Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2016

Open Access 01-12-2016 | Research article

Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists

Authors: Mette Hansen, Jens Bangsbo, Jørgen Jensen, Matilde Krause-Jensen, Bo Martin Bibby, Ove Sollie, Ulrika Andersson Hall, Klavs Madsen

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2016

Login to get access

Abstract

Background

Training camps for top-class endurance athletes place high physiological demands on the body. Focus on optimizing recovery between training sessions is necessary to minimize the risk of injuries and improve adaptations to the training stimuli. Carbohydrate supplementation during sessions is generally accepted as being beneficial to aid performance and recovery, whereas the effect of protein supplementation and timing is less well understood. We studied the effects of protein ingestion during training sessions on performance and recovery of elite cyclists during a strenuous training camp.

Methods

In a randomized, double-blinded study, 18 elite cyclists consumed either a whey protein hydrolysate-carbohydrate beverage (PRO-CHO, 14 g protein/h and 69 g CHO/h) or an isocaloric carbohydrate beverage (CHO, 84 g/h) during each training session for six days (25–29 h cycling in total). Diet and training were standardized and supervised. The diet was energy balanced and contained 1.7 g protein/kg/day. A 10-s peak power test and a 5-min all-out performance test were conducted before and after the first training session and repeated at day 6 of the camp. Blood and saliva samples were collected in the morning after overnight fasting during the week and analyzed for biochemical markers of muscle damage, stress, and immune function.

Results

In both groups, 5-min all-out performance was reduced after the first training session and at day 6 compared to before the first training session, with no difference between groups. Peak power in the sprint test did not change significantly between tests or between groups. In addition, changes in markers for muscle damage, stress, and immune function were not significantly influenced by treatment.

Conclusions

Intake of protein combined with carbohydrate during cycling at a training camp for top cyclists did not result in marked performance benefits compared to intake of carbohydrates when a recovery drink containing adequate protein and carbohydrate was ingested immediately after each training session in both groups. These findings suggest that the addition of protein to a carbohydrate supplement consumed during exercise does not improve recovery or performance in elite cyclists despite high demands of daily exhaustive sessions during a one-week training camp.
Literature
1.
go back to reference Burke LM, Hawley JA, Wong SH, et al. Carbohydrates for training and competition. J Sports Sci. 2011;29 Suppl 1:S17–27.CrossRefPubMed Burke LM, Hawley JA, Wong SH, et al. Carbohydrates for training and competition. J Sports Sci. 2011;29 Suppl 1:S17–27.CrossRefPubMed
2.
go back to reference Cermak NM, van Loon LJ. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013;43:1139–55.CrossRefPubMed Cermak NM, van Loon LJ. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013;43:1139–55.CrossRefPubMed
3.
go back to reference Breen L, Tipton KD, Jeukendrup AE. No effect of carbohydrate-protein on cycling performance and indices of recovery. Med Sci Sports Exerc. 2010;42:1140–8.PubMed Breen L, Tipton KD, Jeukendrup AE. No effect of carbohydrate-protein on cycling performance and indices of recovery. Med Sci Sports Exerc. 2010;42:1140–8.PubMed
4.
go back to reference Cheuvront SN, Carter III R, Kolka MA, et al. Branched-chain amino acid supplementation and human performance when hypohydrated in the heat. J Appl Physiol. 2004;97:1275–82.CrossRefPubMed Cheuvront SN, Carter III R, Kolka MA, et al. Branched-chain amino acid supplementation and human performance when hypohydrated in the heat. J Appl Physiol. 2004;97:1275–82.CrossRefPubMed
5.
go back to reference Madsen K, MacLean DA, Kiens B, et al. Effects of glucose, glucose plus branched-chain amino acids, or placebo on bike performance over 100 km. J Appl Physiol (1985). 1996;81:2644–50. Madsen K, MacLean DA, Kiens B, et al. Effects of glucose, glucose plus branched-chain amino acids, or placebo on bike performance over 100 km. J Appl Physiol (1985). 1996;81:2644–50.
6.
go back to reference Osterberg KL, Zachwieja JJ, Smith JW. Carbohydrate and carbohydrate + protein for cycling time-trial performance. J Sports Sci. 2008;26:227–33.CrossRefPubMed Osterberg KL, Zachwieja JJ, Smith JW. Carbohydrate and carbohydrate + protein for cycling time-trial performance. J Sports Sci. 2008;26:227–33.CrossRefPubMed
7.
go back to reference Ivy JL, Res PT, Sprague RC, et al. Effect of a carbohydrate-protein supplement on endurance performance during exercise of varying intensity. Int J Sport Nutr Exerc Metab. 2003;13:382–95.PubMed Ivy JL, Res PT, Sprague RC, et al. Effect of a carbohydrate-protein supplement on endurance performance during exercise of varying intensity. Int J Sport Nutr Exerc Metab. 2003;13:382–95.PubMed
8.
go back to reference Mittleman KD, Ricci MR, Bailey SP. Branched-chain amino acids prolong exercise during heat stress in men and women. Med Sci Sports Exerc. 1998;30:83–91.CrossRefPubMed Mittleman KD, Ricci MR, Bailey SP. Branched-chain amino acids prolong exercise during heat stress in men and women. Med Sci Sports Exerc. 1998;30:83–91.CrossRefPubMed
9.
go back to reference Saunders MJ, Kane MD, Todd MK. Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage. Med Sci Sports Exerc. 2004;36:1233–8.CrossRefPubMed Saunders MJ, Kane MD, Todd MK. Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage. Med Sci Sports Exerc. 2004;36:1233–8.CrossRefPubMed
10.
go back to reference Saunders MJ, Luden ND, Herrick JE. Consumption of an oral carbohydrate-protein gel improves cycling endurance and prevents postexercise muscle damage. J Strength Cond Res. 2007;21:678–84.PubMed Saunders MJ, Luden ND, Herrick JE. Consumption of an oral carbohydrate-protein gel improves cycling endurance and prevents postexercise muscle damage. J Strength Cond Res. 2007;21:678–84.PubMed
11.
go back to reference Hall AH, Leveritt MD, Ahuja KD, et al. Coingestion of carbohydrate and protein during training reduces training stress and enhances subsequent exercise performance. Appl Physiol Nutr Metab. 2013;38:597–604.CrossRefPubMed Hall AH, Leveritt MD, Ahuja KD, et al. Coingestion of carbohydrate and protein during training reduces training stress and enhances subsequent exercise performance. Appl Physiol Nutr Metab. 2013;38:597–604.CrossRefPubMed
12.
go back to reference Berardi JM, Noreen EE, Lemon PW. Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs Isoenergetic carbohydrate supplementation. Int Soc Sports Nutr. 2008;5:24.CrossRef Berardi JM, Noreen EE, Lemon PW. Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs Isoenergetic carbohydrate supplementation. Int Soc Sports Nutr. 2008;5:24.CrossRef
13.
go back to reference Betts J, Williams C, Duffy K, et al. The influence of carbohydrate and protein ingestion during recovery from prolonged exercise on subsequent endurance performance. J Sports Sci. 2007;25:1449–60.CrossRefPubMed Betts J, Williams C, Duffy K, et al. The influence of carbohydrate and protein ingestion during recovery from prolonged exercise on subsequent endurance performance. J Sports Sci. 2007;25:1449–60.CrossRefPubMed
14.
15.
go back to reference Romano-Ely BC, Todd MK, Saunders MJ, et al. Effect of an isocaloric carbohydrate-protein-antioxidant drink on cycling performance. Med Sci Sports Exerc. 2006;38:1608–16.CrossRefPubMed Romano-Ely BC, Todd MK, Saunders MJ, et al. Effect of an isocaloric carbohydrate-protein-antioxidant drink on cycling performance. Med Sci Sports Exerc. 2006;38:1608–16.CrossRefPubMed
16.
go back to reference Hill KM, Stathis CG, Grinfeld E, et al. Co-ingestion of carbohydrate and whey protein isolates enhance pgc-1alpha mrna expression: A randomised, single blind, cross over study. Int Soc Sports Nutr. 2013;10:8.CrossRef Hill KM, Stathis CG, Grinfeld E, et al. Co-ingestion of carbohydrate and whey protein isolates enhance pgc-1alpha mrna expression: A randomised, single blind, cross over study. Int Soc Sports Nutr. 2013;10:8.CrossRef
17.
go back to reference Nelson AR, Phillips SM, Stellingwerff T, et al. A protein-leucine supplement increases branched-chain amino acid and nitrogen turnover but not performance. Med Sci Sports Exerc. 2012;44:57–68.CrossRefPubMed Nelson AR, Phillips SM, Stellingwerff T, et al. A protein-leucine supplement increases branched-chain amino acid and nitrogen turnover but not performance. Med Sci Sports Exerc. 2012;44:57–68.CrossRefPubMed
18.
go back to reference Luden ND, Saunders MJ, Pratt CA, et al. Effects of a six-day carbohyydrate/protein intervention on muscle damage, soreness, and performance in runners. Med Sci Sports Exerc. 2006;38:S341.CrossRef Luden ND, Saunders MJ, Pratt CA, et al. Effects of a six-day carbohyydrate/protein intervention on muscle damage, soreness, and performance in runners. Med Sci Sports Exerc. 2006;38:S341.CrossRef
19.
go back to reference Skillen RA, Testa M, Applegate EA, et al. Effects of an amino acid carbohydrate drink on exercise performance after consecutive-day exercise bouts. Int J Sport Nutr Exerc Metab. 2008;18:473–92.PubMed Skillen RA, Testa M, Applegate EA, et al. Effects of an amino acid carbohydrate drink on exercise performance after consecutive-day exercise bouts. Int J Sport Nutr Exerc Metab. 2008;18:473–92.PubMed
20.
go back to reference Cathcart AJ, Murgatroyd SR, McNab A, et al. Combined carbohydrate-protein supplementation improves competitive endurance exercise performance in the heat. Eur J Appl Physiol. 2011;111:2051–61.CrossRefPubMed Cathcart AJ, Murgatroyd SR, McNab A, et al. Combined carbohydrate-protein supplementation improves competitive endurance exercise performance in the heat. Eur J Appl Physiol. 2011;111:2051–61.CrossRefPubMed
21.
go back to reference Hansen M, Bangsbo J, Jensen J, et al. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners. Int J Sport Nutr Exerc Metab. 2014. Hansen M, Bangsbo J, Jensen J, et al. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners. Int J Sport Nutr Exerc Metab. 2014.
22.
go back to reference Rowlands DS, Rossler K, Thorp RM, et al. Effect of dietary protein content during recovery from high-intensity cycling on subsequent performance and markers of stress, inflammation, and muscle damage in well-trained men. Appl Physiol Nutr Metab. 2008;33:39–51.CrossRefPubMed Rowlands DS, Rossler K, Thorp RM, et al. Effect of dietary protein content during recovery from high-intensity cycling on subsequent performance and markers of stress, inflammation, and muscle damage in well-trained men. Appl Physiol Nutr Metab. 2008;33:39–51.CrossRefPubMed
23.
go back to reference Thomson JS, Ali A, Rowlands DS. Leucine-protein supplemented recovery feeding enhances subsequent cycling performance in well-trained men. Appl Physiol Nutr Metab. 2011;36:242–53.CrossRefPubMed Thomson JS, Ali A, Rowlands DS. Leucine-protein supplemented recovery feeding enhances subsequent cycling performance in well-trained men. Appl Physiol Nutr Metab. 2011;36:242–53.CrossRefPubMed
24.
go back to reference Lollo PCB, Amaya-Farfan J, Faria IC, et al. Hydrolysed whey protein reduces muscle damage markers in brazilian elite soccer players compared with whey protein and maltodextrin. A twelve-week in-championship intervention. Int Dairy J. 2014;34:19–24.CrossRef Lollo PCB, Amaya-Farfan J, Faria IC, et al. Hydrolysed whey protein reduces muscle damage markers in brazilian elite soccer players compared with whey protein and maltodextrin. A twelve-week in-championship intervention. Int Dairy J. 2014;34:19–24.CrossRef
25.
go back to reference Ferguson-Stegall L, McCleave EL, Ding Z, et al. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. J Strength Cond Res. 2011;25:1210–24.CrossRefPubMed Ferguson-Stegall L, McCleave EL, Ding Z, et al. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. J Strength Cond Res. 2011;25:1210–24.CrossRefPubMed
26.
go back to reference Meeusen R, Duclos M, Foster C, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the european college of sport science and the american college of sports medicine. Med Sci Sports Exerc. 2013;45:186–205.CrossRefPubMed Meeusen R, Duclos M, Foster C, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the european college of sport science and the american college of sports medicine. Med Sci Sports Exerc. 2013;45:186–205.CrossRefPubMed
27.
go back to reference Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32:77–97.CrossRefPubMed Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32:77–97.CrossRefPubMed
28.
go back to reference MINISTERS NCO, Nordic nutrition recommendations nnr 2004, integrating nutrition and physical activity., Ministers. NCo, Editor. 2005: Copenhagen:. MINISTERS NCO, Nordic nutrition recommendations nnr 2004, integrating nutrition and physical activity., Ministers. NCo, Editor. 2005: Copenhagen:.
29.
go back to reference American Dietetic A, Dietitians of C, American College of Sports M, et al. American college of sports medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41:709–31.CrossRef American Dietetic A, Dietitians of C, American College of Sports M, et al. American college of sports medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41:709–31.CrossRef
30.
go back to reference Stachenfeld NS, Eskenazi M, Gleim GW, et al. Predictive accuracy of criteria used to assess maximal oxygen consumption. Am Heart J. 1992;123:922–5.CrossRefPubMed Stachenfeld NS, Eskenazi M, Gleim GW, et al. Predictive accuracy of criteria used to assess maximal oxygen consumption. Am Heart J. 1992;123:922–5.CrossRefPubMed
31.
go back to reference Newsholme EA, Blomstrand E. Branched-chain amino acids and central fatigue. J Nutr. 2006;136:274S–6S.PubMed Newsholme EA, Blomstrand E. Branched-chain amino acids and central fatigue. J Nutr. 2006;136:274S–6S.PubMed
32.
go back to reference Cheuvront SN, Carter 3rd R, Kolka MA, et al. Branched-chain amino acid supplementation and human performance when hypohydrated in the heat. J Appl Physiol. 2004;97:1275–82.CrossRefPubMed Cheuvront SN, Carter 3rd R, Kolka MA, et al. Branched-chain amino acid supplementation and human performance when hypohydrated in the heat. J Appl Physiol. 2004;97:1275–82.CrossRefPubMed
33.
go back to reference Greer BK, Woodard JL, White JP, et al. Branched-chain amino acid supplementation and indicators of muscle damage after endurance exercise. Int J Sport Nutr Exerc Metab. 2007;17:595–607.PubMed Greer BK, Woodard JL, White JP, et al. Branched-chain amino acid supplementation and indicators of muscle damage after endurance exercise. Int J Sport Nutr Exerc Metab. 2007;17:595–607.PubMed
34.
go back to reference van Essen M, Gibala MJ. Failure of protein to improve time trial performance when added to a sports drink. Med Sci Sports Exerc. 2006;38:1476–83.CrossRefPubMed van Essen M, Gibala MJ. Failure of protein to improve time trial performance when added to a sports drink. Med Sci Sports Exerc. 2006;38:1476–83.CrossRefPubMed
35.
go back to reference Martinez-Lagunas V, Ding Z, Bernard JR, et al. Added protein maintains efficacy of a low-carbohydrate sports drink. J Strength Cond Res. 2010;24:48–59.CrossRefPubMed Martinez-Lagunas V, Ding Z, Bernard JR, et al. Added protein maintains efficacy of a low-carbohydrate sports drink. J Strength Cond Res. 2010;24:48–59.CrossRefPubMed
36.
go back to reference Valentine RJ, Saunders MJ, Todd MK, et al. Influence of carbohydrate-protein beverage on cycling endurance and indices of muscle disruption. Int J Sport Nutr Exerc Metab. 2008;18:363–78.PubMed Valentine RJ, Saunders MJ, Todd MK, et al. Influence of carbohydrate-protein beverage on cycling endurance and indices of muscle disruption. Int J Sport Nutr Exerc Metab. 2008;18:363–78.PubMed
37.
go back to reference van Hall G, Raaymakers JS, Saris WH, et al. Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: Failure to affect performance. J Physiol. 1995;486(Pt 3):789–94.CrossRefPubMedPubMedCentral van Hall G, Raaymakers JS, Saris WH, et al. Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: Failure to affect performance. J Physiol. 1995;486(Pt 3):789–94.CrossRefPubMedPubMedCentral
38.
go back to reference Cermak NM, Solheim AS, Gardner MS, et al. Muscle metabolism during exercise with carbohydrate or protein-carbohydrate ingestion. Med Sci Sports Exerc. 2009;41:2158–64.CrossRefPubMed Cermak NM, Solheim AS, Gardner MS, et al. Muscle metabolism during exercise with carbohydrate or protein-carbohydrate ingestion. Med Sci Sports Exerc. 2009;41:2158–64.CrossRefPubMed
39.
go back to reference Phillips SM, Van Loon LJ. Dietary protein for athletes: From requirements to optimum adaptation. J Sports Sci. 2011;29 Suppl 1:S29–38.CrossRefPubMed Phillips SM, Van Loon LJ. Dietary protein for athletes: From requirements to optimum adaptation. J Sports Sci. 2011;29 Suppl 1:S29–38.CrossRefPubMed
40.
go back to reference Burke L, et al. Clinical sports nutrition: McGraw-Hill Companies; 2006 [Burke LM and Deakin V (Series Editor), vol Third edition.] Burke L, et al. Clinical sports nutrition: McGraw-Hill Companies; 2006 [Burke LM and Deakin V (Series Editor), vol Third edition.]
41.
go back to reference Currell K, Jeukendrup AE. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008;38:297–316.CrossRefPubMed Currell K, Jeukendrup AE. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008;38:297–316.CrossRefPubMed
42.
43.
go back to reference Rowlands DS, Wadsworth DP. Effect of high-protein feeding on performance and nitrogen balance in female cyclists. Med Sci Sports Exerc. 2011;43:44–53.CrossRefPubMed Rowlands DS, Wadsworth DP. Effect of high-protein feeding on performance and nitrogen balance in female cyclists. Med Sci Sports Exerc. 2011;43:44–53.CrossRefPubMed
44.
go back to reference Luden ND, Saunders MJ, Todd MK. Postexercise carbohydrate-protein- antioxidant ingestion decreases plasma creatine kinase and muscle soreness. Int J Sport Nutr Exerc Metab. 2007;17:109–23.PubMed Luden ND, Saunders MJ, Todd MK. Postexercise carbohydrate-protein- antioxidant ingestion decreases plasma creatine kinase and muscle soreness. Int J Sport Nutr Exerc Metab. 2007;17:109–23.PubMed
45.
go back to reference Gunzer W, Konrad M, Pail E. Exercise-induced immunodepression in endurance athletes and nutritional intervention with carbohydrate, protein and fat-what is possible, what is not? Nutrients. 2012;4:1187–212.CrossRefPubMedPubMedCentral Gunzer W, Konrad M, Pail E. Exercise-induced immunodepression in endurance athletes and nutritional intervention with carbohydrate, protein and fat-what is possible, what is not? Nutrients. 2012;4:1187–212.CrossRefPubMedPubMedCentral
46.
go back to reference Moore DR, Robinson MJ, Fry JL, et al. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89:161–8.CrossRefPubMed Moore DR, Robinson MJ, Fry JL, et al. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89:161–8.CrossRefPubMed
47.
go back to reference Yang Y, Breen L, Burd NA, et al. Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br J Nutr. 2012;108:1780–8.CrossRefPubMed Yang Y, Breen L, Burd NA, et al. Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br J Nutr. 2012;108:1780–8.CrossRefPubMed
48.
go back to reference Pennings B, Groen B, de Lange A, et al. Amino acid absorption and subsequent muscle protein accretion following graded intakes of whey protein in elderly men. Am J Physiol Endocrinol Metab. 2012;302:E992–9.CrossRefPubMed Pennings B, Groen B, de Lange A, et al. Amino acid absorption and subsequent muscle protein accretion following graded intakes of whey protein in elderly men. Am J Physiol Endocrinol Metab. 2012;302:E992–9.CrossRefPubMed
Metadata
Title
Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists
Authors
Mette Hansen
Jens Bangsbo
Jørgen Jensen
Matilde Krause-Jensen
Bo Martin Bibby
Ove Sollie
Ulrika Andersson Hall
Klavs Madsen
Publication date
01-12-2016
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-016-0120-4

Other articles of this Issue 1/2016

Journal of the International Society of Sports Nutrition 1/2016 Go to the issue