Skip to main content
Top
Published in: Respiratory Research 1/2017

Open Access 01-12-2017 | Research

Protein antigen of bird-related hypersensitivity pneumonitis in pigeon serum and dropping

Authors: Tsuyoshi Shirai, Haruhiko Furusawa, Asuka Furukawa, Yuki Ishige, Keisuke Uchida, Yasunari Miyazaki, Yoshinobu Eishi, Naohiko Inase

Published in: Respiratory Research | Issue 1/2017

Login to get access

Abstract

Background

Avian antigen is a common cause of hypersensitivity pneumonitis (HP). Inhalation challenge with pigeon serum and pigeon dropping extract (PDE) elicits a hypersensitivity reaction in patients with bird-related hypersensitivity pneumonitis (BRHP), but the antigenic components in these materials have yet to be fully elucidated.

Method

Pigeon serum, pigeon intestine homogenates, and PDE were immunoblotted with serum samples from 8 patients with BRHP, 2 patients with summer-type HP, 2 patients with humidifier lung, and 3 healthy volunteers. Among the protein spots found in both pigeon serum and PDE, those that reacted with sera from BRHP patients were identified by mass spectrometry. Immunoassays using recombinant protein were performed to confirm the antigenicity of the identified protein. Cytokine production by peripheral blood mononuclear cells (PBMCs) stimulated with recombinant protein was also assessed.

Results

Immunoglobulin lambda-like polypeptide-1 (IGLL-1) was identified from all spots on 2-DE immunoblots of both pigeon serum and PDE. The BRHP patients exhibited higher levels of serum IgG antibody against the recombinant IGLL-1 (rIGLL-1) compared to the control subjects, as well as a stronger PBMCs proliferative response to rIGLL-1. Cytokine production by PBMCs from BRHP patients after rIGLL-1 exposure indicated that the protein could induce Th1 prone immune responses: an increase in TNF-α and an absence of elevated IL-10 production.

Conclusions

Pigeon IGLL-1 was identified as the BRHP antigen present in both pigeon serum and PDE.
Appendix
Available only for authorised users
Literature
1.
go back to reference Selman M. Hypersensitivity pneumonitis. In: Schwarz MI, King Jr TE, editors. Interstitial lung disease. 5th ed. Shrlton: People’s Medical Publishing House-USA; 2011. p. 597–625. Selman M. Hypersensitivity pneumonitis. In: Schwarz MI, King Jr TE, editors. Interstitial lung disease. 5th ed. Shrlton: People’s Medical Publishing House-USA; 2011. p. 597–625.
2.
go back to reference Lacasse Y, Selman M, Costabel U, et al. Classification of hypersensitivity pneumonitis: a hypothesis. Int Arch Allergy Immunol. 2009;149:161–6.CrossRefPubMed Lacasse Y, Selman M, Costabel U, et al. Classification of hypersensitivity pneumonitis: a hypothesis. Int Arch Allergy Immunol. 2009;149:161–6.CrossRefPubMed
3.
go back to reference Reed CE, Barbee RA. Pigeon-breeders’ lung: a newly observed interstitial pulmonary disease. JAMA. 1965;193:261–5.CrossRefPubMed Reed CE, Barbee RA. Pigeon-breeders’ lung: a newly observed interstitial pulmonary disease. JAMA. 1965;193:261–5.CrossRefPubMed
4.
go back to reference Okamoto T, Miyazaki Y, Ogura T, et al. Nationwide epidemiological survey of chronic hypersensitivity pneumonitis in Japan. Respir Investig. 2013;51:191–9.CrossRefPubMed Okamoto T, Miyazaki Y, Ogura T, et al. Nationwide epidemiological survey of chronic hypersensitivity pneumonitis in Japan. Respir Investig. 2013;51:191–9.CrossRefPubMed
5.
go back to reference Morell F, Villar A, Montero MÁ, et al. Chronic hypersensitivity pneumonitis in patients diagnosed with idiopathic pulmonary fibrosis: a prospective case-cohort study. Lancet Respir Med. 2013;1:685–94.CrossRefPubMed Morell F, Villar A, Montero MÁ, et al. Chronic hypersensitivity pneumonitis in patients diagnosed with idiopathic pulmonary fibrosis: a prospective case-cohort study. Lancet Respir Med. 2013;1:685–94.CrossRefPubMed
6.
go back to reference Barboriak JJ, Sosman AJ, Reed CE. Serological studies in pigeon breeder’s disease. J Lab Clin Med. 1965;65:600–4.PubMed Barboriak JJ, Sosman AJ, Reed CE. Serological studies in pigeon breeder’s disease. J Lab Clin Med. 1965;65:600–4.PubMed
8.
go back to reference Ohtani Y, Saiki S, Sumi Y, et al. Clinical features of recurrent and insidious chronic bird fancier’s lung. Ann Allergy Asthma Immunol. 2003;90:604–10.CrossRefPubMed Ohtani Y, Saiki S, Sumi Y, et al. Clinical features of recurrent and insidious chronic bird fancier’s lung. Ann Allergy Asthma Immunol. 2003;90:604–10.CrossRefPubMed
9.
go back to reference Ishizuka M, Miyazaki Y, Tateishi T, et al. Validation of inhalation provocation test in chronic bird-related hypersensitivity pneumonitis and new prediction score. Ann Am Thorac Soc. 2015;12:167–73.CrossRefPubMed Ishizuka M, Miyazaki Y, Tateishi T, et al. Validation of inhalation provocation test in chronic bird-related hypersensitivity pneumonitis and new prediction score. Ann Am Thorac Soc. 2015;12:167–73.CrossRefPubMed
10.
go back to reference Ramírez-Venegas A, Sansores RH, Pérez-Padilla R, et al. Utility of a provocation test for diagnosis of chronic pigeon breeder’s disease. Am J Respir Crit Care Med. 1998;158:862–9.CrossRefPubMed Ramírez-Venegas A, Sansores RH, Pérez-Padilla R, et al. Utility of a provocation test for diagnosis of chronic pigeon breeder’s disease. Am J Respir Crit Care Med. 1998;158:862–9.CrossRefPubMed
11.
12.
go back to reference Yoshizawa Y, Ohtani Y, Hayakawa H, et al. Chronic hypersensitivity pneumonitis in Japan: a nationwide epidemiologic survey. J Allergy Clin Immunol. 1999;103:315–20.CrossRefPubMed Yoshizawa Y, Ohtani Y, Hayakawa H, et al. Chronic hypersensitivity pneumonitis in Japan: a nationwide epidemiologic survey. J Allergy Clin Immunol. 1999;103:315–20.CrossRefPubMed
13.
go back to reference Tebo TH, Moore VL, Noh JJ. Antigens in pigeon breeder’s disease: isolation of a homogeneous antigen from pigeon dropping extract and its relationship to pigeon serum antigens. J Reticuloendothel Soc. 1975;18:196–203.PubMed Tebo TH, Moore VL, Noh JJ. Antigens in pigeon breeder’s disease: isolation of a homogeneous antigen from pigeon dropping extract and its relationship to pigeon serum antigens. J Reticuloendothel Soc. 1975;18:196–203.PubMed
14.
go back to reference Fink JN, Tebo T, Barboriak JJ. Differences in the immune responses of pigeon breeders to pigeon serum proteins. J Lab Clin Med. 1969;74:325–30.PubMed Fink JN, Tebo T, Barboriak JJ. Differences in the immune responses of pigeon breeders to pigeon serum proteins. J Lab Clin Med. 1969;74:325–30.PubMed
15.
go back to reference Tebo TH, Fredricks WW, Roberts RC. The antigens of pigeon breeder’s disease. II. Isolation and characterization of antigen PDE1. Int Arch Allergy Appl Immunol. 1977;54:553–9.CrossRefPubMed Tebo TH, Fredricks WW, Roberts RC. The antigens of pigeon breeder’s disease. II. Isolation and characterization of antigen PDE1. Int Arch Allergy Appl Immunol. 1977;54:553–9.CrossRefPubMed
16.
go back to reference Goudswaard J, Noordzij A, Stam JW. Pigeon IgA: a major antigen in pigeon breeder’s disease. Immunol Commun. 1978;7:661–8.CrossRefPubMed Goudswaard J, Noordzij A, Stam JW. Pigeon IgA: a major antigen in pigeon breeder’s disease. Immunol Commun. 1978;7:661–8.CrossRefPubMed
17.
go back to reference De Ridder G, Goudswaard J, Berrens L. Antibodies against purified pigeon IgA in pigeon breeders’ disease. Z Immunitatsforsch Immunobiol. 1979;155:223–31.PubMed De Ridder G, Goudswaard J, Berrens L. Antibodies against purified pigeon IgA in pigeon breeders’ disease. Z Immunitatsforsch Immunobiol. 1979;155:223–31.PubMed
18.
go back to reference Longbottom JL. Pigeon breeders’ disease: quantitative immunoelectrophoretic studies of pigeon bloom antigen. Clin Exp Allergy. 1989;19:619–24.CrossRefPubMed Longbottom JL. Pigeon breeders’ disease: quantitative immunoelectrophoretic studies of pigeon bloom antigen. Clin Exp Allergy. 1989;19:619–24.CrossRefPubMed
19.
go back to reference Mendoza F, Melendro EI, Baltazares M, et al. Cellular immune response to fractionated avian antigens by peripheral blood mononuclear cells from patients with pigeon breeder’s disease. J Lab Clin Med. 1996;127:23–8.CrossRefPubMed Mendoza F, Melendro EI, Baltazares M, et al. Cellular immune response to fractionated avian antigens by peripheral blood mononuclear cells from patients with pigeon breeder’s disease. J Lab Clin Med. 1996;127:23–8.CrossRefPubMed
20.
go back to reference McSharry C, Anderson K, Boyd G. A review of antigen diversity causing lung disease among pigeon breeders. Clin Exp Allergy. 2000;30:1221–9.CrossRefPubMed McSharry C, Anderson K, Boyd G. A review of antigen diversity causing lung disease among pigeon breeders. Clin Exp Allergy. 2000;30:1221–9.CrossRefPubMed
21.
go back to reference Selman M, Pardo A, King Jr TE. Hypersensitivity pneumonitis: insights in diagnosis and pathobiology. Am J Respir Crit Care Med. 2012;186:314–24.CrossRefPubMed Selman M, Pardo A, King Jr TE. Hypersensitivity pneumonitis: insights in diagnosis and pathobiology. Am J Respir Crit Care Med. 2012;186:314–24.CrossRefPubMed
22.
go back to reference Karasuyama H, Kudo A, Melchers F. The proteins encoded by the VpreB and lambda 5 pre-B cell-specific genes can associate with each other and with mu heavy chain. J Exp Med. 1990;172:969–72.CrossRefPubMed Karasuyama H, Kudo A, Melchers F. The proteins encoded by the VpreB and lambda 5 pre-B cell-specific genes can associate with each other and with mu heavy chain. J Exp Med. 1990;172:969–72.CrossRefPubMed
23.
go back to reference Lanig H, Bradl H, Jäck HM. Three-dimensional modeling of a pre-B-cell receptor. Mol Immunol. 2004;40:1263–72.CrossRefPubMed Lanig H, Bradl H, Jäck HM. Three-dimensional modeling of a pre-B-cell receptor. Mol Immunol. 2004;40:1263–72.CrossRefPubMed
24.
go back to reference Sennekamp J, Lange G, Nerger K, et al. Human antibodies against antigens of the sparrow, blackbird, weaver finch, canary, budgerigar, pigeon and hen using the indirect immunofluorescent technique. Clin Allergy. 1981;11:375–84.CrossRefPubMed Sennekamp J, Lange G, Nerger K, et al. Human antibodies against antigens of the sparrow, blackbird, weaver finch, canary, budgerigar, pigeon and hen using the indirect immunofluorescent technique. Clin Allergy. 1981;11:375–84.CrossRefPubMed
25.
go back to reference Sumi Y, Kyi M, Miyazaki Y, et al. Cytokine mRNA expression in isocyanate-induced hypersensitivity pneumonitis. Respiration. 2003;70:284–91.CrossRefPubMed Sumi Y, Kyi M, Miyazaki Y, et al. Cytokine mRNA expression in isocyanate-induced hypersensitivity pneumonitis. Respiration. 2003;70:284–91.CrossRefPubMed
26.
go back to reference Gudmundsson G, Bosch A, Davidson BL, et al. Interleukin-10 modulates the severity of hypersensitivity pneumonitis in mice. Am J Respir Cell Mol Biol. 1998;19:812–8.CrossRefPubMed Gudmundsson G, Bosch A, Davidson BL, et al. Interleukin-10 modulates the severity of hypersensitivity pneumonitis in mice. Am J Respir Cell Mol Biol. 1998;19:812–8.CrossRefPubMed
27.
go back to reference Selman M, Pardo A, Barrera L, et al. Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis. Am J Respir Crit Care Med. 2006;173:188–98.CrossRefPubMed Selman M, Pardo A, Barrera L, et al. Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis. Am J Respir Crit Care Med. 2006;173:188–98.CrossRefPubMed
28.
go back to reference Kishi M, Miyazaki Y, Jinta T, et al. Pathogenesis of cBFL in common with IPF? Correlation of IP-10/TARC ratio with histological patterns. Thorax. 2008;63:810–6.CrossRefPubMed Kishi M, Miyazaki Y, Jinta T, et al. Pathogenesis of cBFL in common with IPF? Correlation of IP-10/TARC ratio with histological patterns. Thorax. 2008;63:810–6.CrossRefPubMed
29.
go back to reference Fink JN, Moore VL, Barboriak JJ. Cell-mediated hypersensitivity in pigeon breeders. Int Arch Allergy Appl Immunol. 1975;49:831–6.CrossRefPubMed Fink JN, Moore VL, Barboriak JJ. Cell-mediated hypersensitivity in pigeon breeders. Int Arch Allergy Appl Immunol. 1975;49:831–6.CrossRefPubMed
31.
go back to reference Girard M, Israël-Assayag E, Cormier Y. Impaired function of regulatory T-cells in hypersensitivity pneumonitis. Eur Respir J. 2011;37:632–9.CrossRefPubMed Girard M, Israël-Assayag E, Cormier Y. Impaired function of regulatory T-cells in hypersensitivity pneumonitis. Eur Respir J. 2011;37:632–9.CrossRefPubMed
32.
go back to reference Suhara K, Miyazaki Y, Okamoto T, et al. Utility of immunological tests for bird-related hypersensitivity pneumonitis. Respir Investig. 2015;53:13–21.CrossRefPubMed Suhara K, Miyazaki Y, Okamoto T, et al. Utility of immunological tests for bird-related hypersensitivity pneumonitis. Respir Investig. 2015;53:13–21.CrossRefPubMed
33.
go back to reference Moore VL, Pedersen GM, Hauser WC, et al. A study of lung lavage materials in patients with hypersensitivity pneumonitis: in vitro response to mitogen and antigen in pigeon breeders’ disease. J Allergy Clin Immunol. 1980;65:365–70.CrossRefPubMed Moore VL, Pedersen GM, Hauser WC, et al. A study of lung lavage materials in patients with hypersensitivity pneumonitis: in vitro response to mitogen and antigen in pigeon breeders’ disease. J Allergy Clin Immunol. 1980;65:365–70.CrossRefPubMed
Metadata
Title
Protein antigen of bird-related hypersensitivity pneumonitis in pigeon serum and dropping
Authors
Tsuyoshi Shirai
Haruhiko Furusawa
Asuka Furukawa
Yuki Ishige
Keisuke Uchida
Yasunari Miyazaki
Yoshinobu Eishi
Naohiko Inase
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2017
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-017-0555-4

Other articles of this Issue 1/2017

Respiratory Research 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.