Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2016

Open Access 01-12-2016 | Research article

Muscle contraction velocity, strength and power output changes following different degrees of hypohydration in competitive olympic combat sports

Authors: J. G. Pallarés, A. Martínez-Abellán, J. M. López-Gullón, R. Morán-Navarro, E. De la Cruz-Sánchez, R. Mora-Rodríguez

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2016

Login to get access

Abstract

Background

It is habitual for combat sports athletes to lose weight rapidly to get into a lower weight class. Fluid restriction, dehydration by sweating (sauna or exercise) and the use of diuretics are among the most recurrent means of weight cutting. Although it is difficult to dissuade athletes from this practice due to the possible negative effect of severe dehydration on their health, athletes may be receptive to avoid weight cutting if there is evidence that it could affect their muscle performance. Therefore, the purpose of the present study was to investigate if hypohydration, to reach a weight category, affects neuromuscular performance and combat sports competition results.

Methods

We tested 163 (124 men and 39 woman) combat sports athletes during the 2013 senior Spanish National Championships. Body mass and urine osmolality (UOSM) were measured at the official weigh-in (PRE) and 13–18 h later, right before competing (POST). Athletes were divided according to their USOM at PRE in euhydrated (EUH; UOSM 250–700 mOsm · kgH2O−1), hypohydrated (HYP; UOSM 701–1080 mOsm · kgH2O−1) and severely hypohydrated (S-HYP; UOSM 1081–1500 mOsm · kgH2O−1). Athletes’ muscle strength, power output and contraction velocity were measured in upper (bench press and grip) and lower body (countermovement jump - CMJ) muscle actions at PRE and POST time-points.

Results

At weigh-in 84 % of the participants were hypohydrated. Before competition (POST) UOSM in S-HYP and HYP decreased but did not reach euhydration levels. However, this partial rehydration increased bench press contraction velocity (2.8-7.3 %; p < 0.05) and CMJ power (2.8 %; p < 0.05) in S-HYP. Sixty-three percent of the participants competed with a body mass above their previous day’s weight category and 70 of them (69 % of that sample) obtained a medal.

Conclusions

Hypohydration is highly prevalent among combat sports athletes at weigh-in and not fully reversed in the 13–18 h from weigh-in to competition. Nonetheless, partial rehydration recovers upper and lower body neuromuscular performance in the severely hypohydrated participants. Our data suggest that the advantage of competing in a lower weight category could compensate the declines in neuromuscular performance at the onset of competition, since 69 % of medal winners underwent marked hypohydration.
Literature
1.
go back to reference Garcia-Pallares J, Maria Lopez-Gullon J, Muriel X, et al. Physical fitness factors to predict male olympic wrestling performance. Eur J Appl Physiol. 2011;111:1747–58.CrossRefPubMed Garcia-Pallares J, Maria Lopez-Gullon J, Muriel X, et al. Physical fitness factors to predict male olympic wrestling performance. Eur J Appl Physiol. 2011;111:1747–58.CrossRefPubMed
3.
go back to reference Fernández-Elías VE, Martínez-Abellán A, López-Gullón JM, et al. Validity of hydration non-invasive indices during the weightcutting and official weigh-in for olympic combat sports. PLoS One. 2014;9, e95336.CrossRefPubMedPubMedCentral Fernández-Elías VE, Martínez-Abellán A, López-Gullón JM, et al. Validity of hydration non-invasive indices during the weightcutting and official weigh-in for olympic combat sports. PLoS One. 2014;9, e95336.CrossRefPubMedPubMedCentral
4.
go back to reference ACSM. American college of sports medicine position stand on weight loss in wrestlers. Med Sci Sports. 1976;8:xi-xiii ACSM. American college of sports medicine position stand on weight loss in wrestlers. Med Sci Sports. 1976;8:xi-xiii
5.
go back to reference Utter AC, Lambeth PG. Evaluation of multifrequency bioelectrical impedance analysis in assessing body composition of wrestlers. Med Sci Sports Exerc. 2010;42:361–7.CrossRefPubMed Utter AC, Lambeth PG. Evaluation of multifrequency bioelectrical impedance analysis in assessing body composition of wrestlers. Med Sci Sports Exerc. 2010;42:361–7.CrossRefPubMed
6.
go back to reference Oppliger RA, Harms RD, Herrmann DE, et al. The wisconsin wrestling minimum weight project: A model for weight control among high school wrestlers. Med Sci Sports Exerc. 1995;27:1220–4.CrossRefPubMed Oppliger RA, Harms RD, Herrmann DE, et al. The wisconsin wrestling minimum weight project: A model for weight control among high school wrestlers. Med Sci Sports Exerc. 1995;27:1220–4.CrossRefPubMed
7.
go back to reference Tipton CM, Tcheng TK. Iowa wrestling study. Weight loss in high school students. JAMA. 1970;214:1269–74.CrossRefPubMed Tipton CM, Tcheng TK. Iowa wrestling study. Weight loss in high school students. JAMA. 1970;214:1269–74.CrossRefPubMed
8.
go back to reference Wroble RR, Moxley DP. Weight loss patterns and success rates in high school wrestlers. Med Sci Sports Exerc. 1998;30:625–8.CrossRefPubMed Wroble RR, Moxley DP. Weight loss patterns and success rates in high school wrestlers. Med Sci Sports Exerc. 1998;30:625–8.CrossRefPubMed
9.
go back to reference Montain SJ, Latzka WA, Sawka MN. Control of thermoregulatory sweating is altered by hydration level and exercise intensity. J Appl Physiol (1985). 1995;79:1434–9. Montain SJ, Latzka WA, Sawka MN. Control of thermoregulatory sweating is altered by hydration level and exercise intensity. J Appl Physiol (1985). 1995;79:1434–9.
10.
go back to reference González-Alonso J, Teller C, Andersen SL, et al. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol (1985). 1999;86:1032–9. González-Alonso J, Teller C, Andersen SL, et al. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol (1985). 1999;86:1032–9.
11.
go back to reference Saltin B. Aerobic and anaerobic work capacity after dehydration. J Appl Physiol. 1964;19:1114–8.PubMed Saltin B. Aerobic and anaerobic work capacity after dehydration. J Appl Physiol. 1964;19:1114–8.PubMed
12.
go back to reference Fritzsche RG, Switzer TW, Hodgkinson BJ, et al. Water and carbohydrate ingestion during prolonged exercise increase maximal neuromuscular power. J Appl Physiol (1985). 2000;88:730–7. Fritzsche RG, Switzer TW, Hodgkinson BJ, et al. Water and carbohydrate ingestion during prolonged exercise increase maximal neuromuscular power. J Appl Physiol (1985). 2000;88:730–7.
13.
go back to reference Webster S, Rutt R, Weltman A. Physiological effects of a weight loss regimen practiced by college wrestlers. Med Sci Sports Exerc. 1990;22:229–34.PubMed Webster S, Rutt R, Weltman A. Physiological effects of a weight loss regimen practiced by college wrestlers. Med Sci Sports Exerc. 1990;22:229–34.PubMed
14.
go back to reference Garcia Pallares J, Lopez-Gullon JM, Torres-Bonete MD, et al. Physical fitness factors to predict female olympic wrestling performance and sex differences. J Strength Cond Res. 2012;26:794–803.CrossRefPubMed Garcia Pallares J, Lopez-Gullon JM, Torres-Bonete MD, et al. Physical fitness factors to predict female olympic wrestling performance and sex differences. J Strength Cond Res. 2012;26:794–803.CrossRefPubMed
15.
go back to reference Smith MS, Dyson R, Hale T, et al. The effects in humans of rapid loss of body mass on a boxing-related task. Eur J Appl Physiol. 2000;83:34–9.CrossRefPubMed Smith MS, Dyson R, Hale T, et al. The effects in humans of rapid loss of body mass on a boxing-related task. Eur J Appl Physiol. 2000;83:34–9.CrossRefPubMed
16.
go back to reference Schoffstall JE, Branch JD, Leutholtz BC, et al. Effects of dehydration and rehydration on the one-repetition maximum bench press of weight-trained males. J Strength Cond Res. 2001;15:102–8.PubMed Schoffstall JE, Branch JD, Leutholtz BC, et al. Effects of dehydration and rehydration on the one-repetition maximum bench press of weight-trained males. J Strength Cond Res. 2001;15:102–8.PubMed
17.
go back to reference Kraemer WJ, Fry AC, Rubin MR, et al. Physiological and performance responses to tournament wrestling. Med Sci Sports Exerc. 2001;33:1367–78.CrossRefPubMed Kraemer WJ, Fry AC, Rubin MR, et al. Physiological and performance responses to tournament wrestling. Med Sci Sports Exerc. 2001;33:1367–78.CrossRefPubMed
18.
go back to reference Marttinen RH, Judelson DA, Wiersma LD, et al. Effects of self-selected mass loss on performance and mood in collegiate wrestlers. J Strength Cond Res. 2011;25:1010–5.CrossRefPubMed Marttinen RH, Judelson DA, Wiersma LD, et al. Effects of self-selected mass loss on performance and mood in collegiate wrestlers. J Strength Cond Res. 2011;25:1010–5.CrossRefPubMed
19.
go back to reference Montain SJ, Smith SA, Mattot RP, et al. Hypohydration effects on skeletal muscle performance and metabolism: A 31p-mrs study. J Appl Physiol (1985). 1998;84:1889–94. Montain SJ, Smith SA, Mattot RP, et al. Hypohydration effects on skeletal muscle performance and metabolism: A 31p-mrs study. J Appl Physiol (1985). 1998;84:1889–94.
20.
go back to reference Bowtell JL, Avenell G, Hunter SP, et al. Effect of hypohydration on peripheral and corticospinal excitability and voluntary activation. PLoS One. 2013;8, e77004.CrossRefPubMedPubMedCentral Bowtell JL, Avenell G, Hunter SP, et al. Effect of hypohydration on peripheral and corticospinal excitability and voluntary activation. PLoS One. 2013;8, e77004.CrossRefPubMedPubMedCentral
21.
go back to reference Minshull C, James L. The effects of hypohydration and fatigue on neuromuscular activation performance. Appl Physiol Nutr Metab. 2013;38:21–6.CrossRefPubMed Minshull C, James L. The effects of hypohydration and fatigue on neuromuscular activation performance. Appl Physiol Nutr Metab. 2013;38:21–6.CrossRefPubMed
22.
go back to reference Armstrong LE, Maresh CM, Castellani JW, et al. Urinary indices of hydration status. Int J Sport Nutr. 1994;4:265–79.PubMed Armstrong LE, Maresh CM, Castellani JW, et al. Urinary indices of hydration status. Int J Sport Nutr. 1994;4:265–79.PubMed
23.
go back to reference Pallares JG, Sanchez-Medina L, Esteban Perez C, et al. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J Sports Sci. 2014;32:1165–75.CrossRefPubMed Pallares JG, Sanchez-Medina L, Esteban Perez C, et al. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J Sports Sci. 2014;32:1165–75.CrossRefPubMed
24.
go back to reference Sanchez-Medina L, Gonzalez-Badillo JJ, Perez CE, et al. Velocity- and power-load relationships of the bench pull vs. Bench press exercises. Int J Sports Med. 2014;35:209–16.PubMed Sanchez-Medina L, Gonzalez-Badillo JJ, Perez CE, et al. Velocity- and power-load relationships of the bench pull vs. Bench press exercises. Int J Sports Med. 2014;35:209–16.PubMed
26.
go back to reference Sawka MN, Burke LM, Eichner ER, et al. American college of sports medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39:377–90.CrossRefPubMed Sawka MN, Burke LM, Eichner ER, et al. American college of sports medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39:377–90.CrossRefPubMed
27.
go back to reference Artioli GG, Gualano B, Franchini E, et al. Prevalence, magnitude, and methods of rapid weight loss among judo competitors. Med Sci Sports Exerc. 2010;42:436–42.CrossRefPubMed Artioli GG, Gualano B, Franchini E, et al. Prevalence, magnitude, and methods of rapid weight loss among judo competitors. Med Sci Sports Exerc. 2010;42:436–42.CrossRefPubMed
28.
go back to reference Viitasalo JT, Kyröläinen H, Bosco C, et al. Effects of rapid weight reduction on force production and vertical jumping height. Int J Sports Med. 1987;8:281–5.CrossRefPubMed Viitasalo JT, Kyröläinen H, Bosco C, et al. Effects of rapid weight reduction on force production and vertical jumping height. Int J Sports Med. 1987;8:281–5.CrossRefPubMed
29.
go back to reference Bigard AX, Sanchez H, Claveyrolas G, et al. Effects of dehydration and rehydration on emg changes during fatiguing contractions. Med Sci Sports Exerc. 2001;33:1694–700.CrossRefPubMed Bigard AX, Sanchez H, Claveyrolas G, et al. Effects of dehydration and rehydration on emg changes during fatiguing contractions. Med Sci Sports Exerc. 2001;33:1694–700.CrossRefPubMed
30.
go back to reference Gutiérrez A, Mesa JL, Ruiz JR, et al. Sauna-induced rapid weight loss decreases explosive power in women but not in men. Int J Sports Med. 2003;24:518–22.CrossRefPubMed Gutiérrez A, Mesa JL, Ruiz JR, et al. Sauna-induced rapid weight loss decreases explosive power in women but not in men. Int J Sports Med. 2003;24:518–22.CrossRefPubMed
31.
go back to reference Judelson DA, Maresh CM, Farrell MJ, et al. Effect of hydration state on strength, power, and resistance exercise performance. Med Sci Sports Exerc. 2007;39:1817–24.CrossRefPubMed Judelson DA, Maresh CM, Farrell MJ, et al. Effect of hydration state on strength, power, and resistance exercise performance. Med Sci Sports Exerc. 2007;39:1817–24.CrossRefPubMed
32.
go back to reference Judelson DA, Maresh CM, Anderson JM, et al. Hydration and muscular performance: Does fluid balance affect strength, power and high-intensity endurance? Sports Med. 2007;37:907–21.CrossRefPubMed Judelson DA, Maresh CM, Anderson JM, et al. Hydration and muscular performance: Does fluid balance affect strength, power and high-intensity endurance? Sports Med. 2007;37:907–21.CrossRefPubMed
33.
go back to reference Costill DL, Coté R, Fink W. Muscle water and electrolytes following varied levels of dehydration in man. J Appl Physiol. 1976;40:6–11.PubMed Costill DL, Coté R, Fink W. Muscle water and electrolytes following varied levels of dehydration in man. J Appl Physiol. 1976;40:6–11.PubMed
34.
go back to reference Mora-Rodríguez R, Pallarés JG, López-Gullón JM, et al. Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J Sci Med Sport. 2015;18:338–42.CrossRefPubMed Mora-Rodríguez R, Pallarés JG, López-Gullón JM, et al. Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J Sci Med Sport. 2015;18:338–42.CrossRefPubMed
35.
go back to reference Pallarés JG, Fernández-Elías VE, Ortega JF, et al. Neuromuscular responses to incremental caffeine doses: Performance and side effects. Med Sci Sports Exerc. 2013;45:2184–92.CrossRefPubMed Pallarés JG, Fernández-Elías VE, Ortega JF, et al. Neuromuscular responses to incremental caffeine doses: Performance and side effects. Med Sci Sports Exerc. 2013;45:2184–92.CrossRefPubMed
36.
go back to reference Pallarés JG, López-Samanes A, Fernández-Elías VE, et al. Pseudoephedrine and circadian rhythm interaction on neuromuscular performance. Scand J Med Sci Sports. 2015;25:e603–12.CrossRefPubMed Pallarés JG, López-Samanes A, Fernández-Elías VE, et al. Pseudoephedrine and circadian rhythm interaction on neuromuscular performance. Scand J Med Sci Sports. 2015;25:e603–12.CrossRefPubMed
37.
go back to reference Mora-Rodriguez R, Garcia Pallares J, Lopez-Samanes A, et al. Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men. Plos One. 2012;7:e33807.CrossRefPubMedPubMedCentral Mora-Rodriguez R, Garcia Pallares J, Lopez-Samanes A, et al. Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men. Plos One. 2012;7:e33807.CrossRefPubMedPubMedCentral
38.
go back to reference Tarnopolsky MA, Cipriano N, Woodcroft C, et al. Effects of rapid weight loss and wrestling on muscle glycogen concentration. Clin J Sport Med. 1996;6:78–84.CrossRefPubMed Tarnopolsky MA, Cipriano N, Woodcroft C, et al. Effects of rapid weight loss and wrestling on muscle glycogen concentration. Clin J Sport Med. 1996;6:78–84.CrossRefPubMed
39.
go back to reference Artioli GG, Iglesias RT, Franchini E, et al. Rapid weight loss followed by recovery time does not affect judo-related performance. J Sports Sci. 2010;28:21–32.CrossRefPubMed Artioli GG, Iglesias RT, Franchini E, et al. Rapid weight loss followed by recovery time does not affect judo-related performance. J Sports Sci. 2010;28:21–32.CrossRefPubMed
40.
go back to reference Mendes SH, Tritto AC, Guilherme JP, et al. Effect of rapid weight loss on performance in combat sport male athletes: Does adaptation to chronic weight cycling play a role? Br J Sports Med. 2013;47:1155–60.CrossRefPubMed Mendes SH, Tritto AC, Guilherme JP, et al. Effect of rapid weight loss on performance in combat sport male athletes: Does adaptation to chronic weight cycling play a role? Br J Sports Med. 2013;47:1155–60.CrossRefPubMed
Metadata
Title
Muscle contraction velocity, strength and power output changes following different degrees of hypohydration in competitive olympic combat sports
Authors
J. G. Pallarés
A. Martínez-Abellán
J. M. López-Gullón
R. Morán-Navarro
E. De la Cruz-Sánchez
R. Mora-Rodríguez
Publication date
01-12-2016
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-016-0121-3

Other articles of this Issue 1/2016

Journal of the International Society of Sports Nutrition 1/2016 Go to the issue