrotta C, De Palma C, Clementi E. Nitric oxide and sphingolipids: mechanisms of interaction and role in cellular pathophysiology. Biol Chem. 2008;389:1391–7.CrossRefPubMed
22.
go back to reference Liu L, Wang D, Wang J, Wang S. The nitric oxide prodrug js-k induces ca(2+)-mediated apoptosis in human hepatocellular carcinoma hepg2 cells. J Biochem Mol Toxicol. 2016;30:192–9.CrossRefPubMed Liu L, Wang D, Wang J, Wang S. The nitric oxide prodrug js-k induces ca(2+)-mediated apoptosis in human hepatocellular carcinoma hepg2 cells. J Biochem Mol Toxicol. 2016;30:192–9.CrossRefPubMed
23.
go back to reference Qiu M, Ke L, Zhang S, Zeng X, Fang Z, Liu J. Js-k, a gst-activated nitric oxide donor prodrug, enhances chemo-sensitivity in renal carcinoma cells and prevents cardiac myocytes toxicity induced by doxorubicin. Cancer Chemother Pharmacol. 2017;80:275–86.CrossRefPubMed Qiu M, Ke L, Zhang S, Zeng X, Fang Z, Liu J. Js-k, a gst-activated nitric oxide donor prodrug, enhances chemo-sensitivity in renal carcinoma cells and prevents cardiac myocytes toxicity induced by doxorubicin. Cancer Chemother Pharmacol. 2017;80:275–86.CrossRefPubMed
24.
go back to reference Qiu M, Chen L, Tan G, Ke L, Zhang S, Chen H, Liu J. A reactive oxygen species activation mechanism contributes to js-k-induced apoptosis in human bladder cancer cells. Sci Rep. 2015;5:15104.CrossRefPubMedPubMedCentral Qiu M, Chen L, Tan G, Ke L, Zhang S, Chen H, Liu J. A reactive oxygen species activation mechanism contributes to js-k-induced apoptosis in human bladder cancer cells. Sci Rep. 2015;5:15104.CrossRefPubMedPubMedCentral
25.
go back to reference Cui Q, Wen S, Huang P. Targeting cancer cell mitochondria as a therapeutic approach: recent updates. Future Med Chem. 2017;9:929–49.CrossRefPubMed Cui Q, Wen S, Huang P. Targeting cancer cell mitochondria as a therapeutic approach: recent updates. Future Med Chem. 2017;9:929–49.CrossRefPubMed
27.
go back to reference Dillon CP, Green DR. Molecular cell biology of apoptosis and necroptosis in cancer. Adv Exp Med Biol. 2016;930:1–23.CrossRefPubMed Dillon CP, Green DR. Molecular cell biology of apoptosis and necroptosis in cancer. Adv Exp Med Biol. 2016;930:1–23.CrossRefPubMed
28.
29.
go back to reference Ma Y, Zhu B, Liu X, Yu H, Yong L, Shao J, Liu Z. Inhibition of oleandrin on the proliferation show and invasion of osteosarcoma cells in vitro by suppressing wnt/beta-catenin signaling pathway. J Exp Clin Cancer Res. 2015;34:115.CrossRefPubMedPubMedCentral Ma Y, Zhu B, Liu X, Yu H, Yong L, Shao J, Liu Z. Inhibition of oleandrin on the proliferation show and invasion of osteosarcoma cells in vitro by suppressing wnt/beta-catenin signaling pathway. J Exp Clin Cancer Res. 2015;34:115.CrossRefPubMedPubMedCentral
30.
go back to reference Ruvolo PP. The broken "off" switch in cancer signaling: Pp2a as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA Clin. 2016;6:87–99.CrossRefPubMedPubMedCentral Ruvolo PP. The broken "off" switch in cancer signaling: Pp2a as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA Clin. 2016;6:87–99.CrossRefPubMedPubMedCentral
31.
go back to reference Seshacharyulu P, Pandey P, Datta K, Batra SK. Phosphatase: Pp2a structural importance, regulation and its aberrant expression in cancer. Cancer Lett. 2013;335:9–18.CrossRefPubMedPubMedCentral Seshacharyulu P, Pandey P, Datta K, Batra SK. Phosphatase: Pp2a structural importance, regulation and its aberrant expression in cancer. Cancer Lett. 2013;335:9–18.CrossRefPubMedPubMedCentral
32.
go back to reference Carratu MR, Signorile A, De Rasmo D, Reale A, Vacca A. Pharmacological activation of protein phosphatase 2 a (pp2a): a novel strategy to fight against human malignancies? Curr Med Chem. 2016;23:4286–96.CrossRefPubMed Carratu MR, Signorile A, De Rasmo D, Reale A, Vacca A. Pharmacological activation of protein phosphatase 2 a (pp2a): a novel strategy to fight against human malignancies? Curr Med Chem. 2016;23:4286–96.CrossRefPubMed
33.
go back to reference Low IC, Loh T, Huang Y, Virshup DM, Pervaiz S. Ser70 phosphorylation of bcl-2 by selective tyrosine nitration of pp2a-b56delta stabilizes its antiapoptotic activity. Blood. 2014;124:2223–34.CrossRefPubMed Low IC, Loh T, Huang Y, Virshup DM, Pervaiz S. Ser70 phosphorylation of bcl-2 by selective tyrosine nitration of pp2a-b56delta stabilizes its antiapoptotic activity. Blood. 2014;124:2223–34.CrossRefPubMed
Metadata
Title
Protein phosphatase 2A activation mechanism contributes to JS-K induced caspase-dependent apoptosis in human hepatocellular carcinoma cells
Authors
Ling Liu
Zile Huang
Jingjing Chen
Jiangang Wang
Shuying Wang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2018
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-018-0823-2

Other articles of this Issue 1/2018

Journal of Experimental & Clinical Cancer Research 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine