Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2017

01-12-2017

Proteasome dysregulation in human cancer: implications for clinical therapies

Authors: Yulin Chen, Yanan Zhang, Xing Guo

Published in: Cancer and Metastasis Reviews | Issue 4/2017

Login to get access

Abstract

Cancer cells show heightened dependency on the proteasome for their survival, growth, and spread. Proteasome dysregulation is therefore commonly selected in favor of the development of many types of cancer. The vast abnormalities in a cancer cell, on top of the complexity of the proteasome itself, have enabled a plethora of mechanisms gearing the proteasome to the oncogenic process. Here, we use selected examples to highlight some general mechanisms underlying proteasome dysregulation in cancer, including copy number variations, transcriptional control, epigenetic regulation, and post-translational modifications. Research in this field has greatly advanced our understanding of proteasome regulation and will shed new light on proteasome-based combination therapies for cancer treatment.
Appendix
Available only for authorised users
Literature
2.
go back to reference Bazzaro, M., Lee, M. K., Zoso, A., Stirling, W. L., Santillan, A., Shih Ie, M., & Roden, R. B. (2006). Ubiquitin-proteasome system stress sensitizes ovarian cancer to proteasome inhibitor-induced apoptosis. Cancer Research, 66, 3754–3763.PubMedCrossRef Bazzaro, M., Lee, M. K., Zoso, A., Stirling, W. L., Santillan, A., Shih Ie, M., & Roden, R. B. (2006). Ubiquitin-proteasome system stress sensitizes ovarian cancer to proteasome inhibitor-induced apoptosis. Cancer Research, 66, 3754–3763.PubMedCrossRef
3.
go back to reference Chen, L., & Madura, K. (2005). Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Research, 65, 5599–5606.PubMedCrossRef Chen, L., & Madura, K. (2005). Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Research, 65, 5599–5606.PubMedCrossRef
4.
go back to reference Chen, L., Brewer, M. D., Guo, L., Wang, R., Jiang, P., & Yang, X. (2017). Enhanced degradation of misfolded proteins promotes tumorigenesis. Cell Reports, 18, 3143–3154.PubMedPubMedCentralCrossRef Chen, L., Brewer, M. D., Guo, L., Wang, R., Jiang, P., & Yang, X. (2017). Enhanced degradation of misfolded proteins promotes tumorigenesis. Cell Reports, 18, 3143–3154.PubMedPubMedCentralCrossRef
5.
go back to reference He, J., Cui, L., Zeng, Y., Wang, G., Zhou, P., Yang, Y., Ji, L., Zhao, Y., Chen, J., Wang, Z., Shi, T., Zhang, P., Chen, R., & Li, X. (2012). REGgamma is associated with multiple oncogenic pathways in human cancers. BMC Cancer, 12, 75.PubMedPubMedCentralCrossRef He, J., Cui, L., Zeng, Y., Wang, G., Zhou, P., Yang, Y., Ji, L., Zhao, Y., Chen, J., Wang, Z., Shi, T., Zhang, P., Chen, R., & Li, X. (2012). REGgamma is associated with multiple oncogenic pathways in human cancers. BMC Cancer, 12, 75.PubMedPubMedCentralCrossRef
6.
go back to reference Kanayama, H., Tanaka, K., Aki, M., Kagawa, S., Miyaji, H., Satoh, M., Okada, F., Sato, S., Shimbara, N., & Ichihara, A. (1991). Changes in expressions of proteasome and ubiquitin genes in human renal cancer cells. Cancer Research, 51, 6677–6685.PubMed Kanayama, H., Tanaka, K., Aki, M., Kagawa, S., Miyaji, H., Satoh, M., Okada, F., Sato, S., Shimbara, N., & Ichihara, A. (1991). Changes in expressions of proteasome and ubiquitin genes in human renal cancer cells. Cancer Research, 51, 6677–6685.PubMed
7.
go back to reference Kumatori, A., Tanaka, K., Inamura, N., Sone, S., Ogura, T., Matsumoto, T., Tachikawa, T., Shin, S., & Ichihara, A. (1990). Abnormally high expression of proteasomes in human leukemic cells. Proceedings of the National Academy of Sciences of the United States of America, 87, 7071–7075.PubMedPubMedCentralCrossRef Kumatori, A., Tanaka, K., Inamura, N., Sone, S., Ogura, T., Matsumoto, T., Tachikawa, T., Shin, S., & Ichihara, A. (1990). Abnormally high expression of proteasomes in human leukemic cells. Proceedings of the National Academy of Sciences of the United States of America, 87, 7071–7075.PubMedPubMedCentralCrossRef
8.
go back to reference Okamura, T., Taniguchi, S., Ohkura, T., Yoshida, A., Shimizu, H., Sakai, M., Maeta, H., Fukui, H., Ueta, Y., Hisatome, I., & Shigemasa, C. (2003). Abnormally high expression of proteasome activator-gamma in thyroid neoplasm. The Journal of Clinical Endocrinology and Metabolism, 88, 1374–1383.PubMedCrossRef Okamura, T., Taniguchi, S., Ohkura, T., Yoshida, A., Shimizu, H., Sakai, M., Maeta, H., Fukui, H., Ueta, Y., Hisatome, I., & Shigemasa, C. (2003). Abnormally high expression of proteasome activator-gamma in thyroid neoplasm. The Journal of Clinical Endocrinology and Metabolism, 88, 1374–1383.PubMedCrossRef
9.
go back to reference Pilarsky, C., Wenzig, M., Specht, T., Saeger, H. D., & Grutzmann, R. (2004). Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia, 6, 744–750.PubMedPubMedCentralCrossRef Pilarsky, C., Wenzig, M., Specht, T., Saeger, H. D., & Grutzmann, R. (2004). Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia, 6, 744–750.PubMedPubMedCentralCrossRef
10.
go back to reference Roessler, M., Rollinger, W., Mantovani-Endl, L., Hagmann, M. L., Palme, S., Berndt, P., Engel, A. M., Pfeffer, M., Karl, J., Bodenmuller, H., Ruschoff, J., Henkel, T., Rohr, G., Rossol, S., Rosch, W., Langen, H., Zolg, W., & Tacke, M. (2006). Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis. Molecular & Cellular Proteomics, 5, 2092–2101.CrossRef Roessler, M., Rollinger, W., Mantovani-Endl, L., Hagmann, M. L., Palme, S., Berndt, P., Engel, A. M., Pfeffer, M., Karl, J., Bodenmuller, H., Ruschoff, J., Henkel, T., Rohr, G., Rossol, S., Rosch, W., Langen, H., Zolg, W., & Tacke, M. (2006). Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis. Molecular & Cellular Proteomics, 5, 2092–2101.CrossRef
11.
go back to reference Xu, H., Ju, D., Jarois, T., & Xie, Y. (2008). Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells. Breast Cancer Research and Treatment, 107, 267–274.PubMedCrossRef Xu, H., Ju, D., Jarois, T., & Xie, Y. (2008). Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells. Breast Cancer Research and Treatment, 107, 267–274.PubMedCrossRef
12.
go back to reference Yuan, F., Ma, Y., You, P., Lin, W., Lu, H., Yu, Y., Wang, X., Jiang, J., Yang, P., Ma, Q., & Tao, T. (2013). A novel role of proteasomal beta1 subunit in tumorigenesis. Bioscience Reports, 33. Yuan, F., Ma, Y., You, P., Lin, W., Lu, H., Yu, Y., Wang, X., Jiang, J., Yang, P., Ma, Q., & Tao, T. (2013). A novel role of proteasomal beta1 subunit in tumorigenesis. Bioscience Reports, 33.
13.
go back to reference Zheng, P., Guo, H., Li, G., Han, S., Luo, F., & Liu, Y. (2015). PSMB4 promotes multiple myeloma cell growth by activating NF-kappaB-miR-21 signaling. Biochemical and Biophysical Research Communications, 458, 328–333.PubMedCrossRef Zheng, P., Guo, H., Li, G., Han, S., Luo, F., & Liu, Y. (2015). PSMB4 promotes multiple myeloma cell growth by activating NF-kappaB-miR-21 signaling. Biochemical and Biophysical Research Communications, 458, 328–333.PubMedCrossRef
14.
go back to reference Hideshima, T., Richardson, P., Chauhan, D., Palombella, V. J., Elliott, P. J., Adams, J., & Anderson, K. C. (2001). The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Research, 61, 3071–3076.PubMed Hideshima, T., Richardson, P., Chauhan, D., Palombella, V. J., Elliott, P. J., Adams, J., & Anderson, K. C. (2001). The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Research, 61, 3071–3076.PubMed
15.
go back to reference Hoeller, D., & Dikic, I. (2009). Targeting the ubiquitin system in cancer therapy. Nature, 458, 438–444.PubMedCrossRef Hoeller, D., & Dikic, I. (2009). Targeting the ubiquitin system in cancer therapy. Nature, 458, 438–444.PubMedCrossRef
16.
go back to reference Marcotte, R., Sayad, A., Brown, K. R., Sanchez-Garcia, F., Reimand, J., Haider, M., Virtanen, C., Bradner, J. E., Bader, G. D., Mills, G. B., Pe’er, D., Moffat, J., & Neel, B. G. (2016). Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell, 164, 293–309.PubMedPubMedCentralCrossRef Marcotte, R., Sayad, A., Brown, K. R., Sanchez-Garcia, F., Reimand, J., Haider, M., Virtanen, C., Bradner, J. E., Bader, G. D., Mills, G. B., Pe’er, D., Moffat, J., & Neel, B. G. (2016). Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell, 164, 293–309.PubMedPubMedCentralCrossRef
17.
go back to reference Petrocca, F., Altschuler, G., Tan, S. M., Mendillo, M. L., Yan, H., Jerry, D. J., Kung, A. L., Hide, W., Ince, T. A., & Lieberman, J. (2013). A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. Cancer Cell, 24, 182–196.PubMedPubMedCentralCrossRef Petrocca, F., Altschuler, G., Tan, S. M., Mendillo, M. L., Yan, H., Jerry, D. J., Kung, A. L., Hide, W., Ince, T. A., & Lieberman, J. (2013). A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. Cancer Cell, 24, 182–196.PubMedPubMedCentralCrossRef
18.
go back to reference Kloetzel, P. M. (2001). Antigen processing by the proteasome. Nature Reviews. Molecular Cell Biology, 2, 179–187.PubMedCrossRef Kloetzel, P. M. (2001). Antigen processing by the proteasome. Nature Reviews. Molecular Cell Biology, 2, 179–187.PubMedCrossRef
19.
go back to reference Seliger, B., Maeurer, M. J., & Ferrone, S. (2000). Antigen-processing machinery breakdown and tumor growth. Immunology Today, 21, 455–464.PubMedCrossRef Seliger, B., Maeurer, M. J., & Ferrone, S. (2000). Antigen-processing machinery breakdown and tumor growth. Immunology Today, 21, 455–464.PubMedCrossRef
20.
go back to reference Kruger, E., Kuckelkorn, U., Sijts, A., & Kloetzel, P. M. (2003). The components of the proteasome system and their role in MHC class I antigen processing. Reviews of Physiology, Biochemistry and Pharmacology, 148, 81–104.PubMedCrossRef Kruger, E., Kuckelkorn, U., Sijts, A., & Kloetzel, P. M. (2003). The components of the proteasome system and their role in MHC class I antigen processing. Reviews of Physiology, Biochemistry and Pharmacology, 148, 81–104.PubMedCrossRef
21.
go back to reference Vigneron, N., & Van den Eynde, B. J. (2012). Proteasome subtypes and the processing of tumor antigens: increasing antigenic diversity. Current Opinion in Immunology, 24, 84–91.PubMedCrossRef Vigneron, N., & Van den Eynde, B. J. (2012). Proteasome subtypes and the processing of tumor antigens: increasing antigenic diversity. Current Opinion in Immunology, 24, 84–91.PubMedCrossRef
22.
go back to reference Burri, L., Hockendorff, J., Boehm, U., Klamp, T., Dohmen, R. J., & Levy, F. (2000). Identification and characterization of a mammalian protein interacting with 20S proteasome precursors. Proceedings of the National Academy of Sciences of the United States of America, 97, 10348–10353.PubMedPubMedCentralCrossRef Burri, L., Hockendorff, J., Boehm, U., Klamp, T., Dohmen, R. J., & Levy, F. (2000). Identification and characterization of a mammalian protein interacting with 20S proteasome precursors. Proceedings of the National Academy of Sciences of the United States of America, 97, 10348–10353.PubMedPubMedCentralCrossRef
23.
24.
go back to reference Griffin, T. A., Slack, J. P., McCluskey, T. S., Monaco, J. J., & Colbert, R. A. (2000). Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly. Molecular Cell Biology Research Communications, 3, 212–217.PubMedCrossRef Griffin, T. A., Slack, J. P., McCluskey, T. S., Monaco, J. J., & Colbert, R. A. (2000). Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly. Molecular Cell Biology Research Communications, 3, 212–217.PubMedCrossRef
25.
go back to reference Murata, S., Yashiroda, H., & Tanaka, K. (2009). Molecular mechanisms of proteasome assembly. Nature Reviews. Molecular Cell Biology, 10, 104–115.PubMedCrossRef Murata, S., Yashiroda, H., & Tanaka, K. (2009). Molecular mechanisms of proteasome assembly. Nature Reviews. Molecular Cell Biology, 10, 104–115.PubMedCrossRef
26.
go back to reference Witt, E., Zantopf, D., Schmidt, M., Kraft, R., Kloetzel, P. M., & Kruger, E. (2000). Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(beta 5i) incorporation into 20 S proteasomes. Journal of Molecular Biology, 301, 1–9.PubMedCrossRef Witt, E., Zantopf, D., Schmidt, M., Kraft, R., Kloetzel, P. M., & Kruger, E. (2000). Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(beta 5i) incorporation into 20 S proteasomes. Journal of Molecular Biology, 301, 1–9.PubMedCrossRef
27.
go back to reference Besche, H. C., Peth, A., & Goldberg, A. L. (2009). Getting to first base in proteasome assembly. Cell, 138, 25–28.PubMedCrossRef Besche, H. C., Peth, A., & Goldberg, A. L. (2009). Getting to first base in proteasome assembly. Cell, 138, 25–28.PubMedCrossRef
28.
go back to reference Mayer, R. J., & Fujita, J. (2006). Gankyrin, the 26 S proteasome, the cell cycle and cancer. Biochemical Society Transactions, 34, 746–748.PubMedCrossRef Mayer, R. J., & Fujita, J. (2006). Gankyrin, the 26 S proteasome, the cell cycle and cancer. Biochemical Society Transactions, 34, 746–748.PubMedCrossRef
30.
go back to reference Chen, X., Barton, L. F., Chi, Y., Clurman, B. E., & Roberts, J. M. (2007). Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Molecular Cell, 26, 843–852.PubMedPubMedCentralCrossRef Chen, X., Barton, L. F., Chi, Y., Clurman, B. E., & Roberts, J. M. (2007). Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Molecular Cell, 26, 843–852.PubMedPubMedCentralCrossRef
31.
go back to reference Li, X., Lonard, D. M., Jung, S. Y., Malovannaya, A., Feng, Q., Qin, J., Tsai, S. Y., Tsai, M. J., & O’Malley, B. W. (2006). The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome. Cell, 124, 381–392.PubMedCrossRef Li, X., Lonard, D. M., Jung, S. Y., Malovannaya, A., Feng, Q., Qin, J., Tsai, S. Y., Tsai, M. J., & O’Malley, B. W. (2006). The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome. Cell, 124, 381–392.PubMedCrossRef
32.
go back to reference Li, X., Amazit, L., Long, W., Lonard, D. M., Monaco, J. J., & O’Malley, B. W. (2007). Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Molecular Cell, 26, 831–842.PubMedCrossRef Li, X., Amazit, L., Long, W., Lonard, D. M., Monaco, J. J., & O’Malley, B. W. (2007). Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Molecular Cell, 26, 831–842.PubMedCrossRef
33.
go back to reference Mao, I., Liu, J., Li, X., & Luo, H. (2008). REGgamma, a proteasome activator and beyond? Cellular and Molecular Life Sciences, 65, 3971–3980.PubMedCrossRef Mao, I., Liu, J., Li, X., & Luo, H. (2008). REGgamma, a proteasome activator and beyond? Cellular and Molecular Life Sciences, 65, 3971–3980.PubMedCrossRef
34.
go back to reference Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMedCrossRef Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMedCrossRef
35.
go back to reference Weaver, B. A., & Cleveland, D. W. (2006). Does aneuploidy cause cancer? Current Opinion in Cell Biology, 18, 658–667.PubMedCrossRef Weaver, B. A., & Cleveland, D. W. (2006). Does aneuploidy cause cancer? Current Opinion in Cell Biology, 18, 658–667.PubMedCrossRef
36.
go back to reference Santarius, T., Shipley, J., Brewer, D., Stratton, M. R., & Cooper, C. S. (2010). A census of amplified and overexpressed human cancer genes. Nature Reviews. Cancer, 10, 59–64.PubMedCrossRef Santarius, T., Shipley, J., Brewer, D., Stratton, M. R., & Cooper, C. S. (2010). A census of amplified and overexpressed human cancer genes. Nature Reviews. Cancer, 10, 59–64.PubMedCrossRef
37.
go back to reference Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C., & Schultz, N. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the BioPortal. Science Signaling, 6, 11.CrossRef Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C., & Schultz, N. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the BioPortal. Science Signaling, 6, 11.CrossRef
38.
go back to reference Dressman, M. A., Baras, A., Malinowski, R., Alvis, L. B., Kwon, I., Walz, T. M., & Polymeropoulos, M. H. (2003). Gene expression profiling detects gene amplification and differentiates tumor types in breast cancer. Cancer Research, 63, 2194–2199.PubMed Dressman, M. A., Baras, A., Malinowski, R., Alvis, L. B., Kwon, I., Walz, T. M., & Polymeropoulos, M. H. (2003). Gene expression profiling detects gene amplification and differentiates tumor types in breast cancer. Cancer Research, 63, 2194–2199.PubMed
39.
go back to reference Medina-Martinez, I., Barron, V., Roman-Bassaure, E., Juarez-Torres, E., Guardado-Estrada, M., Espinosa, A. M., Bermudez, M., Fernandez, F., Venegas-Vega, C., Orozco, L., Zenteno, E., Kofman, S., & Berumen, J. (2014). Impact of gene dosage on gene expression, biological processes and survival in cervical cancer: a genome-wide follow-up study. PLoS One, 9, e97842.PubMedPubMedCentralCrossRef Medina-Martinez, I., Barron, V., Roman-Bassaure, E., Juarez-Torres, E., Guardado-Estrada, M., Espinosa, A. M., Bermudez, M., Fernandez, F., Venegas-Vega, C., Orozco, L., Zenteno, E., Kofman, S., & Berumen, J. (2014). Impact of gene dosage on gene expression, biological processes and survival in cervical cancer: a genome-wide follow-up study. PLoS One, 9, e97842.PubMedPubMedCentralCrossRef
40.
go back to reference Ren, S., Smith, M. J., Louro, I. D., McKie-Bell, P., Bani, M. R., Wagner, M., Zochodne, B., Redden, D. T., Grizzle, W. E., Wang, N., Smith, D. I., Herbst, R. A., Bardenheuer, W., Opalka, B., Schutte, J., Trent, J. M., Ben-David, Y., & Ruppert, J. M. (2000). The p44S10 locus, encoding a subunit of the proteasome regulatory particle, is amplified during progression of cutaneous malignant melanoma. Oncogene, 19, 1419–1427.PubMedCrossRef Ren, S., Smith, M. J., Louro, I. D., McKie-Bell, P., Bani, M. R., Wagner, M., Zochodne, B., Redden, D. T., Grizzle, W. E., Wang, N., Smith, D. I., Herbst, R. A., Bardenheuer, W., Opalka, B., Schutte, J., Trent, J. M., Ben-David, Y., & Ruppert, J. M. (2000). The p44S10 locus, encoding a subunit of the proteasome regulatory particle, is amplified during progression of cutaneous malignant melanoma. Oncogene, 19, 1419–1427.PubMedCrossRef
41.
go back to reference Tamilzhalagan, S., Muthuswami, M., Periasamy, J., Lee, M. H., Rha, S. Y., Tan, P., & Ganesan, K. (2015). Upregulated, 7q21-22 amplicon candidate gene SHFM1 confers oncogenic advantage by suppressing p53 function in gastric cancer. Cellular Signalling, 27, 1075–1086.PubMedCrossRef Tamilzhalagan, S., Muthuswami, M., Periasamy, J., Lee, M. H., Rha, S. Y., Tan, P., & Ganesan, K. (2015). Upregulated, 7q21-22 amplicon candidate gene SHFM1 confers oncogenic advantage by suppressing p53 function in gastric cancer. Cellular Signalling, 27, 1075–1086.PubMedCrossRef
42.
43.
go back to reference Nik-Zainal, S., Davies, H., Staaf, J., Ramakrishna, M., Glodzik, D., Zou, X., Martincorena, I., Alexandrov, L. B., Martin, S., Wedge, D. C., Van Loo, P., Ju, Y. S., Smid, M., Brinkman, A. B., Morganella, S., Aure, M. R., Lingjaerde, O. C., Langerod, A., Ringner, M., Ahn, S. M., Boyault, S., Brock, J. E., Broeks, A., Butler, A., Desmedt, C., Dirix, L., Dronov, S., Fatima, A., Foekens, J. A., Gerstung, M., Hooijer, G. K., Jang, S. J., Jones, D. R., Kim, H. Y., King, T. A., Krishnamurthy, S., Lee, H. J., Lee, J. Y., Li, Y., McLaren, S., Menzies, A., Mustonen, V., O’Meara, S., Pauporte, I., Pivot, X., Purdie, C. A., Raine, K., Ramakrishnan, K., Rodriguez-Gonzalez, F. G., Romieu, G., Sieuwerts, A. M., Simpson, P. T., Shepherd, R., Stebbings, L., Stefansson, O. A., Teague, J., Tommasi, S., Treilleux, I., Van den Eynden, G. G., Vermeulen, P., Vincent-Salomon, A., Yates, L., Caldas, C., van’t Veer, L., Tutt, A., Knappskog, S., Tan, B. K., Jonkers, J., Borg, A., Ueno, N. T., Sotiriou, C., Viari, A., Futreal, P. A., Campbell, P. J., Span, P. N., Van Laere, S., Lakhani, S. R., Eyfjord, J. E., Thompson, A. M., Birney, E., Stunnenberg, H. G., van de Vijver, M. J., Martens, J. W., Borresen-Dale, A. L., Richardson, A. L., Kong, G., Thomas, G., & Stratton, M. R. (2016). Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature, 534, 47–54.PubMedPubMedCentralCrossRef Nik-Zainal, S., Davies, H., Staaf, J., Ramakrishna, M., Glodzik, D., Zou, X., Martincorena, I., Alexandrov, L. B., Martin, S., Wedge, D. C., Van Loo, P., Ju, Y. S., Smid, M., Brinkman, A. B., Morganella, S., Aure, M. R., Lingjaerde, O. C., Langerod, A., Ringner, M., Ahn, S. M., Boyault, S., Brock, J. E., Broeks, A., Butler, A., Desmedt, C., Dirix, L., Dronov, S., Fatima, A., Foekens, J. A., Gerstung, M., Hooijer, G. K., Jang, S. J., Jones, D. R., Kim, H. Y., King, T. A., Krishnamurthy, S., Lee, H. J., Lee, J. Y., Li, Y., McLaren, S., Menzies, A., Mustonen, V., O’Meara, S., Pauporte, I., Pivot, X., Purdie, C. A., Raine, K., Ramakrishnan, K., Rodriguez-Gonzalez, F. G., Romieu, G., Sieuwerts, A. M., Simpson, P. T., Shepherd, R., Stebbings, L., Stefansson, O. A., Teague, J., Tommasi, S., Treilleux, I., Van den Eynden, G. G., Vermeulen, P., Vincent-Salomon, A., Yates, L., Caldas, C., van’t Veer, L., Tutt, A., Knappskog, S., Tan, B. K., Jonkers, J., Borg, A., Ueno, N. T., Sotiriou, C., Viari, A., Futreal, P. A., Campbell, P. J., Span, P. N., Van Laere, S., Lakhani, S. R., Eyfjord, J. E., Thompson, A. M., Birney, E., Stunnenberg, H. G., van de Vijver, M. J., Martens, J. W., Borresen-Dale, A. L., Richardson, A. L., Kong, G., Thomas, G., & Stratton, M. R. (2016). Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature, 534, 47–54.PubMedPubMedCentralCrossRef
44.
go back to reference Tanner, M. M., Grenman, S., Koul, A., Johannsson, O., Meltzer, P., Pejovic, T., Borg, A., & Isola, J. J. (2000). Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clinical Cancer Research, 6, 1833–1839.PubMed Tanner, M. M., Grenman, S., Koul, A., Johannsson, O., Meltzer, P., Pejovic, T., Borg, A., & Isola, J. J. (2000). Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clinical Cancer Research, 6, 1833–1839.PubMed
45.
go back to reference Simins, A. B., Weighardt, H., Weidner, K. M., Weidle, U. H., & Holzmann, B. (1999). Functional cloning of ARM-1, an adhesion-regulating molecule upregulated in metastatic tumor cells. Clinical & Experimental Metastasis, 17, 641–648.CrossRef Simins, A. B., Weighardt, H., Weidner, K. M., Weidle, U. H., & Holzmann, B. (1999). Functional cloning of ARM-1, an adhesion-regulating molecule upregulated in metastatic tumor cells. Clinical & Experimental Metastasis, 17, 641–648.CrossRef
46.
go back to reference Chen, W., Hu, X. T., Shi, Q. L., Zhang, F. B., & He, C. (2009). Knockdown of the novel proteasome subunit Adrm1 located on the 20q13 amplicon inhibits colorectal cancer cell migration, survival and tumorigenicity. Oncology Reports, 21, 531–537.PubMedCrossRef Chen, W., Hu, X. T., Shi, Q. L., Zhang, F. B., & He, C. (2009). Knockdown of the novel proteasome subunit Adrm1 located on the 20q13 amplicon inhibits colorectal cancer cell migration, survival and tumorigenicity. Oncology Reports, 21, 531–537.PubMedCrossRef
47.
go back to reference Fejzo, M. S., Dering, J., Ginther, C., Anderson, L., Ramos, L., Walsh, C., Karlan, B., & Slamon, D. J. (2008). Comprehensive analysis of 20q13 genes in ovarian cancer identifies ADRM1 as amplification target. Genes, Chromosomes & Cancer, 47, 873–883.CrossRef Fejzo, M. S., Dering, J., Ginther, C., Anderson, L., Ramos, L., Walsh, C., Karlan, B., & Slamon, D. J. (2008). Comprehensive analysis of 20q13 genes in ovarian cancer identifies ADRM1 as amplification target. Genes, Chromosomes & Cancer, 47, 873–883.CrossRef
48.
go back to reference Fejzo, M. S., Anderson, L., Chen, H. W., Anghel, A., Zhuo, J., Anchoori, R., Roden, R., & Slamon, D. J. (2015). ADRM1-amplified metastasis gene in gastric cancer. Genes, Chromosomes & Cancer. Fejzo, M. S., Anderson, L., Chen, H. W., Anghel, A., Zhuo, J., Anchoori, R., Roden, R., & Slamon, D. J. (2015). ADRM1-amplified metastasis gene in gastric cancer. Genes, Chromosomes & Cancer.
49.
go back to reference Fejzo, M. S., Ginther, C., Dering, J., Anderson, L., Venkatesan, N., Konecny, G., Karlan, B., & Slamon, D. J. (2011). Knockdown of ovarian cancer amplification target ADRM1 leads to downregulation of GIPC1 and upregulation of RECK. Genes, Chromosomes & Cancer, 50, 434–441.CrossRef Fejzo, M. S., Ginther, C., Dering, J., Anderson, L., Venkatesan, N., Konecny, G., Karlan, B., & Slamon, D. J. (2011). Knockdown of ovarian cancer amplification target ADRM1 leads to downregulation of GIPC1 and upregulation of RECK. Genes, Chromosomes & Cancer, 50, 434–441.CrossRef
50.
go back to reference Fejzo, M. S., Anderson, L., von Euw, E. M., Kalous, O., Avliyakulov, N. K., Haykinson, M. J., Konecny, G. E., Finn, R. S., & Slamon, D. J. (2013). Amplification target ADRM1: role as an oncogene and therapeutic target for ovarian cancer. International Journal of Molecular Sciences, 14, 3094–3109.PubMedPubMedCentralCrossRef Fejzo, M. S., Anderson, L., von Euw, E. M., Kalous, O., Avliyakulov, N. K., Haykinson, M. J., Konecny, G. E., Finn, R. S., & Slamon, D. J. (2013). Amplification target ADRM1: role as an oncogene and therapeutic target for ovarian cancer. International Journal of Molecular Sciences, 14, 3094–3109.PubMedPubMedCentralCrossRef
51.
go back to reference Anchoori, R. K., Karanam, B., Peng, S., Wang, J. W., Jiang, R., Tanno, T., Orlowski, R. Z., Matsui, W., Zhao, M., Rudek, M. A., Hung, C. F., Chen, X., Walters, K. J., & Roden, R. B. (2013). A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell, 24, 791–805.PubMedCrossRef Anchoori, R. K., Karanam, B., Peng, S., Wang, J. W., Jiang, R., Tanno, T., Orlowski, R. Z., Matsui, W., Zhao, M., Rudek, M. A., Hung, C. F., Chen, X., Walters, K. J., & Roden, R. B. (2013). A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell, 24, 791–805.PubMedCrossRef
52.
go back to reference Hu, X. T., Chen, W., Wang, D., Shi, Q. L., Zhang, F. B., Liao, Y. Q., Jin, M., & He, C. (2008). The proteasome subunit PSMA7 located on the 20q13 amplicon is overexpressed and associated with liver metastasis in colorectal cancer. Oncology Reports, 19, 441–446.PubMed Hu, X. T., Chen, W., Wang, D., Shi, Q. L., Zhang, F. B., Liao, Y. Q., Jin, M., & He, C. (2008). The proteasome subunit PSMA7 located on the 20q13 amplicon is overexpressed and associated with liver metastasis in colorectal cancer. Oncology Reports, 19, 441–446.PubMed
53.
go back to reference Lee, G. Y., Haverty, P. M., Li, L., Kljavin, N. M., Bourgon, R., Lee, J., Stern, H., Modrusan, Z., Seshagiri, S., Zhang, Z., Davis, D., Stokoe, D., Settleman, J., de Sauvage, F. J., & Neve, R. M. (2014). Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes. Cancer Research, 74, 3114–3126.PubMedCrossRef Lee, G. Y., Haverty, P. M., Li, L., Kljavin, N. M., Bourgon, R., Lee, J., Stern, H., Modrusan, Z., Seshagiri, S., Zhang, Z., Davis, D., Stokoe, D., Settleman, J., de Sauvage, F. J., & Neve, R. M. (2014). Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes. Cancer Research, 74, 3114–3126.PubMedCrossRef
54.
go back to reference Lu, S., Chen, Z., Yang, J., Chen, L., Gong, S., Zhou, H., Guo, L., & Wang, J. (2008). Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Experimental Hematology, 36, 1278–1284.PubMedCrossRef Lu, S., Chen, Z., Yang, J., Chen, L., Gong, S., Zhou, H., Guo, L., & Wang, J. (2008). Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Experimental Hematology, 36, 1278–1284.PubMedCrossRef
55.
go back to reference Nijhawan, D., Zack, T. I., Ren, Y., Strickland, M. R., Lamothe, R., Schumacher, S. E., Tsherniak, A., Besche, H. C., Rosenbluh, J., Shehata, S., Cowley, G. S., Weir, B. A., Goldberg, A. L., Mesirov, J. P., Root, D. E., Bhatia, S. N., Beroukhim, R., & Hahn, W. C. (2012). Cancer vulnerabilities unveiled by genomic loss. Cell, 150, 842–854.PubMedPubMedCentralCrossRef Nijhawan, D., Zack, T. I., Ren, Y., Strickland, M. R., Lamothe, R., Schumacher, S. E., Tsherniak, A., Besche, H. C., Rosenbluh, J., Shehata, S., Cowley, G. S., Weir, B. A., Goldberg, A. L., Mesirov, J. P., Root, D. E., Bhatia, S. N., Beroukhim, R., & Hahn, W. C. (2012). Cancer vulnerabilities unveiled by genomic loss. Cell, 150, 842–854.PubMedPubMedCentralCrossRef
56.
go back to reference Muller, P.A., and Vousden, K.H. (2013). p53 mutations in cancer. Nature Cell Biology 15, 2–8. Muller, P.A., and Vousden, K.H. (2013). p53 mutations in cancer. Nature Cell Biology 15, 2–8.
57.
go back to reference Vousden, K. H., & Prives, C. (2009). Blinded by the light: the growing complexity of p53. Cell, 137, 413–431.PubMedCrossRef Vousden, K. H., & Prives, C. (2009). Blinded by the light: the growing complexity of p53. Cell, 137, 413–431.PubMedCrossRef
58.
go back to reference Brosh, R., & Rotter, V. (2009). When mutants gain new powers: news from the mutant p53 field. Nature Reviews. Cancer, 9, 701–713.PubMed Brosh, R., & Rotter, V. (2009). When mutants gain new powers: news from the mutant p53 field. Nature Reviews. Cancer, 9, 701–713.PubMed
59.
go back to reference Walerych, D., Lisek, K., Sommaggio, R., Piazza, S., Ciani, Y., Dalla, E., Rajkowska, K., Gaweda-Walerych, K., Ingallina, E., Tonelli, C., Morelli, M. J., Amato, A., Eterno, V., Zambelli, A., Rosato, A., Amati, B., Wisniewski, J. R., & Del Sal, G. (2016). Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nature Cell Biology, 18, 897–909.PubMedCrossRef Walerych, D., Lisek, K., Sommaggio, R., Piazza, S., Ciani, Y., Dalla, E., Rajkowska, K., Gaweda-Walerych, K., Ingallina, E., Tonelli, C., Morelli, M. J., Amato, A., Eterno, V., Zambelli, A., Rosato, A., Amati, B., Wisniewski, J. R., & Del Sal, G. (2016). Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nature Cell Biology, 18, 897–909.PubMedCrossRef
60.
go back to reference Ali, A., Wang, Z., Fu, J., Ji, L., Liu, J., Li, L., Wang, H., Chen, J., Caulin, C., Myers, J. N., Zhang, P., Xiao, J., Zhang, B., & Li, X. (2013). Differential regulation of the REGgamma-proteasome pathway by p53/TGF-beta signalling and mutant p53 in cancer cells. Nature Communications, 4, 2667.PubMedPubMedCentralCrossRef Ali, A., Wang, Z., Fu, J., Ji, L., Liu, J., Li, L., Wang, H., Chen, J., Caulin, C., Myers, J. N., Zhang, P., Xiao, J., Zhang, B., & Li, X. (2013). Differential regulation of the REGgamma-proteasome pathway by p53/TGF-beta signalling and mutant p53 in cancer cells. Nature Communications, 4, 2667.PubMedPubMedCentralCrossRef
61.
go back to reference Wang, H., Bao, W., Jiang, F., Che, Q., Chen, Z., Wang, F., Tong, H., Dai, C., He, X., Liao, Y., Liu, B., Sun, J., & Wan, X. (2015). Mutant p53 (p53-R248Q) functions as an oncogene in promoting endometrial cancer by up-regulating REGgamma. Cancer Letters, 360, 269–279.PubMedCrossRef Wang, H., Bao, W., Jiang, F., Che, Q., Chen, Z., Wang, F., Tong, H., Dai, C., He, X., Liao, Y., Liu, B., Sun, J., & Wan, X. (2015). Mutant p53 (p53-R248Q) functions as an oncogene in promoting endometrial cancer by up-regulating REGgamma. Cancer Letters, 360, 269–279.PubMedCrossRef
62.
go back to reference Wan, Z. X., Yuan, D. M., Zhuo, Y. M., Yi, X., Zhou, J., Xu, Z. X., & Zhou, J. L. (2014). The proteasome activator PA28gamma, a negative regulator of p53, is transcriptionally up-regulated by p53. International Journal of Molecular Sciences, 15, 2573–2584.PubMedPubMedCentralCrossRef Wan, Z. X., Yuan, D. M., Zhuo, Y. M., Yi, X., Zhou, J., Xu, Z. X., & Zhou, J. L. (2014). The proteasome activator PA28gamma, a negative regulator of p53, is transcriptionally up-regulated by p53. International Journal of Molecular Sciences, 15, 2573–2584.PubMedPubMedCentralCrossRef
63.
go back to reference Menegon, S., Columbano, A., & Giordano, S. (2016). The dual roles of NRF2 in cancer. Trends in Molecular Medicine, 22, 578–593.PubMedCrossRef Menegon, S., Columbano, A., & Giordano, S. (2016). The dual roles of NRF2 in cancer. Trends in Molecular Medicine, 22, 578–593.PubMedCrossRef
64.
go back to reference Arlt, A., Bauer, I., Schafmayer, C., Tepel, J., Muerkoster, S. S., Brosch, M., Roder, C., Kalthoff, H., Hampe, J., Moyer, M. P., Folsch, U. R., & Schafer, H. (2009). Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene, 28, 3983–3996.PubMedCrossRef Arlt, A., Bauer, I., Schafmayer, C., Tepel, J., Muerkoster, S. S., Brosch, M., Roder, C., Kalthoff, H., Hampe, J., Moyer, M. P., Folsch, U. R., & Schafer, H. (2009). Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene, 28, 3983–3996.PubMedCrossRef
65.
go back to reference DeNicola, G. M., Karreth, F. A., Humpton, T. J., Gopinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K. H., Yeo, C. J., Calhoun, E. S., Scrimieri, F., Winter, J. M., Hruban, R. H., Iacobuzio-Donahue, C., Kern, S. E., Blair, I. A., & Tuveson, D. A. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 475, 106–109.PubMedPubMedCentralCrossRef DeNicola, G. M., Karreth, F. A., Humpton, T. J., Gopinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K. H., Yeo, C. J., Calhoun, E. S., Scrimieri, F., Winter, J. M., Hruban, R. H., Iacobuzio-Donahue, C., Kern, S. E., Blair, I. A., & Tuveson, D. A. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 475, 106–109.PubMedPubMedCentralCrossRef
66.
go back to reference Hayes, J. D., & McMahon, M. (2009). NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends in Biochemical Sciences, 34, 176–188.PubMedCrossRef Hayes, J. D., & McMahon, M. (2009). NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends in Biochemical Sciences, 34, 176–188.PubMedCrossRef
67.
go back to reference Arlt, A., Sebens, S., Krebs, S., Geismann, C., Grossmann, M., Kruse, M. L., Schreiber, S., & Schafer, H. (2013). Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene, 32, 4825–4835.PubMedCrossRef Arlt, A., Sebens, S., Krebs, S., Geismann, C., Grossmann, M., Kruse, M. L., Schreiber, S., & Schafer, H. (2013). Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene, 32, 4825–4835.PubMedCrossRef
68.
go back to reference Radhakrishnan, S. K., Lee, C. S., Young, P., Beskow, A., Chan, J. Y., & Deshaies, R. J. (2010). Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Molecular Cell, 38, 17–28.PubMedPubMedCentralCrossRef Radhakrishnan, S. K., Lee, C. S., Young, P., Beskow, A., Chan, J. Y., & Deshaies, R. J. (2010). Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Molecular Cell, 38, 17–28.PubMedPubMedCentralCrossRef
69.
go back to reference Radhakrishnan, S. K., den Besten, W., & Deshaies, R. J. (2014). p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. eLife, 3, e01856.PubMedPubMedCentralCrossRef Radhakrishnan, S. K., den Besten, W., & Deshaies, R. J. (2014). p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. eLife, 3, e01856.PubMedPubMedCentralCrossRef
70.
go back to reference Sha, Z., & Goldberg, A. L. (2014). Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Current Biology, 24, 1573–1583.PubMedPubMedCentralCrossRef Sha, Z., & Goldberg, A. L. (2014). Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Current Biology, 24, 1573–1583.PubMedPubMedCentralCrossRef
71.
go back to reference Steffen, J., Seeger, M., Koch, A., & Kruger, E. (2010). Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Molecular Cell, 40, 147–158.PubMedCrossRef Steffen, J., Seeger, M., Koch, A., & Kruger, E. (2010). Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Molecular Cell, 40, 147–158.PubMedCrossRef
72.
go back to reference Xie, Y. (2010a). Feedback regulation of proteasome gene expression and its implications in cancer therapy. Cancer Metastasis Reviews, 29, 687–693.PubMedCrossRef Xie, Y. (2010a). Feedback regulation of proteasome gene expression and its implications in cancer therapy. Cancer Metastasis Reviews, 29, 687–693.PubMedCrossRef
73.
go back to reference Xie, Y. (2010b). Structure, assembly and homeostatic regulation of the 26S proteasome. Journal of Molecular Cell Biology, 2, 308–317.PubMedCrossRef Xie, Y. (2010b). Structure, assembly and homeostatic regulation of the 26S proteasome. Journal of Molecular Cell Biology, 2, 308–317.PubMedCrossRef
75.
go back to reference Zhang, Y., Nicholatos, J., Dreier, J. R., Ricoult, S. J., Widenmaier, S. B., Hotamisligil, G. S., Kwiatkowski, D. J., & Manning, B. D. (2014). Coordinated regulation of protein synthesis and degradation by mTORC1. Nature, 513, 440–443.PubMedPubMedCentralCrossRef Zhang, Y., Nicholatos, J., Dreier, J. R., Ricoult, S. J., Widenmaier, S. B., Hotamisligil, G. S., Kwiatkowski, D. J., & Manning, B. D. (2014). Coordinated regulation of protein synthesis and degradation by mTORC1. Nature, 513, 440–443.PubMedPubMedCentralCrossRef
79.
go back to reference Ghobrial, I. M., Weller, E., Vij, R., Munshi, N. C., Banwait, R., Bagshaw, M., Schlossman, R., Leduc, R., Chuma, S., Kunsman, J., Laubach, J., Jakubowiak, A. J., Maiso, P., Roccaro, A., Armand, P., Dollard, A., Warren, D., Harris, B., Poon, T., Sam, A., Rodig, S., Anderson, K. C., & Richardson, P. G. (2011). Weekly bortezomib in combination with temsirolimus in relapsed or relapsed and refractory multiple myeloma: a multicentre, phase 1/2, open-label, dose-escalation study. The Lancet Oncology, 12, 263–272.PubMedCrossRef Ghobrial, I. M., Weller, E., Vij, R., Munshi, N. C., Banwait, R., Bagshaw, M., Schlossman, R., Leduc, R., Chuma, S., Kunsman, J., Laubach, J., Jakubowiak, A. J., Maiso, P., Roccaro, A., Armand, P., Dollard, A., Warren, D., Harris, B., Poon, T., Sam, A., Rodig, S., Anderson, K. C., & Richardson, P. G. (2011). Weekly bortezomib in combination with temsirolimus in relapsed or relapsed and refractory multiple myeloma: a multicentre, phase 1/2, open-label, dose-escalation study. The Lancet Oncology, 12, 263–272.PubMedCrossRef
80.
go back to reference Dissemond, J., Goette, P., Moers, J., Lindeke, A., Goos, M., Ferrone, S., & Wagner, S. N. (2003). Immunoproteasome subunits LMP2 and LMP7 downregulation in primary malignant melanoma lesions: association with lack of spontaneous regression. Melanoma Research, 13, 371–377.PubMedCrossRef Dissemond, J., Goette, P., Moers, J., Lindeke, A., Goos, M., Ferrone, S., & Wagner, S. N. (2003). Immunoproteasome subunits LMP2 and LMP7 downregulation in primary malignant melanoma lesions: association with lack of spontaneous regression. Melanoma Research, 13, 371–377.PubMedCrossRef
81.
go back to reference Evans, M., Borysiewicz, L. K., Evans, A. S., Rowe, M., Jones, M., Gileadi, U., Cerundolo, V., & Man, S. (2001). Antigen processing defects in cervical carcinomas limit the presentation of a CTL epitope from human papillomavirus 16 E6. Journal of Immunology, 167, 5420–5428.CrossRef Evans, M., Borysiewicz, L. K., Evans, A. S., Rowe, M., Jones, M., Gileadi, U., Cerundolo, V., & Man, S. (2001). Antigen processing defects in cervical carcinomas limit the presentation of a CTL epitope from human papillomavirus 16 E6. Journal of Immunology, 167, 5420–5428.CrossRef
82.
go back to reference Fellerhoff, B., Gu, S., Laumbacher, B., Nerlich, A. G., Weiss, E. H., Glas, J., Kopp, R., Johnson, J. P., & Wank, R. (2011). The LMP7-K allele of the immunoproteasome exhibits reduced transcript stability and predicts high risk of colon cancer. Cancer Research, 71, 7145–7154.PubMedCrossRef Fellerhoff, B., Gu, S., Laumbacher, B., Nerlich, A. G., Weiss, E. H., Glas, J., Kopp, R., Johnson, J. P., & Wank, R. (2011). The LMP7-K allele of the immunoproteasome exhibits reduced transcript stability and predicts high risk of colon cancer. Cancer Research, 71, 7145–7154.PubMedCrossRef
83.
go back to reference Heink, S., Fricke, B., Ludwig, D., Kloetzel, P. M., & Kruger, E. (2006). Tumor cell lines expressing the proteasome subunit isoform LMP7E1 exhibit immunoproteasome deficiency. Cancer Research, 66, 649–652.PubMedCrossRef Heink, S., Fricke, B., Ludwig, D., Kloetzel, P. M., & Kruger, E. (2006). Tumor cell lines expressing the proteasome subunit isoform LMP7E1 exhibit immunoproteasome deficiency. Cancer Research, 66, 649–652.PubMedCrossRef
84.
go back to reference Johnsen, A., France, J., Sy, M. S., & Harding, C. V. (1998). Down-regulation of the transporter for antigen presentation, proteasome subunits, and class I major histocompatibility complex in tumor cell lines. Cancer Research, 58, 3660–3667.PubMed Johnsen, A., France, J., Sy, M. S., & Harding, C. V. (1998). Down-regulation of the transporter for antigen presentation, proteasome subunits, and class I major histocompatibility complex in tumor cell lines. Cancer Research, 58, 3660–3667.PubMed
85.
go back to reference Kimura, H., Caturegli, P., Takahashi, M., & Suzuki, K. (2015). New insights into the function of the immunoproteasome in immune and nonimmune cells. Journal of Immunology Research, 2015, 541984. Kimura, H., Caturegli, P., Takahashi, M., & Suzuki, K. (2015). New insights into the function of the immunoproteasome in immune and nonimmune cells. Journal of Immunology Research, 2015, 541984.
86.
go back to reference Leffers, N., Gooden, M. J., Mokhova, A. A., Kast, W. M., Boezen, H. M., Ten Hoor, K. A., Hollema, H., Daemen, T., van der Zee, A. G., & Nijman, H. W. (2009). Down-regulation of proteasomal subunit MB1 is an independent predictor of improved survival in ovarian cancer. Gynecologic Oncology, 113, 256–263.PubMedCrossRef Leffers, N., Gooden, M. J., Mokhova, A. A., Kast, W. M., Boezen, H. M., Ten Hoor, K. A., Hollema, H., Daemen, T., van der Zee, A. G., & Nijman, H. W. (2009). Down-regulation of proteasomal subunit MB1 is an independent predictor of improved survival in ovarian cancer. Gynecologic Oncology, 113, 256–263.PubMedCrossRef
87.
go back to reference Niewerth, D., Kaspers, G. J., Jansen, G., van Meerloo, J., Zweegman, S., Jenkins, G., Whitlock, J. A., Hunger, S. P., Lu, X., Alonzo, T. A., van de Ven, P. M., Horton, T. M., & Cloos, J. (2016). Proteasome subunit expression analysis and chemosensitivity in relapsed paediatric acute leukaemia patients receiving bortezomib-containing chemotherapy. Journal of Hematology & Oncology, 9, 82.CrossRef Niewerth, D., Kaspers, G. J., Jansen, G., van Meerloo, J., Zweegman, S., Jenkins, G., Whitlock, J. A., Hunger, S. P., Lu, X., Alonzo, T. A., van de Ven, P. M., Horton, T. M., & Cloos, J. (2016). Proteasome subunit expression analysis and chemosensitivity in relapsed paediatric acute leukaemia patients receiving bortezomib-containing chemotherapy. Journal of Hematology & Oncology, 9, 82.CrossRef
88.
go back to reference Kimura, H. J., Chen, C. Y., Tzou, S. C., Rocchi, R., Landek-Salgado, M. A., Suzuki, K., Kimura, M., Rose, N. R., & Caturegli, P. (2009). Immunoproteasome overexpression underlies the pathogenesis of thyroid oncocytes and primary hypothyroidism: studies in humans and mice. PLoS One, 4, e7857.PubMedPubMedCentralCrossRef Kimura, H. J., Chen, C. Y., Tzou, S. C., Rocchi, R., Landek-Salgado, M. A., Suzuki, K., Kimura, M., Rose, N. R., & Caturegli, P. (2009). Immunoproteasome overexpression underlies the pathogenesis of thyroid oncocytes and primary hypothyroidism: studies in humans and mice. PLoS One, 4, e7857.PubMedPubMedCentralCrossRef
89.
go back to reference Koerner, J., Brunner, T., and Groettrup, M. (2017). Inhibition and deficiency of the immunoproteasome subunit LMP7 suppress the development and progression of colorectal carcinoma in mice. Oncotarget. Koerner, J., Brunner, T., and Groettrup, M. (2017). Inhibition and deficiency of the immunoproteasome subunit LMP7 suppress the development and progression of colorectal carcinoma in mice. Oncotarget.
90.
go back to reference Kuhn, D. J., & Orlowski, R. Z. (2012). The immunoproteasome as a target in hematologic malignancies. Seminars in Hematology, 49, 258–262.PubMedCrossRef Kuhn, D. J., & Orlowski, R. Z. (2012). The immunoproteasome as a target in hematologic malignancies. Seminars in Hematology, 49, 258–262.PubMedCrossRef
91.
go back to reference Kuhn, D. J., Hunsucker, S. A., Chen, Q., Voorhees, P. M., Orlowski, M., & Orlowski, R. Z. (2009). Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood, 113, 4667–4676.PubMedPubMedCentralCrossRef Kuhn, D. J., Hunsucker, S. A., Chen, Q., Voorhees, P. M., Orlowski, M., & Orlowski, R. Z. (2009). Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood, 113, 4667–4676.PubMedPubMedCentralCrossRef
92.
go back to reference Vachharajani, N., Joeris, T., Luu, M., Hartmann, S., Pautz, S., Jenike, E., Pantazis, G., Prinz, I., Hofer, M.J., Steinhoff, U., and Visekruna, A. (2017). Prevention of colitis-associated cancer by selective targeting of immunoproteasome subunit LMP7. Oncotarget. Vachharajani, N., Joeris, T., Luu, M., Hartmann, S., Pautz, S., Jenike, E., Pantazis, G., Prinz, I., Hofer, M.J., Steinhoff, U., and Visekruna, A. (2017). Prevention of colitis-associated cancer by selective targeting of immunoproteasome subunit LMP7. Oncotarget.
93.
go back to reference Areste, C., & Blackbourn, D. J. (2006). HIV tTat-mediated transcriptional regulation of proteasome protein cleavage specificity. The Biochemical Journal, 396, e13–e15.PubMedPubMedCentralCrossRef Areste, C., & Blackbourn, D. J. (2006). HIV tTat-mediated transcriptional regulation of proteasome protein cleavage specificity. The Biochemical Journal, 396, e13–e15.PubMedPubMedCentralCrossRef
94.
go back to reference Berhane, S., Areste, C., Ablack, J. N., Ryan, G. B., Blackbourn, D. J., Mymryk, J. S., Turnell, A. S., Steele, J. C., & Grand, R. J. (2011). Adenovirus E1A interacts directly with, and regulates the level of expression of, the immunoproteasome component MECL1. Virology, 421, 149–158.PubMedCrossRef Berhane, S., Areste, C., Ablack, J. N., Ryan, G. B., Blackbourn, D. J., Mymryk, J. S., Turnell, A. S., Steele, J. C., & Grand, R. J. (2011). Adenovirus E1A interacts directly with, and regulates the level of expression of, the immunoproteasome component MECL1. Virology, 421, 149–158.PubMedCrossRef
95.
go back to reference Callahan, M. K., Wohlfert, E. A., Menoret, A., & Srivastava, P. K. (2006). Heat shock up-regulates lmp2 and lmp7 and enhances presentation of immunoproteasome-dependent epitopes. Journal of Immunology, 177, 8393–8399.CrossRef Callahan, M. K., Wohlfert, E. A., Menoret, A., & Srivastava, P. K. (2006). Heat shock up-regulates lmp2 and lmp7 and enhances presentation of immunoproteasome-dependent epitopes. Journal of Immunology, 177, 8393–8399.CrossRef
96.
go back to reference Khan, M. A., Oubrahim, H., & Stadtman, E. R. (2004). Inhibition of apoptosis in acute promyelocytic leukemia cells leads to increases in levels of oxidized protein and LMP2 immunoproteasome. Proceedings of the National Academy of Sciences of the United States of America, 101, 11560–11565.PubMedPubMedCentralCrossRef Khan, M. A., Oubrahim, H., & Stadtman, E. R. (2004). Inhibition of apoptosis in acute promyelocytic leukemia cells leads to increases in levels of oxidized protein and LMP2 immunoproteasome. Proceedings of the National Academy of Sciences of the United States of America, 101, 11560–11565.PubMedPubMedCentralCrossRef
97.
go back to reference Moschonas, A., Kouraki, M., Knox, P. G., Thymiakou, E., Kardassis, D., & Eliopoulos, A. G. (2008). CD40 induces antigen transporter and immunoproteasome gene expression in carcinomas via the coordinated action of NF-kappaB and of NF-kappaB-mediated de novo synthesis of IRF-1. Molecular and Cellular Biology, 28, 6208–6222.PubMedPubMedCentralCrossRef Moschonas, A., Kouraki, M., Knox, P. G., Thymiakou, E., Kardassis, D., & Eliopoulos, A. G. (2008). CD40 induces antigen transporter and immunoproteasome gene expression in carcinomas via the coordinated action of NF-kappaB and of NF-kappaB-mediated de novo synthesis of IRF-1. Molecular and Cellular Biology, 28, 6208–6222.PubMedPubMedCentralCrossRef
98.
go back to reference Rouette, A., Trofimov, A., Haberl, D., Boucher, G., Lavallee, V. P., D’Angelo, G., Hebert, J., Sauvageau, G., Lemieux, S., & Perreault, C. (2016). Expression of immunoproteasome genes is regulated by cell-intrinsic and -extrinsic factors in human cancers. Scientific Reports, 6, 34019.PubMedPubMedCentralCrossRef Rouette, A., Trofimov, A., Haberl, D., Boucher, G., Lavallee, V. P., D’Angelo, G., Hebert, J., Sauvageau, G., Lemieux, S., & Perreault, C. (2016). Expression of immunoproteasome genes is regulated by cell-intrinsic and -extrinsic factors in human cancers. Scientific Reports, 6, 34019.PubMedPubMedCentralCrossRef
99.
go back to reference Boes, B., Hengel, H., Ruppert, T., Multhaup, G., Koszinowski, U. H., & Kloetzel, P. M. (1994). Interferon gamma stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. The Journal of Experimental Medicine, 179, 901–909.PubMedCrossRef Boes, B., Hengel, H., Ruppert, T., Multhaup, G., Koszinowski, U. H., & Kloetzel, P. M. (1994). Interferon gamma stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. The Journal of Experimental Medicine, 179, 901–909.PubMedCrossRef
100.
go back to reference Gaczynska, M., Rock, K. L., & Goldberg, A. L. (1993). Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature, 365, 264–267.PubMedCrossRef Gaczynska, M., Rock, K. L., & Goldberg, A. L. (1993). Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature, 365, 264–267.PubMedCrossRef
101.
go back to reference Kloetzel, P. M., & Ossendorp, F. (2004). Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Current Opinion in Immunology, 16, 76–81.PubMedCrossRef Kloetzel, P. M., & Ossendorp, F. (2004). Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Current Opinion in Immunology, 16, 76–81.PubMedCrossRef
102.
go back to reference Rivett, A. J., Bose, S., Brooks, P., & Broadfoot, K. I. (2001). Regulation of proteasome complexes by gamma-interferon and phosphorylation. Biochimie, 83, 363–366.PubMedCrossRef Rivett, A. J., Bose, S., Brooks, P., & Broadfoot, K. I. (2001). Regulation of proteasome complexes by gamma-interferon and phosphorylation. Biochimie, 83, 363–366.PubMedCrossRef
103.
go back to reference Tanaka, K. (1994). Role of proteasomes modified by interferon-gamma in antigen processing. Journal of Leukocyte Biology, 56, 571–575.PubMed Tanaka, K. (1994). Role of proteasomes modified by interferon-gamma in antigen processing. Journal of Leukocyte Biology, 56, 571–575.PubMed
104.
go back to reference White, L. C., Wright, K. L., Felix, N. J., Ruffner, H., Reis, L. F., Pine, R., & Ting, J. P. (1996). Regulation of LMP2 and TAP1 genes by IRF-1 explains the paucity of CD8+ T cells in IRF-1-/- mice. Immunity, 5, 365–376.PubMedCrossRef White, L. C., Wright, K. L., Felix, N. J., Ruffner, H., Reis, L. F., Pine, R., & Ting, J. P. (1996). Regulation of LMP2 and TAP1 genes by IRF-1 explains the paucity of CD8+ T cells in IRF-1-/- mice. Immunity, 5, 365–376.PubMedCrossRef
105.
go back to reference Niewerth, D., Kaspers, G. J., Assaraf, Y. G., van Meerloo, J., Kirk, C. J., Anderl, J., Blank, J. L., van de Ven, P. M., Zweegman, S., Jansen, G., & Cloos, J. (2014). Interferon-gamma-induced upregulation of immunoproteasome subunit assembly overcomes bortezomib resistance in human hematological cell lines. Journal of Hematology & Oncology, 7, 7.CrossRef Niewerth, D., Kaspers, G. J., Assaraf, Y. G., van Meerloo, J., Kirk, C. J., Anderl, J., Blank, J. L., van de Ven, P. M., Zweegman, S., Jansen, G., & Cloos, J. (2014). Interferon-gamma-induced upregulation of immunoproteasome subunit assembly overcomes bortezomib resistance in human hematological cell lines. Journal of Hematology & Oncology, 7, 7.CrossRef
106.
go back to reference Tripathi, S. C., Peters, H. L., Taguchi, A., Katayama, H., Wang, H., Momin, A., Jolly, M. K., Celiktas, M., Rodriguez-Canales, J., Liu, H., Behrens, C., Wistuba, I. I., Ben-Jacob, E., Levine, H., Molldrem, J. J., Hanash, S. M., & Ostrin, E. J. (2016). Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome. Proceedings of the National Academy of Sciences of the United States of America, 113, E1555–E1564.PubMedPubMedCentralCrossRef Tripathi, S. C., Peters, H. L., Taguchi, A., Katayama, H., Wang, H., Momin, A., Jolly, M. K., Celiktas, M., Rodriguez-Canales, J., Liu, H., Behrens, C., Wistuba, I. I., Ben-Jacob, E., Levine, H., Molldrem, J. J., Hanash, S. M., & Ostrin, E. J. (2016). Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome. Proceedings of the National Academy of Sciences of the United States of America, 113, E1555–E1564.PubMedPubMedCentralCrossRef
107.
go back to reference Yang, X. W., Wang, P., Liu, J. Q., Zhang, H., Xi, W. D., Jia, X. H., & Wang, K. K. (2014). Coordinated regulation of the immunoproteasome subunits by PML/RARalpha and PU.1 in acute promyelocytic leukemia. Oncogene, 33, 2700–2708.PubMedCrossRef Yang, X. W., Wang, P., Liu, J. Q., Zhang, H., Xi, W. D., Jia, X. H., & Wang, K. K. (2014). Coordinated regulation of the immunoproteasome subunits by PML/RARalpha and PU.1 in acute promyelocytic leukemia. Oncogene, 33, 2700–2708.PubMedCrossRef
108.
go back to reference Zhang, X. D., Baladandayuthapani, V., Lin, H., Mulligan, G., Li, B., Esseltine, D. L., Qi, L., Xu, J., Hunziker, W., Barlogie, B., Usmani, S. Z., Zhang, Q., Crowley, J., Hoering, A., Shah, J. J., Weber, D. M., Manasanch, E. E., Thomas, S. K., Li, B. Z., Wang, H. H., Zhang, J., Kuiatse, I., Tang, J. L., Wang, H., He, J., Yang, J., Milan, E., Cenci, S., Ma, W. C., Wang, Z. Q., Davis, R. E., Yang, L., & Orlowski, R. Z. (2016). Tight junction protein 1 modulates proteasome capacity and proteasome inhibitor sensitivity in multiple myeloma via EGFR/JAK1/STAT3 signaling. Cancer Cell, 29, 639–652.PubMedPubMedCentralCrossRef Zhang, X. D., Baladandayuthapani, V., Lin, H., Mulligan, G., Li, B., Esseltine, D. L., Qi, L., Xu, J., Hunziker, W., Barlogie, B., Usmani, S. Z., Zhang, Q., Crowley, J., Hoering, A., Shah, J. J., Weber, D. M., Manasanch, E. E., Thomas, S. K., Li, B. Z., Wang, H. H., Zhang, J., Kuiatse, I., Tang, J. L., Wang, H., He, J., Yang, J., Milan, E., Cenci, S., Ma, W. C., Wang, Z. Q., Davis, R. E., Yang, L., & Orlowski, R. Z. (2016). Tight junction protein 1 modulates proteasome capacity and proteasome inhibitor sensitivity in multiple myeloma via EGFR/JAK1/STAT3 signaling. Cancer Cell, 29, 639–652.PubMedPubMedCentralCrossRef
109.
go back to reference Tsvetkov, P., Sokol, E., Jin, D., Brune, Z., Thiru, P., Ghandi, M., Garraway, L. A., Gupta, P. B., Santagata, S., Whitesell, L., & Lindquist, S. (2017). Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers. Proceedings of the National Academy of Sciences of the United States of America, 114, 382–387.PubMedCrossRef Tsvetkov, P., Sokol, E., Jin, D., Brune, Z., Thiru, P., Ghandi, M., Garraway, L. A., Gupta, P. B., Santagata, S., Whitesell, L., & Lindquist, S. (2017). Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers. Proceedings of the National Academy of Sciences of the United States of America, 114, 382–387.PubMedCrossRef
110.
go back to reference Acosta-Alvear, D., Cho, M. Y., Wild, T., Buchholz, T. J., Lerner, A. G., Simakova, O., Hahn, J., Korde, N., Landgren, O., Maric, I., Choudhary, C., Walter, P., Weissman, J. S., & Kampmann, M. (2015). Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits. eLife, 4, e08153.PubMedPubMedCentralCrossRef Acosta-Alvear, D., Cho, M. Y., Wild, T., Buchholz, T. J., Lerner, A. G., Simakova, O., Hahn, J., Korde, N., Landgren, O., Maric, I., Choudhary, C., Walter, P., Weissman, J. S., & Kampmann, M. (2015). Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits. eLife, 4, e08153.PubMedPubMedCentralCrossRef
111.
go back to reference Chen, B. F., Suen, Y. K., Gu, S., Li, L., & Chan, W. Y. (2014). A miR-199a/miR-214 self-regulatory network via PSMD10, TP53 and DNMT1 in testicular germ cell tumor. Scientific Reports, 4, 6413.PubMedPubMedCentralCrossRef Chen, B. F., Suen, Y. K., Gu, S., Li, L., & Chan, W. Y. (2014). A miR-199a/miR-214 self-regulatory network via PSMD10, TP53 and DNMT1 in testicular germ cell tumor. Scientific Reports, 4, 6413.PubMedPubMedCentralCrossRef
112.
go back to reference Jagannathan, S., Vad, N., Vallabhapurapu, S., Vallabhapurapu, S., Anderson, K. C., & Driscoll, J. J. (2015). MiR-29b replacement inhibits proteasomes and disrupts aggresome+autophagosome formation to enhance the antimyeloma benefit of bortezomib. Leukemia, 29, 727–738.PubMedCrossRef Jagannathan, S., Vad, N., Vallabhapurapu, S., Vallabhapurapu, S., Anderson, K. C., & Driscoll, J. J. (2015). MiR-29b replacement inhibits proteasomes and disrupts aggresome+autophagosome formation to enhance the antimyeloma benefit of bortezomib. Leukemia, 29, 727–738.PubMedCrossRef
113.
go back to reference Li, J., Tian, F., Li, D., Chen, J., Jiang, P., Zheng, S., Li, X., & Wang, S. (2014). MiR-605 represses PSMD10/Gankyrin and inhibits intrahepatic cholangiocarcinoma cell progression. FEBS Letters, 588, 3491–3500.PubMedCrossRef Li, J., Tian, F., Li, D., Chen, J., Jiang, P., Zheng, S., Li, X., & Wang, S. (2014). MiR-605 represses PSMD10/Gankyrin and inhibits intrahepatic cholangiocarcinoma cell progression. FEBS Letters, 588, 3491–3500.PubMedCrossRef
114.
go back to reference Sanchez, N., Gallagher, M., Lao, N., Gallagher, C., Clarke, C., Doolan, P., Aherne, S., Blanco, A., Meleady, P., Clynes, M., & Barron, N. (2013). MiR-7 triggers cell cycle arrest at the G1/S transition by targeting multiple genes including Skp2 and Psme3. PLoS One, 8, e65671.PubMedPubMedCentralCrossRef Sanchez, N., Gallagher, M., Lao, N., Gallagher, C., Clarke, C., Doolan, P., Aherne, S., Blanco, A., Meleady, P., Clynes, M., & Barron, N. (2013). MiR-7 triggers cell cycle arrest at the G1/S transition by targeting multiple genes including Skp2 and Psme3. PLoS One, 8, e65671.PubMedPubMedCentralCrossRef
115.
go back to reference Shi, Y., Luo, X., Li, P., Tan, J., Wang, X., Xiang, T., & Ren, G. (2015). miR-7-5p suppresses cell proliferation and induces apoptosis of breast cancer cells mainly by targeting REGgamma. Cancer Letters, 358, 27–36.PubMedCrossRef Shi, Y., Luo, X., Li, P., Tan, J., Wang, X., Xiang, T., & Ren, G. (2015). miR-7-5p suppresses cell proliferation and induces apoptosis of breast cancer cells mainly by targeting REGgamma. Cancer Letters, 358, 27–36.PubMedCrossRef
116.
go back to reference Xiong, S., Zheng, Y., Jiang, P., Liu, R., Liu, X., Qian, J., Gu, J., Chang, L., Ge, D., & Chu, Y. (2014). PA28gamma emerges as a novel functional target of tumour suppressor microRNA-7 in non-small-cell lung cancer. British Journal of Cancer, 110, 353–362.PubMedCrossRef Xiong, S., Zheng, Y., Jiang, P., Liu, R., Liu, X., Qian, J., Gu, J., Chang, L., Ge, D., & Chu, Y. (2014). PA28gamma emerges as a novel functional target of tumour suppressor microRNA-7 in non-small-cell lung cancer. British Journal of Cancer, 110, 353–362.PubMedCrossRef
117.
go back to reference Yin, P., Peng, R., Peng, H., Yao, L., Sun, Y., Wen, L., Wu, T., Zhou, J., & Zhang, Z. (2015). MiR-451 suppresses cell proliferation and metastasis in A549 lung cancer cells. Molecular Biotechnology, 57, 1–11.PubMedCrossRef Yin, P., Peng, R., Peng, H., Yao, L., Sun, Y., Wen, L., Wu, T., Zhou, J., & Zhang, Z. (2015). MiR-451 suppresses cell proliferation and metastasis in A549 lung cancer cells. Molecular Biotechnology, 57, 1–11.PubMedCrossRef
118.
go back to reference Zhang, X., Schulz, R., Edmunds, S., Kruger, E., Markert, E., Gaedcke, J., Cormet-Boyaka, E., Ghadimi, M., Beissbarth, T., Levine, A. J., Moll, U. M., & Dobbelstein, M. (2015). MicroRNA-101 suppresses tumor cell proliferation by acting as an endogenous proteasome inhibitor via targeting the proteasome assembly factor POMP. Molecular Cell, 59, 243–257.PubMedCrossRef Zhang, X., Schulz, R., Edmunds, S., Kruger, E., Markert, E., Gaedcke, J., Cormet-Boyaka, E., Ghadimi, M., Beissbarth, T., Levine, A. J., Moll, U. M., & Dobbelstein, M. (2015). MicroRNA-101 suppresses tumor cell proliferation by acting as an endogenous proteasome inhibitor via targeting the proteasome assembly factor POMP. Molecular Cell, 59, 243–257.PubMedCrossRef
119.
go back to reference Zhu, S., Huang, Y., & Su, X. (2016). Mir-451 correlates with prognosis of renal cell carcinoma patients and inhibits cellular proliferation of renal cell carcinoma. Medical Science Monitor, 22, 183–190.PubMedPubMedCentralCrossRef Zhu, S., Huang, Y., & Su, X. (2016). Mir-451 correlates with prognosis of renal cell carcinoma patients and inhibits cellular proliferation of renal cell carcinoma. Medical Science Monitor, 22, 183–190.PubMedPubMedCentralCrossRef
120.
go back to reference Su, H., Yang, J. R., Xu, T., Huang, J., Xu, L., Yuan, Y., & Zhuang, S. M. (2009). MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Research, 69, 1135–1142.PubMedCrossRef Su, H., Yang, J. R., Xu, T., Huang, J., Xu, L., Yuan, Y., & Zhuang, S. M. (2009). MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Research, 69, 1135–1142.PubMedCrossRef
121.
go back to reference Varambally, S., Cao, Q., Mani, R. S., Shankar, S., Wang, X., Ateeq, B., Laxman, B., Cao, X., Jing, X., Ramnarayanan, K., Brenner, J. C., Yu, J., Kim, J. H., Han, B., Tan, P., Kumar-Sinha, C., Lonigro, R. J., Palanisamy, N., Maher, C. A., & Chinnaiyan, A. M. (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 322, 1695–1699.PubMedPubMedCentralCrossRef Varambally, S., Cao, Q., Mani, R. S., Shankar, S., Wang, X., Ateeq, B., Laxman, B., Cao, X., Jing, X., Ramnarayanan, K., Brenner, J. C., Yu, J., Kim, J. H., Han, B., Tan, P., Kumar-Sinha, C., Lonigro, R. J., Palanisamy, N., Maher, C. A., & Chinnaiyan, A. M. (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 322, 1695–1699.PubMedPubMedCentralCrossRef
122.
go back to reference Horsham, J. L., Kalinowski, F. C., Epis, M. R., Ganda, C., Brown, R. A., & Leedman, P. J. (2015). Clinical potential of microRNA-7 in cancer. Journal of Clinical Medicine, 4, 1668–1687.PubMedPubMedCentralCrossRef Horsham, J. L., Kalinowski, F. C., Epis, M. R., Ganda, C., Brown, R. A., & Leedman, P. J. (2015). Clinical potential of microRNA-7 in cancer. Journal of Clinical Medicine, 4, 1668–1687.PubMedPubMedCentralCrossRef
123.
go back to reference Bronevetsky, Y., Villarino, A. V., Eisley, C. J., Barbeau, R., Barczak, A. J., Heinz, G. A., Kremmer, E., Heissmeyer, V., McManus, M. T., Erle, D. J., Rao, A., & Ansel, K. M. (2013). T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. The Journal of Experimental Medicine, 210, 417–432.PubMedPubMedCentralCrossRef Bronevetsky, Y., Villarino, A. V., Eisley, C. J., Barbeau, R., Barczak, A. J., Heinz, G. A., Kremmer, E., Heissmeyer, V., McManus, M. T., Erle, D. J., Rao, A., & Ansel, K. M. (2013). T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. The Journal of Experimental Medicine, 210, 417–432.PubMedPubMedCentralCrossRef
124.
go back to reference Smibert, P., Yang, J. S., Azzam, G., Liu, J. L., & Lai, E. C. (2013). Homeostatic control of Argonaute stability by microRNA availability. Nature Structural & Molecular Biology, 20, 789–795.CrossRef Smibert, P., Yang, J. S., Azzam, G., Liu, J. L., & Lai, E. C. (2013). Homeostatic control of Argonaute stability by microRNA availability. Nature Structural & Molecular Biology, 20, 789–795.CrossRef
125.
go back to reference Tsimokha, A. S., Kulichkova, V. A., Karpova, E. V., Zaykova, J. J., Aksenov, N. D., Vasilishina, A. A., Kropotov, A. V., Antonov, A., & Barlev, N. A. (2014). DNA damage modulates interactions between microRNAs and the 26S proteasome. Oncotarget, 5, 3555–3567.PubMedPubMedCentralCrossRef Tsimokha, A. S., Kulichkova, V. A., Karpova, E. V., Zaykova, J. J., Aksenov, N. D., Vasilishina, A. A., Kropotov, A. V., Antonov, A., & Barlev, N. A. (2014). DNA damage modulates interactions between microRNAs and the 26S proteasome. Oncotarget, 5, 3555–3567.PubMedPubMedCentralCrossRef
126.
go back to reference Besche, H. C., Sha, Z., Kukushkin, N. V., Peth, A., Hock, E. M., Kim, W., Gygi, S., Gutierrez, J. A., Liao, H., Dick, L., & Goldberg, A. L. (2014). Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. The EMBO Journal, 33, 1159–1176.PubMedPubMedCentralCrossRef Besche, H. C., Sha, Z., Kukushkin, N. V., Peth, A., Hock, E. M., Kim, W., Gygi, S., Gutierrez, J. A., Liao, H., Dick, L., & Goldberg, A. L. (2014). Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. The EMBO Journal, 33, 1159–1176.PubMedPubMedCentralCrossRef
127.
go back to reference Guo, X., Huang, X., & Chen, M. J. (2017). Reversible phosphorylation of the 26S proteasome. Protein & Cell, 8, 255–272.CrossRef Guo, X., Huang, X., & Chen, M. J. (2017). Reversible phosphorylation of the 26S proteasome. Protein & Cell, 8, 255–272.CrossRef
128.
go back to reference Jacobson, A. D., MacFadden, A., Wu, Z., Peng, J., & Liu, C.-W. (2014). Autoregulation of the 26S proteasome by in situ ubiquitination. Molecular Biology of the Cell, 25, 1824–1835.PubMedPubMedCentralCrossRef Jacobson, A. D., MacFadden, A., Wu, Z., Peng, J., & Liu, C.-W. (2014). Autoregulation of the 26S proteasome by in situ ubiquitination. Molecular Biology of the Cell, 25, 1824–1835.PubMedPubMedCentralCrossRef
129.
go back to reference Cui, Z., Scruggs, S. B., Gilda, J. E., Ping, P., & Gomes, A. V. (2014). Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond. Journal of Molecular and Cellular Cardiology, 71, 32–42.PubMedCrossRef Cui, Z., Scruggs, S. B., Gilda, J. E., Ping, P., & Gomes, A. V. (2014). Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond. Journal of Molecular and Cellular Cardiology, 71, 32–42.PubMedCrossRef
130.
go back to reference Livneh, I., Cohen-Kaplan, V., Cohen-Rosenzweig, C., Avni, N., & Ciechanover, A. (2016). The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Research, 26, 869–885.PubMedPubMedCentralCrossRef Livneh, I., Cohen-Kaplan, V., Cohen-Rosenzweig, C., Avni, N., & Ciechanover, A. (2016). The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Research, 26, 869–885.PubMedPubMedCentralCrossRef
131.
go back to reference Schmidt, M., & Finley, D. (2014). Regulation of proteasome activity in health and disease. Biochimica et Biophysica Acta, 1843, 13–25.PubMedCrossRef Schmidt, M., & Finley, D. (2014). Regulation of proteasome activity in health and disease. Biochimica et Biophysica Acta, 1843, 13–25.PubMedCrossRef
132.
go back to reference Scruggs, S. B., Zong, N. C., Wang, D., Stefani, E., & Ping, P. (2012). Post-translational modification of cardiac proteasomes: functional delineation enabled by proteomics. American Journal of Physiology. Heart and Circulatory Physiology, 303, H9–18.PubMedPubMedCentralCrossRef Scruggs, S. B., Zong, N. C., Wang, D., Stefani, E., & Ping, P. (2012). Post-translational modification of cardiac proteasomes: functional delineation enabled by proteomics. American Journal of Physiology. Heart and Circulatory Physiology, 303, H9–18.PubMedPubMedCentralCrossRef
133.
go back to reference Guo, X., Wang, X., Wang, Z., Banerjee, S., Yang, J., Huang, L., & Dixon, J. E. (2016). Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nature Cell Biology, 18, 202–212.PubMedCrossRef Guo, X., Wang, X., Wang, Z., Banerjee, S., Yang, J., Huang, L., & Dixon, J. E. (2016). Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nature Cell Biology, 18, 202–212.PubMedCrossRef
134.
go back to reference Dephoure, N., Zhou, C., Villen, J., Beausoleil, S. A., Bakalarski, C. E., Elledge, S. J., & Gygi, S. P. (2008). A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 105, 10762–10767.PubMedPubMedCentralCrossRef Dephoure, N., Zhou, C., Villen, J., Beausoleil, S. A., Bakalarski, C. E., Elledge, S. J., & Gygi, S. P. (2008). A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 105, 10762–10767.PubMedPubMedCentralCrossRef
135.
go back to reference Bai, Y., Li, J., Fang, B., Edwards, A., Zhang, G., Bui, M., Eschrich, S., Altiok, S., Koomen, J., & Haura, E. B. (2012). Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors. Cancer Research, 72, 2501–2511.PubMedPubMedCentralCrossRef Bai, Y., Li, J., Fang, B., Edwards, A., Zhang, G., Bui, M., Eschrich, S., Altiok, S., Koomen, J., & Haura, E. B. (2012). Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors. Cancer Research, 72, 2501–2511.PubMedPubMedCentralCrossRef
136.
go back to reference Choudhary, C., Olsen, J. V., Brandts, C., Cox, J., Reddy, P. N., Bohmer, F. D., Gerke, V., Schmidt-Arras, D. E., Berdel, W. E., Muller-Tidow, C., Mann, M., & Serve, H. (2009). Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Molecular Cell, 36, 326–339.PubMedCrossRef Choudhary, C., Olsen, J. V., Brandts, C., Cox, J., Reddy, P. N., Bohmer, F. D., Gerke, V., Schmidt-Arras, D. E., Berdel, W. E., Muller-Tidow, C., Mann, M., & Serve, H. (2009). Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Molecular Cell, 36, 326–339.PubMedCrossRef
137.
go back to reference Drake, J. M., Graham, N. A., Stoyanova, T., Sedghi, A., Goldstein, A. S., Cai, H., Smith, D. A., Zhang, H., Komisopoulou, E., Huang, J., Graeber, T. G., & Witte, O. N. (2012). Oncogene-specific activation of tyrosine kinase networks during prostate cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 109, 1643–1648.PubMedPubMedCentralCrossRef Drake, J. M., Graham, N. A., Stoyanova, T., Sedghi, A., Goldstein, A. S., Cai, H., Smith, D. A., Zhang, H., Komisopoulou, E., Huang, J., Graeber, T. G., & Witte, O. N. (2012). Oncogene-specific activation of tyrosine kinase networks during prostate cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 109, 1643–1648.PubMedPubMedCentralCrossRef
138.
go back to reference Eang, R., Girbal-Neuhauser, E., Xu, B., & Gairin, J. E. (2009). Characterization and differential expression of a newly identified phosphorylated isoform of the human 20S proteasome beta7 subunit in tumor vs. normal cell lines. Fundamental & Clinical Pharmacology, 23, 215–224.CrossRef Eang, R., Girbal-Neuhauser, E., Xu, B., & Gairin, J. E. (2009). Characterization and differential expression of a newly identified phosphorylated isoform of the human 20S proteasome beta7 subunit in tumor vs. normal cell lines. Fundamental & Clinical Pharmacology, 23, 215–224.CrossRef
139.
go back to reference Gu, T. L., Goss, V. L., Reeves, C., Popova, L., Nardone, J., Macneill, J., Walters, D. K., Wang, Y., Rush, J., Comb, M. J., Druker, B. J., & Polakiewicz, R. D. (2006). Phosphotyrosine profiling identifies the KG-1 cell line as a model for the study of FGFR1 fusions in acute myeloid leukemia. Blood, 108, 4202–4204.PubMedCrossRef Gu, T. L., Goss, V. L., Reeves, C., Popova, L., Nardone, J., Macneill, J., Walters, D. K., Wang, Y., Rush, J., Comb, M. J., Druker, B. J., & Polakiewicz, R. D. (2006). Phosphotyrosine profiling identifies the KG-1 cell line as a model for the study of FGFR1 fusions in acute myeloid leukemia. Blood, 108, 4202–4204.PubMedCrossRef
140.
go back to reference Guo, A., Villen, J., Kornhauser, J., Lee, K. A., Stokes, M. P., Rikova, K., Possemato, A., Nardone, J., Innocenti, G., Wetzel, R., Wang, Y., MacNeill, J., Mitchell, J., Gygi, S. P., Rush, J., Polakiewicz, R. D., & Comb, M. J. (2008). Signaling networks assembled by oncogenic EGFR and c-Met. Proceedings of the National Academy of Sciences of the United States of America, 105, 692–697.PubMedPubMedCentralCrossRef Guo, A., Villen, J., Kornhauser, J., Lee, K. A., Stokes, M. P., Rikova, K., Possemato, A., Nardone, J., Innocenti, G., Wetzel, R., Wang, Y., MacNeill, J., Mitchell, J., Gygi, S. P., Rush, J., Polakiewicz, R. D., & Comb, M. J. (2008). Signaling networks assembled by oncogenic EGFR and c-Met. Proceedings of the National Academy of Sciences of the United States of America, 105, 692–697.PubMedPubMedCentralCrossRef
141.
go back to reference Iliuk, A. B., Martin, V. A., Alicie, B. M., Geahlen, R. L., & Tao, W. A. (2010). In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Molecular & Cellular Proteomics, 9, 2162–2172.CrossRef Iliuk, A. B., Martin, V. A., Alicie, B. M., Geahlen, R. L., & Tao, W. A. (2010). In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Molecular & Cellular Proteomics, 9, 2162–2172.CrossRef
142.
go back to reference Johnson, H., & White, F. M. (2014). Quantitative analysis of signaling networks across differentially embedded tumors highlights interpatient heterogeneity in human glioblastoma. Journal of Proteome Research, 13, 4581–4593.PubMedPubMedCentralCrossRef Johnson, H., & White, F. M. (2014). Quantitative analysis of signaling networks across differentially embedded tumors highlights interpatient heterogeneity in human glioblastoma. Journal of Proteome Research, 13, 4581–4593.PubMedPubMedCentralCrossRef
143.
go back to reference Johnson, H., Del Rosario, A. M., Bryson, B. D., Schroeder, M. A., Sarkaria, J. N., & White, F. M. (2012). Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts. Molecular & Cellular Proteomics, 11, 1724–1740.CrossRef Johnson, H., Del Rosario, A. M., Bryson, B. D., Schroeder, M. A., Sarkaria, J. N., & White, F. M. (2012). Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts. Molecular & Cellular Proteomics, 11, 1724–1740.CrossRef
144.
go back to reference Luo, W., Slebos, R. J., Hill, S., Li, M., Brabek, J., Amanchy, R., Chaerkady, R., Pandey, A., Ham, A. J., & Hanks, S. K. (2008). Global impact of oncogenic Src on a phosphotyrosine proteome. Journal of Proteome Research, 7, 3447–3460.PubMedPubMedCentralCrossRef Luo, W., Slebos, R. J., Hill, S., Li, M., Brabek, J., Amanchy, R., Chaerkady, R., Pandey, A., Ham, A. J., & Hanks, S. K. (2008). Global impact of oncogenic Src on a phosphotyrosine proteome. Journal of Proteome Research, 7, 3447–3460.PubMedPubMedCentralCrossRef
145.
go back to reference Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., Nardone, J., Lee, K., Reeves, C., Li, Y., Hu, Y., Tan, Z., Stokes, M., Sullivan, L., Mitchell, J., Wetzel, R., Macneill, J., Ren, J. M., Yuan, J., Bakalarski, C. E., Villen, J., Kornhauser, J. M., Smith, B., Li, D., Zhou, X., Gygi, S. P., Gu, T. L., Polakiewicz, R. D., Rush, J., & Comb, M. J. (2007). Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, 131, 1190–1203.PubMedCrossRef Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., Nardone, J., Lee, K., Reeves, C., Li, Y., Hu, Y., Tan, Z., Stokes, M., Sullivan, L., Mitchell, J., Wetzel, R., Macneill, J., Ren, J. M., Yuan, J., Bakalarski, C. E., Villen, J., Kornhauser, J. M., Smith, B., Li, D., Zhou, X., Gygi, S. P., Gu, T. L., Polakiewicz, R. D., Rush, J., & Comb, M. J. (2007). Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, 131, 1190–1203.PubMedCrossRef
146.
go back to reference Rush, J., Moritz, A., Lee, K. A., Guo, A., Goss, V. L., Spek, E. J., Zhang, H., Zha, X. M., Polakiewicz, R. D., & Comb, M. J. (2005). Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nature Biotechnology, 23, 94–101.PubMedCrossRef Rush, J., Moritz, A., Lee, K. A., Guo, A., Goss, V. L., Spek, E. J., Zhang, H., Zha, X. M., Polakiewicz, R. D., & Comb, M. J. (2005). Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nature Biotechnology, 23, 94–101.PubMedCrossRef
147.
go back to reference Trost, M., Sauvageau, M., Herault, O., Deleris, P., Pomies, C., Chagraoui, J., Mayotte, N., Meloche, S., Sauvageau, G., & Thibault, P. (2012). Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood, 120, e17–e27.PubMedPubMedCentralCrossRef Trost, M., Sauvageau, M., Herault, O., Deleris, P., Pomies, C., Chagraoui, J., Mayotte, N., Meloche, S., Sauvageau, G., & Thibault, P. (2012). Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood, 120, e17–e27.PubMedPubMedCentralCrossRef
148.
go back to reference Yun, Y. S., Kim, K. H., Tschida, B., Sachs, Z., Noble-Orcutt, K. E., Moriarity, B. S., Ai, T., Ding, R., Williams, J., Chen, L., Largaespada, D., & Kim, D. H. (2016). mTORC1 coordinates protein synthesis and immunoproteasome formation via PRAS40 to prevent accumulation of protein stress. Molecular Cell, 61, 625–639.PubMedPubMedCentralCrossRef Yun, Y. S., Kim, K. H., Tschida, B., Sachs, Z., Noble-Orcutt, K. E., Moriarity, B. S., Ai, T., Ding, R., Williams, J., Chen, L., Largaespada, D., & Kim, D. H. (2016). mTORC1 coordinates protein synthesis and immunoproteasome formation via PRAS40 to prevent accumulation of protein stress. Molecular Cell, 61, 625–639.PubMedPubMedCentralCrossRef
149.
go back to reference Funakoshi, M., Tomko Jr., R. J., Kobayashi, H., & Hochstrasser, M. (2009). Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell, 137, 887–899.PubMedPubMedCentralCrossRef Funakoshi, M., Tomko Jr., R. J., Kobayashi, H., & Hochstrasser, M. (2009). Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell, 137, 887–899.PubMedPubMedCentralCrossRef
150.
go back to reference Kaneko, T., Hamazaki, J., Iemura, S., Sasaki, K., Furuyama, K., Natsume, T., Tanaka, K., & Murata, S. (2009). Assembly pathway of the mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell, 137, 914–925.PubMedCrossRef Kaneko, T., Hamazaki, J., Iemura, S., Sasaki, K., Furuyama, K., Natsume, T., Tanaka, K., & Murata, S. (2009). Assembly pathway of the mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell, 137, 914–925.PubMedCrossRef
151.
go back to reference Park, S., Roelofs, J., Kim, W., Robert, J., Schmidt, M., Gygi, S. P., & Finley, D. (2009). Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature, 459, 866–870.PubMedPubMedCentralCrossRef Park, S., Roelofs, J., Kim, W., Robert, J., Schmidt, M., Gygi, S. P., & Finley, D. (2009). Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature, 459, 866–870.PubMedPubMedCentralCrossRef
152.
go back to reference Roelofs, J., Park, S., Haas, W., Tian, G., McAllister, F. E., Huo, Y., Lee, B. H., Zhang, F., Shi, Y., Gygi, S. P., & Finley, D. (2009). Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature, 459, 861–865.PubMedPubMedCentralCrossRef Roelofs, J., Park, S., Haas, W., Tian, G., McAllister, F. E., Huo, Y., Lee, B. H., Zhang, F., Shi, Y., Gygi, S. P., & Finley, D. (2009). Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature, 459, 861–865.PubMedPubMedCentralCrossRef
153.
go back to reference Saeki, Y., Toh, E. A., Kudo, T., Kawamura, H., & Tanaka, K. (2009). Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell, 137, 900–913.PubMedCrossRef Saeki, Y., Toh, E. A., Kudo, T., Kawamura, H., & Tanaka, K. (2009). Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell, 137, 900–913.PubMedCrossRef
154.
go back to reference Jiang, Y., Iakova, P., Jin, J., Sullivan, E., Sharin, V., Hong, I. H., Anakk, S., Mayor, A., Darlington, G., Finegold, M., Moore, D., & Timchenko, N. A. (2013). Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer. Hepatology, 57, 1098–1106.PubMedPubMedCentralCrossRef Jiang, Y., Iakova, P., Jin, J., Sullivan, E., Sharin, V., Hong, I. H., Anakk, S., Mayor, A., Darlington, G., Finegold, M., Moore, D., & Timchenko, N. A. (2013). Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer. Hepatology, 57, 1098–1106.PubMedPubMedCentralCrossRef
155.
go back to reference Pei, T., Li, Y., Wang, J., Wang, H., Liang, Y., Shi, H., Sun, B., Yin, D., Sun, J., Song, R., Pan, S., Sun, Y., Jiang, H., Zheng, T., & Liu, L. (2015). YAP is a critical oncogene in human cholangiocarcinoma. Oncotarget, 6, 17206–17220.PubMedPubMedCentralCrossRef Pei, T., Li, Y., Wang, J., Wang, H., Liang, Y., Shi, H., Sun, B., Yin, D., Sun, J., Song, R., Pan, S., Sun, Y., Jiang, H., Zheng, T., & Liu, L. (2015). YAP is a critical oncogene in human cholangiocarcinoma. Oncotarget, 6, 17206–17220.PubMedPubMedCentralCrossRef
156.
go back to reference Su, B., Luo, T., Zhu, J., Fu, J., Zhao, X., Chen, L., Zhang, H., Ren, Y., Yu, L., Yang, X., Wu, M., Feng, G., Li, S., Chen, Y., & Wang, H. (2015). Interleukin-1beta/Iinterleukin-1 receptor-associated kinase 1 inflammatory signaling contributes to persistent gankyrin activation during hepatocarcinogenesis. Hepatology, 61, 585–597.PubMedCrossRef Su, B., Luo, T., Zhu, J., Fu, J., Zhao, X., Chen, L., Zhang, H., Ren, Y., Yu, L., Yang, X., Wu, M., Feng, G., Li, S., Chen, Y., & Wang, H. (2015). Interleukin-1beta/Iinterleukin-1 receptor-associated kinase 1 inflammatory signaling contributes to persistent gankyrin activation during hepatocarcinogenesis. Hepatology, 61, 585–597.PubMedCrossRef
157.
go back to reference Bai, Z., Tai, Y., Li, W., Zhen, C., Gu, W., Jian, Z., Wang, Q., Lin, J. E., Zhao, Q., Gong, W., Liang, B., Wang, C., & Zhou, T. (2013). Gankyrin activates IL-8 to promote hepatic metastasis of colorectal cancer. Cancer Research, 73, 4548–4558.PubMedCrossRef Bai, Z., Tai, Y., Li, W., Zhen, C., Gu, W., Jian, Z., Wang, Q., Lin, J. E., Zhao, Q., Gong, W., Liang, B., Wang, C., & Zhou, T. (2013). Gankyrin activates IL-8 to promote hepatic metastasis of colorectal cancer. Cancer Research, 73, 4548–4558.PubMedCrossRef
158.
go back to reference Wang, X., Jiang, B., & Zhang, Y. (2016). Gankyrin regulates cell signaling network. Tumour Biology, 37, 5675–5682.PubMedCrossRef Wang, X., Jiang, B., & Zhang, Y. (2016). Gankyrin regulates cell signaling network. Tumour Biology, 37, 5675–5682.PubMedCrossRef
159.
go back to reference Zhen, C., Chen, L., Zhao, Q., Liang, B., Gu, Y. X., Bai, Z. F., Wang, K., Xu, X., Han, Q. Y., Fang, D. F., Wang, S. X., Zhou, T., Xia, Q., Gong, W. L., Wang, N., Li, H. Y., Jin, B. F., & Man, J. H. (2013). Gankyrin promotes breast cancer cell metastasis by regulating Rac1 activity. Oncogene, 32, 3452–3460.PubMedCrossRef Zhen, C., Chen, L., Zhao, Q., Liang, B., Gu, Y. X., Bai, Z. F., Wang, K., Xu, X., Han, Q. Y., Fang, D. F., Wang, S. X., Zhou, T., Xia, Q., Gong, W. L., Wang, N., Li, H. Y., Jin, B. F., & Man, J. H. (2013). Gankyrin promotes breast cancer cell metastasis by regulating Rac1 activity. Oncogene, 32, 3452–3460.PubMedCrossRef
160.
go back to reference Voutsadakis, I. A. (2017). Proteasome expression and activity in cancer and cancer stem cells. Tumour Biology, 39, 1010428317692248.PubMedCrossRef Voutsadakis, I. A. (2017). Proteasome expression and activity in cancer and cancer stem cells. Tumour Biology, 39, 1010428317692248.PubMedCrossRef
161.
go back to reference Banno, A., Garcia, D. A., van Baarsel, E. D., Metz, P. J., Fisch, K., Widjaja, C. E., Kim, S. H., Lopez, J., Chang, A. N., Geurink, P. P., Florea, B. I., Overkleeft, H. S., Ovaa, H., Bui, J. D., Yang, J., & Chang, J. T. (2016). Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition. Oncotarget, 7, 21527–21541.PubMedPubMedCentralCrossRef Banno, A., Garcia, D. A., van Baarsel, E. D., Metz, P. J., Fisch, K., Widjaja, C. E., Kim, S. H., Lopez, J., Chang, A. N., Geurink, P. P., Florea, B. I., Overkleeft, H. S., Ovaa, H., Bui, J. D., Yang, J., & Chang, J. T. (2016). Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition. Oncotarget, 7, 21527–21541.PubMedPubMedCentralCrossRef
162.
go back to reference Gomes, A. V. (2013). Genetics of proteasome diseases. Scientifica (Cairo), 2013, 637629. Gomes, A. V. (2013). Genetics of proteasome diseases. Scientifica (Cairo), 2013, 637629.
163.
go back to reference Asano, S., Fukuda, Y., Beck, F., Aufderheide, A., Forster, F., Danev, R., & Baumeister, W. (2015). Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science, 347, 439–442.PubMedCrossRef Asano, S., Fukuda, Y., Beck, F., Aufderheide, A., Forster, F., Danev, R., & Baumeister, W. (2015). Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science, 347, 439–442.PubMedCrossRef
164.
go back to reference Huang, X., Luan, B., Wu, J., & Shi, Y. (2016). An atomic structure of the human 26S proteasome. Nature Structural & Molecular Biology, 23, 778–785.CrossRef Huang, X., Luan, B., Wu, J., & Shi, Y. (2016). An atomic structure of the human 26S proteasome. Nature Structural & Molecular Biology, 23, 778–785.CrossRef
165.
go back to reference Lee, B. H., Lu, Y., Prado, M. A., Shi, Y., Tian, G., Sun, S., Elsasser, S., Gygi, S. P., King, R. W., & Finley, D. (2016). USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature, 532, 398–401.PubMedPubMedCentralCrossRef Lee, B. H., Lu, Y., Prado, M. A., Shi, Y., Tian, G., Sun, S., Elsasser, S., Gygi, S. P., King, R. W., & Finley, D. (2016). USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature, 532, 398–401.PubMedPubMedCentralCrossRef
166.
go back to reference Lu, Y., Lee, B. H., King, R. W., Finley, D., & Kirschner, M. W. (2015). Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science, 348, 1250834.PubMedPubMedCentralCrossRef Lu, Y., Lee, B. H., King, R. W., Finley, D., & Kirschner, M. W. (2015). Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science, 348, 1250834.PubMedPubMedCentralCrossRef
167.
go back to reference Wang, X., Cimermancic, P., Yu, C., Schweitzer, A., Chopra, N., Engel, J. L., Greenberg, C., Huszagh, A. S., Beck, F., Sakata, E., Yang, Y., Novitsky, E. J., Leitner, A., Nanni, P., Kahraman, A., Guo, X., Dixon, J. E., Rychnovsky, S. D., Aebersold, R., Baumeister, W., Sali, A., & Huang, L. (2017). Molecular details underlying dynamic structures and regulation of the human 26S proteasome. Molecular & Cellular Proteomics, 16, 840–854.CrossRef Wang, X., Cimermancic, P., Yu, C., Schweitzer, A., Chopra, N., Engel, J. L., Greenberg, C., Huszagh, A. S., Beck, F., Sakata, E., Yang, Y., Novitsky, E. J., Leitner, A., Nanni, P., Kahraman, A., Guo, X., Dixon, J. E., Rychnovsky, S. D., Aebersold, R., Baumeister, W., Sali, A., & Huang, L. (2017). Molecular details underlying dynamic structures and regulation of the human 26S proteasome. Molecular & Cellular Proteomics, 16, 840–854.CrossRef
168.
go back to reference Lokireddy, S., Kukushkin, N. V., & Goldberg, A. L. (2015). cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proceedings of the National Academy of Sciences of the United States of America, 112, E7176–E7185.PubMedPubMedCentralCrossRef Lokireddy, S., Kukushkin, N. V., & Goldberg, A. L. (2015). cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proceedings of the National Academy of Sciences of the United States of America, 112, E7176–E7185.PubMedPubMedCentralCrossRef
169.
go back to reference Myeku, N., Clelland, C. L., Emrani, S., Kukushkin, N. V., Yu, W. H., Goldberg, A. L., & Duff, K. E. (2016). Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nature Medicine, 22, 46–53.PubMedCrossRef Myeku, N., Clelland, C. L., Emrani, S., Kukushkin, N. V., Yu, W. H., Goldberg, A. L., & Duff, K. E. (2016). Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nature Medicine, 22, 46–53.PubMedCrossRef
170.
go back to reference Wang, X., & Huang, L. (2008). Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Molecular & Cellular Proteomics, 7, 46–57.CrossRef Wang, X., & Huang, L. (2008). Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Molecular & Cellular Proteomics, 7, 46–57.CrossRef
171.
go back to reference Wang, X., Chen, C. F., Baker, P. R., Chen, P. L., Kaiser, P., & Huang, L. (2007). Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry, 46, 3553–3565.PubMedCrossRef Wang, X., Chen, C. F., Baker, P. R., Chen, P. L., Kaiser, P., & Huang, L. (2007). Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry, 46, 3553–3565.PubMedCrossRef
172.
go back to reference Dou, Q. P., & Zonder, J. A. (2014). Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Current Cancer Drug Targets, 14, 517–536.PubMedPubMedCentralCrossRef Dou, Q. P., & Zonder, J. A. (2014). Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Current Cancer Drug Targets, 14, 517–536.PubMedPubMedCentralCrossRef
173.
go back to reference Schmitt, S. M., Frezza, M., & Dou, Q. P. (2012). New applications of old metal-binding drugs in the treatment of human cancer. Frontiers in Bioscience (Scholar Edition), 4, 375–391.CrossRef Schmitt, S. M., Frezza, M., & Dou, Q. P. (2012). New applications of old metal-binding drugs in the treatment of human cancer. Frontiers in Bioscience (Scholar Edition), 4, 375–391.CrossRef
Metadata
Title
Proteasome dysregulation in human cancer: implications for clinical therapies
Authors
Yulin Chen
Yanan Zhang
Xing Guo
Publication date
01-12-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9704-y

Other articles of this Issue 4/2017

Cancer and Metastasis Reviews 4/2017 Go to the issue

OriginalPaper

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine