Skip to main content
Top
Published in: Seminars in Immunopathology 1/2012

01-01-2012 | Review

Protease-activated receptor 2 signaling in inflammation

Authors: Andrea S. Rothmeier, Wolfram Ruf

Published in: Seminars in Immunopathology | Issue 1/2012

Login to get access

Abstract

Protease-activated receptors (PARs) are G protein-coupled receptors that are activated by proteolytical cleavage of the amino-terminus and thereby act as sensors for extracellular proteases. While coagulation proteases activate PARs to regulate hemostasis, thrombosis, and cardiovascular function, PAR2 is also activated in extravascular locations by a broad array of serine proteases, including trypsin, tissue kallikreins, coagulation factors VIIa and Xa, mast cell tryptase, and transmembrane serine proteases. Administration of PAR2-specific agonistic and antagonistic peptides, as well as studies in PAR2 knockout mice, identified critical functions of PAR2 in development, inflammation, immunity, and angiogenesis. Here, we review these roles of PAR2 with an emphasis on the role of coagulation and other extracellular protease pathways that cleave PAR2 in epithelial, immune, and neuronal cells to regulate physiological and pathophysiological processes.
Literature
1.
go back to reference Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407:258–264PubMed Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407:258–264PubMed
2.
go back to reference Trivedi V, Boire A, Tchernychev B, Kaneider NC, Leger AJ, O'Callaghan K et al (2009) Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell 137(2):332–343PubMed Trivedi V, Boire A, Tchernychev B, Kaneider NC, Leger AJ, O'Callaghan K et al (2009) Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell 137(2):332–343PubMed
3.
go back to reference Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng DW, Moff S et al (1998) A dual thrombin receptor system for platelet activation. Nature 394:690–694PubMed Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng DW, Moff S et al (1998) A dual thrombin receptor system for platelet activation. Nature 394:690–694PubMed
4.
go back to reference Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR (1999) Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 103:879–887PubMed Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR (1999) Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 103:879–887PubMed
5.
go back to reference Nakanishi-Matsui M, Zheng YW, Sulciner DJ, Weiss EJ, Ludeman MJ, Coughlin SR (2000) PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404:609–613PubMed Nakanishi-Matsui M, Zheng YW, Sulciner DJ, Weiss EJ, Ludeman MJ, Coughlin SR (2000) PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404:609–613PubMed
6.
go back to reference McLaughlin JN, Patterson MM, Malik AB (2007) Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proc Natl Acad Sci U S A 104(13):5662–5667PubMed McLaughlin JN, Patterson MM, Malik AB (2007) Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proc Natl Acad Sci U S A 104(13):5662–5667PubMed
7.
go back to reference Riewald M, Petrovan RJ, Donner A, Mueller BM, Ruf W (2002) Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296(5574):1880–1882PubMed Riewald M, Petrovan RJ, Donner A, Mueller BM, Ruf W (2002) Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296(5574):1880–1882PubMed
8.
go back to reference Riewald M, Kravchenko VV, Petrovan RJ, O'Brien PJ, Brass LF, Ulevitch RJ et al (2001) Gene induction by coagulation factor Xa is mediated by activation of PAR-1. Blood 97(10):3109–3116PubMed Riewald M, Kravchenko VV, Petrovan RJ, O'Brien PJ, Brass LF, Ulevitch RJ et al (2001) Gene induction by coagulation factor Xa is mediated by activation of PAR-1. Blood 97(10):3109–3116PubMed
9.
go back to reference Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120(3):303–313PubMed Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120(3):303–313PubMed
10.
go back to reference Lourbakos A, Yuan YP, Jenkins AL, Travis J, Andrade-Gordon P, Santulli R et al (2001) Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 97(12):3790–3798PubMed Lourbakos A, Yuan YP, Jenkins AL, Travis J, Andrade-Gordon P, Santulli R et al (2001) Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 97(12):3790–3798PubMed
11.
go back to reference Nystedt S, Emilsson K, Wahlestedt C, Sundelin J (1994) Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A 91:9208–9212PubMed Nystedt S, Emilsson K, Wahlestedt C, Sundelin J (1994) Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A 91:9208–9212PubMed
12.
go back to reference Nystedt S, Ramakrishnan V, Sundelin J (1996) The proteinase-activated receptor 2 is induced by inflammatory mediators in human endothelial cells—comparison with the thrombin receptor. J Biol Chem 271:14910–14915PubMed Nystedt S, Ramakrishnan V, Sundelin J (1996) The proteinase-activated receptor 2 is induced by inflammatory mediators in human endothelial cells—comparison with the thrombin receptor. J Biol Chem 271:14910–14915PubMed
13.
go back to reference O'Brien PJ, Prevost N, Molino M, Hollinger MK, Woolkalis MJ, Woulfe DS et al (2000) Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J Biol Chem 275:13502–13509PubMed O'Brien PJ, Prevost N, Molino M, Hollinger MK, Woolkalis MJ, Woulfe DS et al (2000) Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J Biol Chem 275:13502–13509PubMed
14.
go back to reference Sun G, Stacey MA, Schmidt M, Mori L, Mattoli S (2001) Interaction of mite allergens Der p3 and Der p9 with protease-activated receptor-2 expressed by lung epithelial cells. J Immunol 167(2):1014–1021PubMed Sun G, Stacey MA, Schmidt M, Mori L, Mattoli S (2001) Interaction of mite allergens Der p3 and Der p9 with protease-activated receptor-2 expressed by lung epithelial cells. J Immunol 167(2):1014–1021PubMed
15.
go back to reference Jeong SK, Kim HJ, Youm JK, Ahn SK, Choi EH, Sohn MH et al (2008) Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J Invest Dermatol 128(8):1930–1939PubMed Jeong SK, Kim HJ, Youm JK, Ahn SK, Choi EH, Sohn MH et al (2008) Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J Invest Dermatol 128(8):1930–1939PubMed
16.
go back to reference Lourbakos A, Chinni C, Thompson P, Potempa J, Travis J, Mackie EJ et al (1998) Cleavage and activation of proteinase-activated receptor-2 on human neutrophils by gingipain-R from Porphyromonas gingivalis. FEBS Lett 435(1):45–48PubMed Lourbakos A, Chinni C, Thompson P, Potempa J, Travis J, Mackie EJ et al (1998) Cleavage and activation of proteinase-activated receptor-2 on human neutrophils by gingipain-R from Porphyromonas gingivalis. FEBS Lett 435(1):45–48PubMed
17.
go back to reference Kida Y, Higashimoto Y, Inoue H, Shimizu T, Kuwano K (2008) A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors. Cell Microbiol 10(7):1491–1504PubMed Kida Y, Higashimoto Y, Inoue H, Shimizu T, Kuwano K (2008) A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors. Cell Microbiol 10(7):1491–1504PubMed
18.
go back to reference Kida Y, Inoue H, Shimizu T, Kuwano K (2007) Serratia marcescens serralysin induces inflammatory responses through protease-activated receptor 2. Infect Immun 75(1):164–174PubMed Kida Y, Inoue H, Shimizu T, Kuwano K (2007) Serratia marcescens serralysin induces inflammatory responses through protease-activated receptor 2. Infect Immun 75(1):164–174PubMed
19.
go back to reference Kong W, McConalogue K, Khitin LM, Hollenberg MD, Payan DG, Bohm SK et al (1997) Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc Natl Acad Sci U S A 94(16):8884–8889PubMed Kong W, McConalogue K, Khitin LM, Hollenberg MD, Payan DG, Bohm SK et al (1997) Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc Natl Acad Sci U S A 94(16):8884–8889PubMed
20.
go back to reference Cottrell GS, Amadesi S, Grady EF, Bunnett NW (2004) Trypsin IV, a novel agonist of protease-activated receptors 2 and 4. J Biol Chem 279(14):13532–13539PubMed Cottrell GS, Amadesi S, Grady EF, Bunnett NW (2004) Trypsin IV, a novel agonist of protease-activated receptors 2 and 4. J Biol Chem 279(14):13532–13539PubMed
21.
go back to reference Oikonomopoulou K, Hansen KK, Saifeddine M, Vergnolle N, Tea I, Blaber M et al (2006) Kallikrein-mediated cell signalling: targeting proteinase-activated receptors (PARs). Biol Chem 387(6):817–824PubMed Oikonomopoulou K, Hansen KK, Saifeddine M, Vergnolle N, Tea I, Blaber M et al (2006) Kallikrein-mediated cell signalling: targeting proteinase-activated receptors (PARs). Biol Chem 387(6):817–824PubMed
22.
go back to reference Riewald M, Ruf W (2001) Mechanistic coupling of protease signaling and initiation of coagulation by tissue factor. Proc Natl Acad Sci U S A 98(14):7742–7747PubMed Riewald M, Ruf W (2001) Mechanistic coupling of protease signaling and initiation of coagulation by tissue factor. Proc Natl Acad Sci U S A 98(14):7742–7747PubMed
23.
go back to reference Camerer E, Huang W, Coughlin SR (2000) Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci U S A 97:5255–5260PubMed Camerer E, Huang W, Coughlin SR (2000) Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci U S A 97:5255–5260PubMed
24.
go back to reference Camerer E, Kataoka H, Kahn M, Lease K, Coughlin SR (2002) Genetic evidence that protease-activated receptors mediate factor Xa signaling in endothelial cells. J Biol Chem 277:16081–16087PubMed Camerer E, Kataoka H, Kahn M, Lease K, Coughlin SR (2002) Genetic evidence that protease-activated receptors mediate factor Xa signaling in endothelial cells. J Biol Chem 277:16081–16087PubMed
25.
go back to reference Molino M, Barnathan ES, Numerof R, Clark J, Dreyer M, Cumashi A et al (1997) Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem 272:4043–4049PubMed Molino M, Barnathan ES, Numerof R, Clark J, Dreyer M, Cumashi A et al (1997) Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem 272:4043–4049PubMed
26.
go back to reference Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS (2000) Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 275:26333–26342PubMed Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS (2000) Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 275:26333–26342PubMed
27.
go back to reference Wilson S, Greer B, Hooper J, Zijlstra A, Walker B, Quigley J et al (2005) The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. Biochem J 388(Pt 3):967–972PubMed Wilson S, Greer B, Hooper J, Zijlstra A, Walker B, Quigley J et al (2005) The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. Biochem J 388(Pt 3):967–972PubMed
28.
go back to reference Smith R, Jenkins A, Lourbakos A, Thompson P, Ramakrishnan V, Tomlinson J et al (2000) Evidence for the activation of PAR-2 by the sperm protease, acrosin: expression of the receptor on oocytes. FEBS Lett 484(3):285–290PubMed Smith R, Jenkins A, Lourbakos A, Thompson P, Ramakrishnan V, Tomlinson J et al (2000) Evidence for the activation of PAR-2 by the sperm protease, acrosin: expression of the receptor on oocytes. FEBS Lett 484(3):285–290PubMed
29.
go back to reference DeFea KA, Zalevsky J, Thoma MS, Déry O, Mullins RD, Bunnett N (2000) b-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148(6):1267–1281PubMed DeFea KA, Zalevsky J, Thoma MS, Déry O, Mullins RD, Bunnett N (2000) b-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148(6):1267–1281PubMed
30.
go back to reference Seatter MJ, Drummond R, Kanke T, Macfarlane SR, Hollenberg MD, Plevin R (2004) The role of the C-terminal tail in protease-activated receptor-2-mediated Ca2+ signalling, proline-rich tyrosine kinase-2 activation, and mitogen-activated protein kinase activity. Cell Signal 16(1):21–29PubMed Seatter MJ, Drummond R, Kanke T, Macfarlane SR, Hollenberg MD, Plevin R (2004) The role of the C-terminal tail in protease-activated receptor-2-mediated Ca2+ signalling, proline-rich tyrosine kinase-2 activation, and mitogen-activated protein kinase activity. Cell Signal 16(1):21–29PubMed
31.
go back to reference Lau C, Lytle C, Straus DS, DeFea KA (2011) Apical and basolateral pools of proteinase-activated receptor-2 direct distinct signaling events in the intestinal epithelium. Am J Physiol Cell Physiol 300(1):C113–C123PubMed Lau C, Lytle C, Straus DS, DeFea KA (2011) Apical and basolateral pools of proteinase-activated receptor-2 direct distinct signaling events in the intestinal epithelium. Am J Physiol Cell Physiol 300(1):C113–C123PubMed
32.
go back to reference Ricks TK, Trejo J (2009) Phosphorylation of protease-activated receptor-2 differentially regulates desensitization and internalization. J Biol Chem 284(49):34444–34457PubMed Ricks TK, Trejo J (2009) Phosphorylation of protease-activated receptor-2 differentially regulates desensitization and internalization. J Biol Chem 284(49):34444–34457PubMed
33.
go back to reference Wang P, Jiang Y, Wang Y, Shyy JY, DeFea KA (2010) Beta-arrestin inhibits CAMKKbeta-dependent AMPK activation downstream of protease-activated-receptor-2. BMC Biochem 11:36PubMed Wang P, Jiang Y, Wang Y, Shyy JY, DeFea KA (2010) Beta-arrestin inhibits CAMKKbeta-dependent AMPK activation downstream of protease-activated-receptor-2. BMC Biochem 11:36PubMed
34.
go back to reference Stalheim L, Ding Y, Gullapalli A, Paing MM, Wolfe BL, Morris DR et al (2005) Multiple independent functions of arrestins in the regulation of protease-activated receptor-2 signaling and trafficking. Mol Pharmacol 67(1):78–87PubMed Stalheim L, Ding Y, Gullapalli A, Paing MM, Wolfe BL, Morris DR et al (2005) Multiple independent functions of arrestins in the regulation of protease-activated receptor-2 signaling and trafficking. Mol Pharmacol 67(1):78–87PubMed
35.
go back to reference Kumar P, Lau CS, Mathur M, Wang P, DeFea KA (2007) Differential effects of beta-arrestins on the internalization, desensitization and ERK1/2 activation downstream of protease activated receptor-2. Am J Physiol Cell Physiol 293(1):C346–C357PubMed Kumar P, Lau CS, Mathur M, Wang P, DeFea KA (2007) Differential effects of beta-arrestins on the internalization, desensitization and ERK1/2 activation downstream of protease activated receptor-2. Am J Physiol Cell Physiol 293(1):C346–C357PubMed
36.
go back to reference Ge L, Ly Y, Hollenberg M, DeFea K (2003) A b-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2 induced chemotaxis. J Biol Chem 278(36):34418–34426PubMed Ge L, Ly Y, Hollenberg M, DeFea K (2003) A b-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2 induced chemotaxis. J Biol Chem 278(36):34418–34426PubMed
37.
go back to reference Ge L, Shenoy SK, Lefkowitz RJ, DeFea K (2004) Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and −2. J Biol Chem 279(53):55419–55424PubMed Ge L, Shenoy SK, Lefkowitz RJ, DeFea K (2004) Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and −2. J Biol Chem 279(53):55419–55424PubMed
38.
go back to reference Wang P, Kumar P, Wang C, DeFea KA (2007) Differential regulation of class IA phosphoinositide 3-kinase catalytic subunits p110 alpha and beta by protease-activated receptor 2 and beta-arrestins. Biochem J 408(2):221–230PubMed Wang P, Kumar P, Wang C, DeFea KA (2007) Differential regulation of class IA phosphoinositide 3-kinase catalytic subunits p110 alpha and beta by protease-activated receptor 2 and beta-arrestins. Biochem J 408(2):221–230PubMed
39.
go back to reference Wang P, DeFea KA (2006) Protease-activated receptor-2 simultaneously directs beta-arrestin-1-dependent inhibition and Galphaq-dependent activation of phosphatidylinositol 3-kinase. Biochemistry 45(31):9374–9385PubMed Wang P, DeFea KA (2006) Protease-activated receptor-2 simultaneously directs beta-arrestin-1-dependent inhibition and Galphaq-dependent activation of phosphatidylinositol 3-kinase. Biochemistry 45(31):9374–9385PubMed
40.
go back to reference Zoudilova M, Min J, Richards HL, Carter D, Huang T, DeFea KA (2010) beta-Arrestins scaffold cofilin with chronophin to direct localized actin filament severing and membrane protrusions downstream of protease-activated receptor-2. J Biol Chem 285(19):14318–14329PubMed Zoudilova M, Min J, Richards HL, Carter D, Huang T, DeFea KA (2010) beta-Arrestins scaffold cofilin with chronophin to direct localized actin filament severing and membrane protrusions downstream of protease-activated receptor-2. J Biol Chem 285(19):14318–14329PubMed
41.
go back to reference Zoudilova M, Kumar P, Ge L, Wang P, Bokoch GM, DeFea KA (2007) Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J Biol Chem 282:20634–20646PubMed Zoudilova M, Kumar P, Ge L, Wang P, Bokoch GM, DeFea KA (2007) Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J Biol Chem 282:20634–20646PubMed
42.
go back to reference Kanke T, Macfarlane SR, Seatter MJ, Davenport E, Paul A, McKenzie RC et al (2001) Proteinase-activated receptor-2-mediated activation of stress-activated protein kinases and inhibitory kappa B kinases in NCTC 2544 keratinocytes. J Biol Chem 276(34):31657–31666PubMed Kanke T, Macfarlane SR, Seatter MJ, Davenport E, Paul A, McKenzie RC et al (2001) Proteinase-activated receptor-2-mediated activation of stress-activated protein kinases and inhibitory kappa B kinases in NCTC 2544 keratinocytes. J Biol Chem 276(34):31657–31666PubMed
43.
go back to reference Sevigny LM, Zhang P, Bohm A, Lazarides K, Perides G, Covic L et al (2011) Interdicting protease-activated receptor-2-driven inflammation with cell-penetrating pepducins. Proc Natl Acad Sci U S A 108(20):8491–8496PubMed Sevigny LM, Zhang P, Bohm A, Lazarides K, Perides G, Covic L et al (2011) Interdicting protease-activated receptor-2-driven inflammation with cell-penetrating pepducins. Proc Natl Acad Sci U S A 108(20):8491–8496PubMed
44.
go back to reference Corvera CU, Dery O, McConalogue K, Gamp P, Thoma M, Al-Ani B et al (1999) Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and −2. J Physiol 517(Pt 3):741–756PubMed Corvera CU, Dery O, McConalogue K, Gamp P, Thoma M, Al-Ani B et al (1999) Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and −2. J Physiol 517(Pt 3):741–756PubMed
45.
go back to reference Corvera CU, Dery O, McConalogue K, Bohm SK, Khitin LM, Caughey GH et al (1997) Mast cell tryptase regulates rat colonic myocytes through proteinase-activated receptor 2. J Clin Invest 100(6):1383–1393PubMed Corvera CU, Dery O, McConalogue K, Bohm SK, Khitin LM, Caughey GH et al (1997) Mast cell tryptase regulates rat colonic myocytes through proteinase-activated receptor 2. J Clin Invest 100(6):1383–1393PubMed
46.
go back to reference Bohm SK, Kong W, Bromme D, Smeekens SP, Anderson DC, Connolly A et al (1996) Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem J 314(Pt 3):1009–1016PubMed Bohm SK, Kong W, Bromme D, Smeekens SP, Anderson DC, Connolly A et al (1996) Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem J 314(Pt 3):1009–1016PubMed
47.
go back to reference Santulli RJ, Derian CK, Darrow AL, Tomko KA, Eckardt AJ, Seiberg M et al (1995) Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes. Proc Natl Acad Sci U S A 92:9151–9155PubMed Santulli RJ, Derian CK, Darrow AL, Tomko KA, Eckardt AJ, Seiberg M et al (1995) Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes. Proc Natl Acad Sci U S A 92:9151–9155PubMed
48.
go back to reference Wang H, Ubl JJ, Reiser G (2002) Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia 37(1):53–63PubMed Wang H, Ubl JJ, Reiser G (2002) Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia 37(1):53–63PubMed
49.
go back to reference Böhm SK, Kong W, Brömme D, Smeekens SP, Anderson DC, Connolly A et al (1996) Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem J 314:1009–1016PubMed Böhm SK, Kong W, Brömme D, Smeekens SP, Anderson DC, Connolly A et al (1996) Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem J 314:1009–1016PubMed
50.
go back to reference Macfarlane SR, Sloss CM, Cameron P, Kanke T, McKenzie RC, Plevin R (2005) The role of intracellular Ca2+ in the regulation of proteinase-activated receptor-2 mediated nuclear factor kappa B signalling in keratinocytes. Br J Pharmacol 145(4):535–544PubMed Macfarlane SR, Sloss CM, Cameron P, Kanke T, McKenzie RC, Plevin R (2005) The role of intracellular Ca2+ in the regulation of proteinase-activated receptor-2 mediated nuclear factor kappa B signalling in keratinocytes. Br J Pharmacol 145(4):535–544PubMed
51.
go back to reference Buddenkotte J, Stroh C, Engels IH, Moormann C, Shpacovitch VM, Seeliger S et al (2005) Agonists of proteinase-activated receptor-2 stimulate upregulation of intercellular cell adhesion molecule-1 in primary human keratinocytes via activation of NF-kappa B. J Invest Dermatol 124(1):38–45PubMed Buddenkotte J, Stroh C, Engels IH, Moormann C, Shpacovitch VM, Seeliger S et al (2005) Agonists of proteinase-activated receptor-2 stimulate upregulation of intercellular cell adhesion molecule-1 in primary human keratinocytes via activation of NF-kappa B. J Invest Dermatol 124(1):38–45PubMed
52.
go back to reference Shpacovitch VM, Brzoska T, Buddenkotte J, Stroh C, Sommerhoff CP, Ansel JC et al (2002) Agonists of proteinase-activated receptor 2 induce cytokine release and activation of nuclear transcription factor kB in human dermal microvascular endothelial cells. J Invest Dermatol 118(2):380–385PubMed Shpacovitch VM, Brzoska T, Buddenkotte J, Stroh C, Sommerhoff CP, Ansel JC et al (2002) Agonists of proteinase-activated receptor 2 induce cytokine release and activation of nuclear transcription factor kB in human dermal microvascular endothelial cells. J Invest Dermatol 118(2):380–385PubMed
53.
go back to reference Syeda F, Grosjean J, Houliston RA, Keogh RJ, Carter TD, Paleolog E et al (2006) Cyclooxygenase-2 induction and prostacyclin release by protease-activated receptors in endothelial cells require cooperation between mitogen-activated protein kinase and NF-kappaB pathways. J Biol Chem 281(17):11792–11804PubMed Syeda F, Grosjean J, Houliston RA, Keogh RJ, Carter TD, Paleolog E et al (2006) Cyclooxygenase-2 induction and prostacyclin release by protease-activated receptors in endothelial cells require cooperation between mitogen-activated protein kinase and NF-kappaB pathways. J Biol Chem 281(17):11792–11804PubMed
54.
go back to reference Dery O, Thoma MS, Wong H, Grady EF, Bunnett NW (1999) Trafficking of proteinase-activated receptor-2 and b-arrestin-1 tagged with green fluorescent protein. b-Arrestin-dependent endocytosis of a proteinase receptor. J Biol Chem 274(26):18524–18535PubMed Dery O, Thoma MS, Wong H, Grady EF, Bunnett NW (1999) Trafficking of proteinase-activated receptor-2 and b-arrestin-1 tagged with green fluorescent protein. b-Arrestin-dependent endocytosis of a proteinase receptor. J Biol Chem 274(26):18524–18535PubMed
55.
go back to reference Roosterman D, Schmidlin F, Bunnett NW (2003) Rab5a and rab11a mediate agonist-induced trafficking of protease-activated receptor 2. Am J Physiol Cell Physiol 284(5):C1319–C1329PubMed Roosterman D, Schmidlin F, Bunnett NW (2003) Rab5a and rab11a mediate agonist-induced trafficking of protease-activated receptor 2. Am J Physiol Cell Physiol 284(5):C1319–C1329PubMed
56.
go back to reference Jacob C, Cottrell GS, Gehringer D, Schmidlin F, Grady EF, Bunnett NW (2005) c-Cbl mediates ubiquitination, degradation, and down-regulation of human protease-activated receptor 2. J Biol Chem 280(16):16076–16087PubMed Jacob C, Cottrell GS, Gehringer D, Schmidlin F, Grady EF, Bunnett NW (2005) c-Cbl mediates ubiquitination, degradation, and down-regulation of human protease-activated receptor 2. J Biol Chem 280(16):16076–16087PubMed
57.
go back to reference Hasdemir B, Murphy JE, Cottrell GS, Bunnett NW (2009) Endosomal deubiquitinating enzymes control ubiquitination and down-regulation of protease-activated receptor 2. J Biol Chem 284(41):28453–28466PubMed Hasdemir B, Murphy JE, Cottrell GS, Bunnett NW (2009) Endosomal deubiquitinating enzymes control ubiquitination and down-regulation of protease-activated receptor 2. J Biol Chem 284(41):28453–28466PubMed
58.
go back to reference Böhm SK, Khitin LM, Grady EF, Aponte G, Payan DG, Bunnett NW (1996) Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J Biol Chem 271:22003–22016PubMed Böhm SK, Khitin LM, Grady EF, Aponte G, Payan DG, Bunnett NW (1996) Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J Biol Chem 271:22003–22016PubMed
59.
go back to reference Ruf W, Riewald M (2003) Regulation of tissue factor expression. In: Ten Cate H, Levi M (eds) Molecular mechanisms of disseminated intravascular coagulation. Landes Bioscience, Georgetown, pp 61–80, Available at: www.Eurekah.com Ruf W, Riewald M (2003) Regulation of tissue factor expression. In: Ten Cate H, Levi M (eds) Molecular mechanisms of disseminated intravascular coagulation. Landes Bioscience, Georgetown, pp 61–80, Available at: www.​Eurekah.​com
60.
go back to reference Levi M, Van der Poll T (2010) Inflammation and coagulation. Crit Care Med 38(2 Suppl):S26–S34PubMed Levi M, Van der Poll T (2010) Inflammation and coagulation. Crit Care Med 38(2 Suppl):S26–S34PubMed
61.
go back to reference Ahamed J, Versteeg HH, Kerver M, Chen VM, Mueller BM, Hogg PJ et al (2006) Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci U S A 103(38):13932–13937PubMed Ahamed J, Versteeg HH, Kerver M, Chen VM, Mueller BM, Hogg PJ et al (2006) Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci U S A 103(38):13932–13937PubMed
62.
go back to reference Disse J, Petersen HH, Larsen KS, Persson E, Esmon N, Esmon CT et al (2011) The endothelial protein C receptor supports tissue factor ternary coagulation initiation complex signaling through protease-activated receptors. J Biol Chem 286(7):5756–5767PubMed Disse J, Petersen HH, Larsen KS, Persson E, Esmon N, Esmon CT et al (2011) The endothelial protein C receptor supports tissue factor ternary coagulation initiation complex signaling through protease-activated receptors. J Biol Chem 286(7):5756–5767PubMed
63.
go back to reference Bazan JF (1990) Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A 87:6934–6938PubMed Bazan JF (1990) Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A 87:6934–6938PubMed
64.
go back to reference Carson SD, Bromberg ME (2000) Tissue factor encryption/de-encryption is not altered in the absence of the cytoplasmic domain. Thromb Haemost 84:657–663PubMed Carson SD, Bromberg ME (2000) Tissue factor encryption/de-encryption is not altered in the absence of the cytoplasmic domain. Thromb Haemost 84:657–663PubMed
65.
go back to reference Paborsky LR, Caras IW, Fisher KL, Gorman CM (1991) Lipid association, but not the transmembrane domain, is required for tissue factor activity. Substitution of the transmembrane domain with a phosphatidylinositol anchor. J Biol Chem 266:21911–21916PubMed Paborsky LR, Caras IW, Fisher KL, Gorman CM (1991) Lipid association, but not the transmembrane domain, is required for tissue factor activity. Substitution of the transmembrane domain with a phosphatidylinositol anchor. J Biol Chem 266:21911–21916PubMed
66.
go back to reference Collier ME, Ettelaie C (2011) Regulation of the incorporation of tissue factor into microparticles by serine phosphorylation of the cytoplasmic domain of tissue factor. J Biol Chem 286(14):11977–11984PubMed Collier ME, Ettelaie C (2011) Regulation of the incorporation of tissue factor into microparticles by serine phosphorylation of the cytoplasmic domain of tissue factor. J Biol Chem 286(14):11977–11984PubMed
67.
go back to reference Zioncheck TF, Roy S, Vehar GA (1992) The cytoplasmic domain of tissue factor is phosphorylated by a protein kinase C-dependent mechanism. J Biol Chem 267:3561–3564PubMed Zioncheck TF, Roy S, Vehar GA (1992) The cytoplasmic domain of tissue factor is phosphorylated by a protein kinase C-dependent mechanism. J Biol Chem 267:3561–3564PubMed
68.
go back to reference Ahamed J, Ruf W (2004) Protease-activated receptor 2-dependent phosphorylation of the tissue factor cytoplasmic domain. J Biol Chem 279(22):23038–23044PubMed Ahamed J, Ruf W (2004) Protease-activated receptor 2-dependent phosphorylation of the tissue factor cytoplasmic domain. J Biol Chem 279(22):23038–23044PubMed
69.
go back to reference Sørensen BB, Freskgård P-O, Nielsen LS, Rao LVM, Ezban M, Petersen LC (1999) Factor VIIa-induced p44/42 mitogen-activated protein kinase activation requires the proteolytic activity of factor VIIa and is independent of the tissue factor cytoplasmic domain. J Biol Chem 274:21349–21354PubMed Sørensen BB, Freskgård P-O, Nielsen LS, Rao LVM, Ezban M, Petersen LC (1999) Factor VIIa-induced p44/42 mitogen-activated protein kinase activation requires the proteolytic activity of factor VIIa and is independent of the tissue factor cytoplasmic domain. J Biol Chem 274:21349–21354PubMed
70.
go back to reference Versteeg HH, Sørensen BB, Slofstra SH, Van den Brande JHM, Stam JC, van Bergen en Henegouwen PMP et al (2002) VIIa/tissue factor interaction results in a tissue factor cytoplasmic domain-independent activation of protein synthesis, p70 and p90 S6 kinase phosphorylation. J Biol Chem 277(30):27065–27072PubMed Versteeg HH, Sørensen BB, Slofstra SH, Van den Brande JHM, Stam JC, van Bergen en Henegouwen PMP et al (2002) VIIa/tissue factor interaction results in a tissue factor cytoplasmic domain-independent activation of protein synthesis, p70 and p90 S6 kinase phosphorylation. J Biol Chem 277(30):27065–27072PubMed
71.
go back to reference Taylor FB Jr, Chang A, Ruf W, Morrissey JH, Hinshaw L, Catlett R et al (1991) Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock 33(3):127–134PubMed Taylor FB Jr, Chang A, Ruf W, Morrissey JH, Hinshaw L, Catlett R et al (1991) Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock 33(3):127–134PubMed
72.
go back to reference Taylor FB Jr, Chang ACK, Peer G, Li A, Ezban M, Hedner U (1998) Active site inhibited factor VIIa (DEGR VIIa) attenuates the coagulant and interleukin-6 and −8, but not tumor necrosis factor, responses of the baboon to LD100 Escherichia coli. Blood 91:1609–1615PubMed Taylor FB Jr, Chang ACK, Peer G, Li A, Ezban M, Hedner U (1998) Active site inhibited factor VIIa (DEGR VIIa) attenuates the coagulant and interleukin-6 and −8, but not tumor necrosis factor, responses of the baboon to LD100 Escherichia coli. Blood 91:1609–1615PubMed
73.
go back to reference Pawlinski R, Pedersen B, Schabbauer G, Tencati M, Holscher T, Boisvert W et al (2003) Role of tissue factor and protease activated receptors in a mouse model of endotoxemia. Blood 103(4):1342–1347PubMed Pawlinski R, Pedersen B, Schabbauer G, Tencati M, Holscher T, Boisvert W et al (2003) Role of tissue factor and protease activated receptors in a mouse model of endotoxemia. Blood 103(4):1342–1347PubMed
74.
go back to reference Pawlinski R, Wang JG, Owens AP III, Williams J, Antoniak S, Tencati M et al (2010) Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice. Blood 116(5):806–814PubMed Pawlinski R, Wang JG, Owens AP III, Williams J, Antoniak S, Tencati M et al (2010) Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice. Blood 116(5):806–814PubMed
75.
go back to reference Muth H, Kreis I, Zimmermann R, Tillmanns H, Holschermann H (2005) Differential gene expression in activated monocyte-derived macrophages following binding of factor VIIa to tissue factor. Thromb Haemost 94(5):1028–1034PubMed Muth H, Kreis I, Zimmermann R, Tillmanns H, Holschermann H (2005) Differential gene expression in activated monocyte-derived macrophages following binding of factor VIIa to tissue factor. Thromb Haemost 94(5):1028–1034PubMed
76.
go back to reference Xu H, Ploplis VA, Castellino FJ (2006) A coagulation factor VII deficiency protects against acute inflammatory responses in mice. J Pathol 210(4):488–496PubMed Xu H, Ploplis VA, Castellino FJ (2006) A coagulation factor VII deficiency protects against acute inflammatory responses in mice. J Pathol 210(4):488–496PubMed
77.
go back to reference Lim SY, Tennant GM, Kennedy S, Wainwright CL, Kane KA (2006) Activation of mouse protease-activated receptor-2 induces lymphocyte adhesion and generation of reactive oxygen species. Br J Pharmacol 149(5):591–599PubMed Lim SY, Tennant GM, Kennedy S, Wainwright CL, Kane KA (2006) Activation of mouse protease-activated receptor-2 induces lymphocyte adhesion and generation of reactive oxygen species. Br J Pharmacol 149(5):591–599PubMed
78.
go back to reference Cunningham MA, Romas P, Hutchinson P, Holdsworth SR, Tipping PG (1999) Tissue factor and factor VIIa receptor/ligand interactions induce proinflammatory effects in macrophages. Blood 94:3413–3420PubMed Cunningham MA, Romas P, Hutchinson P, Holdsworth SR, Tipping PG (1999) Tissue factor and factor VIIa receptor/ligand interactions induce proinflammatory effects in macrophages. Blood 94:3413–3420PubMed
79.
go back to reference Sharma L, Melis E, Hickey MJ, Clyne CD, Erlich J, Khachigian LM et al (2004) The cytoplasmic domain of tissue factor contributes to leukocyte recruitment and death in endotoxemia. Am J Pathol 165(1):331–340PubMed Sharma L, Melis E, Hickey MJ, Clyne CD, Erlich J, Khachigian LM et al (2004) The cytoplasmic domain of tissue factor contributes to leukocyte recruitment and death in endotoxemia. Am J Pathol 165(1):331–340PubMed
80.
go back to reference Ahamed J, Niessen F, Kurokawa T, Lee YK, Bhattacharjee G, Morrissey JH et al (2007) Regulation of macrophage procoagulant responses by the tissue factor cytoplasmic domain in endotoxemia. Blood 109(12):5251–5259PubMed Ahamed J, Niessen F, Kurokawa T, Lee YK, Bhattacharjee G, Morrissey JH et al (2007) Regulation of macrophage procoagulant responses by the tissue factor cytoplasmic domain in endotoxemia. Blood 109(12):5251–5259PubMed
81.
go back to reference Imamura T, Iyama K, Takeya M, Kambara T, Nakamura S (1993) Role of macrophage tissue factor in the development of the delayed hypersensitivity reaction in monkey skin. Cell Immunol 152:614–622PubMed Imamura T, Iyama K, Takeya M, Kambara T, Nakamura S (1993) Role of macrophage tissue factor in the development of the delayed hypersensitivity reaction in monkey skin. Cell Immunol 152:614–622PubMed
82.
go back to reference Apostolopoulos J, Hickey MJ, Sharma L, Davenport P, Moussa L, James WG et al (2008) The cytoplasmic domain of tissue factor in macrophages augments cutaneous delayed-type hypersensitivity. J Leukoc Biol 83:902–911PubMed Apostolopoulos J, Hickey MJ, Sharma L, Davenport P, Moussa L, James WG et al (2008) The cytoplasmic domain of tissue factor in macrophages augments cutaneous delayed-type hypersensitivity. J Leukoc Biol 83:902–911PubMed
83.
go back to reference Busso N, Morard C, Salvi R, Peclat V, So A (2003) Role of the tissue factor pathway in synovial inflammation. Arthritis Rheum 48(3):651–659PubMed Busso N, Morard C, Salvi R, Peclat V, So A (2003) Role of the tissue factor pathway in synovial inflammation. Arthritis Rheum 48(3):651–659PubMed
84.
go back to reference Yang YH, Hall P, Little CB, Fosang AJ, Milenkovski G, Santos L et al (2005) Reduction of arthritis severity in protease-activated receptor-deficient mice. Arthritis Rheum 52(4):1325–1332PubMed Yang YH, Hall P, Little CB, Fosang AJ, Milenkovski G, Santos L et al (2005) Reduction of arthritis severity in protease-activated receptor-deficient mice. Arthritis Rheum 52(4):1325–1332PubMed
85.
go back to reference Ferrell WR, Lockhart JC, Kelso EB, Dunning L, Plevin R, Meek SE et al (2003) Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest 111(1):35–41PubMed Ferrell WR, Lockhart JC, Kelso EB, Dunning L, Plevin R, Meek SE et al (2003) Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest 111(1):35–41PubMed
86.
go back to reference Yang YH, Hall P, Milenkovski G, Sharma L, Hutchinson P, Melis E et al (2004) Reduction in arthritis severity and modulation of immune function in tissue factor cytoplasmic domain mutant mice. Am J Pathol 164(1):109–117PubMed Yang YH, Hall P, Milenkovski G, Sharma L, Hutchinson P, Melis E et al (2004) Reduction in arthritis severity and modulation of immune function in tissue factor cytoplasmic domain mutant mice. Am J Pathol 164(1):109–117PubMed
87.
go back to reference Redecha P, Franzke CW, Ruf W, Mackman N, Girardi G (2008) Activation of neutrophils by the Tissue Factor-Factor VIIa-PAR2 axis mediates fetal death in antiphospholipid syndrome. J Clin Invest 118(10):3453–3461PubMed Redecha P, Franzke CW, Ruf W, Mackman N, Girardi G (2008) Activation of neutrophils by the Tissue Factor-Factor VIIa-PAR2 axis mediates fetal death in antiphospholipid syndrome. J Clin Invest 118(10):3453–3461PubMed
88.
go back to reference Noorbakhsh F, Tsutsui S, Vergnolle N, Boven LA, Shariat N, Vodjgani M et al (2006) Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Exp Med 203(2):425–435PubMed Noorbakhsh F, Tsutsui S, Vergnolle N, Boven LA, Shariat N, Vodjgani M et al (2006) Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Exp Med 203(2):425–435PubMed
89.
go back to reference Fields RC, Schoenecker JG, Hart JP, Hoffman MR, Pizzo SV, Lawson JH (2003) Protease-activated receptor-2 signaling triggers dendritic cell development. Am J Pathol 162(6):1817–1822PubMed Fields RC, Schoenecker JG, Hart JP, Hoffman MR, Pizzo SV, Lawson JH (2003) Protease-activated receptor-2 signaling triggers dendritic cell development. Am J Pathol 162(6):1817–1822PubMed
90.
go back to reference Csernok E, Ai M, Gross WL, Wicklein D, Petersen A, Lindner B et al (2006) Wegener autoantigen induces maturation of dendritic cells and licenses them for Th1 priming via the protease-activated receptor-2 pathway. Blood 107(11):4440–4448PubMed Csernok E, Ai M, Gross WL, Wicklein D, Petersen A, Lindner B et al (2006) Wegener autoantigen induces maturation of dendritic cells and licenses them for Th1 priming via the protease-activated receptor-2 pathway. Blood 107(11):4440–4448PubMed
91.
go back to reference Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246PubMed Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246PubMed
92.
go back to reference Samad F, Pandey M, Loskutoff DJ (1998) Tissue factor gene expression in the adipose tissues of obese mice. Proc Natl Acad Sci U S A 95(13):7591–7596PubMed Samad F, Pandey M, Loskutoff DJ (1998) Tissue factor gene expression in the adipose tissues of obese mice. Proc Natl Acad Sci U S A 95(13):7591–7596PubMed
93.
go back to reference Nakagomi A, Sasaki M, Ishikawa Y, Morikawa M, Shibui T, Kusama Y et al (2010) Upregulation of monocyte tissue factor activity is significantly associated with low-grade chronic inflammation and insulin resistance in patients with metabolic syndrome. Circ J 74(3):572–577PubMed Nakagomi A, Sasaki M, Ishikawa Y, Morikawa M, Shibui T, Kusama Y et al (2010) Upregulation of monocyte tissue factor activity is significantly associated with low-grade chronic inflammation and insulin resistance in patients with metabolic syndrome. Circ J 74(3):572–577PubMed
94.
go back to reference Mihara M, Aihara K, Ikeda Y, Yoshida S, Kinouchi M, Kurahashi K et al (2010) Inhibition of thrombin action ameliorates insulin resistance in type 2 diabetic db/db mice. Endocrinology 151(2):513–519PubMed Mihara M, Aihara K, Ikeda Y, Yoshida S, Kinouchi M, Kurahashi K et al (2010) Inhibition of thrombin action ameliorates insulin resistance in type 2 diabetic db/db mice. Endocrinology 151(2):513–519PubMed
95.
go back to reference Badeanlou L, Furlan-Freguia C, Yang G, Ruf W, Samad F (2011) Tissue factor-PAR2 signaling promotes diet-induced obesity and adipose inflammation. Nat Med (in press) Badeanlou L, Furlan-Freguia C, Yang G, Ruf W, Samad F (2011) Tissue factor-PAR2 signaling promotes diet-induced obesity and adipose inflammation. Nat Med (in press)
96.
go back to reference Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani UB et al (2004) Adiponectin acts in the brain to decrease body weight. Nat Med 10(5):524–529PubMed Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani UB et al (2004) Adiponectin acts in the brain to decrease body weight. Nat Med 10(5):524–529PubMed
97.
go back to reference Holzer P (1998) Neurogenic vasodilatation and plasma leakage in the skin. Gen Pharmacol 30(1):5–11PubMed Holzer P (1998) Neurogenic vasodilatation and plasma leakage in the skin. Gen Pharmacol 30(1):5–11PubMed
98.
go back to reference Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS et al (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nature Med 6:151–158PubMed Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS et al (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nature Med 6:151–158PubMed
99.
go back to reference Kawabata A, Kuroda R, Minami T, Kataoka K, Taneda M (1998) Increased vascular permeability by a specific agonist of protease-activated receptor-2 in rat hindpaw. Br J Pharmacol 125(3):419–422PubMed Kawabata A, Kuroda R, Minami T, Kataoka K, Taneda M (1998) Increased vascular permeability by a specific agonist of protease-activated receptor-2 in rat hindpaw. Br J Pharmacol 125(3):419–422PubMed
100.
go back to reference Vergnolle N, Hollenberg MD, Sharkey KA, Wallace JL (1999) Characterization of the inflammatory response to proteinase-activated receptor-2 (PAR2)-activating peptides in the rat paw. Br J Pharmacol 127(5):1083–1090PubMed Vergnolle N, Hollenberg MD, Sharkey KA, Wallace JL (1999) Characterization of the inflammatory response to proteinase-activated receptor-2 (PAR2)-activating peptides in the rat paw. Br J Pharmacol 127(5):1083–1090PubMed
101.
go back to reference Suckow SK, Caudle RM (2008) Identification and immunohistochemical characterization of colospinal afferent neurons in the rat. Neuroscience 153(3):803–813PubMed Suckow SK, Caudle RM (2008) Identification and immunohistochemical characterization of colospinal afferent neurons in the rat. Neuroscience 153(3):803–813PubMed
102.
go back to reference Nguyen C, Coelho AM, Grady E, Compton SJ, Wallace JL, Hollenberg MD et al (2003) Colitis induced by proteinase-activated receptor-2 agonists is mediated by a neurogenic mechanism. Can J Physiol Pharmacol 81(9):920–927PubMed Nguyen C, Coelho AM, Grady E, Compton SJ, Wallace JL, Hollenberg MD et al (2003) Colitis induced by proteinase-activated receptor-2 agonists is mediated by a neurogenic mechanism. Can J Physiol Pharmacol 81(9):920–927PubMed
103.
go back to reference Cenac N, Garcia-Villar R, Ferrier L, Larauche M, Vergnolle N, Bunnett NW et al (2003) Proteinase-activated receptor-2-induced colonic inflammation in mice: possible involvement of afferent neurons, nitric oxide, and paracellular permeability. J Immunol 170(8):4296–4300PubMed Cenac N, Garcia-Villar R, Ferrier L, Larauche M, Vergnolle N, Bunnett NW et al (2003) Proteinase-activated receptor-2-induced colonic inflammation in mice: possible involvement of afferent neurons, nitric oxide, and paracellular permeability. J Immunol 170(8):4296–4300PubMed
104.
go back to reference Vergnolle N, Bunnett N, Sharkey KA, Brussee V, Compton SJ, Grady EF et al (2001) Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nature Med 7:821–826PubMed Vergnolle N, Bunnett N, Sharkey KA, Brussee V, Compton SJ, Grady EF et al (2001) Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nature Med 7:821–826PubMed
105.
go back to reference Dai Y, Moriyama T, Higashi T, Togashi K, Kobayashi K, Yamanaka H et al (2004) Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J Neurosci 24(18):4293–4299PubMed Dai Y, Moriyama T, Higashi T, Togashi K, Kobayashi K, Yamanaka H et al (2004) Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J Neurosci 24(18):4293–4299PubMed
106.
go back to reference Amadesi S, Nie J, Vergnolle N, Cottrell GS, Grady EF, Trevisani M et al (2004) Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci 24(18):4300–4312PubMed Amadesi S, Nie J, Vergnolle N, Cottrell GS, Grady EF, Trevisani M et al (2004) Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci 24(18):4300–4312PubMed
107.
go back to reference Amadesi S, Cottrell GS, Divino L, Chapman K, Grady EF, Bautista F et al (2006) Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice. J Physiol 575(Pt 2):555–571PubMed Amadesi S, Cottrell GS, Divino L, Chapman K, Grady EF, Bautista F et al (2006) Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice. J Physiol 575(Pt 2):555–571PubMed
108.
go back to reference Cenac N, Altier C, Chapman K, Liedtke W, Zamponi G, Vergnolle N (2008) Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135(3):937–946PubMed Cenac N, Altier C, Chapman K, Liedtke W, Zamponi G, Vergnolle N (2008) Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135(3):937–946PubMed
109.
go back to reference Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S et al (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578(Pt 3):715–733PubMed Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S et al (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578(Pt 3):715–733PubMed
110.
go back to reference Nishimura S, Ishikura H, Matsunami M, Shinozaki Y, Sekiguchi F, Naruse M et al (2010) The proteinase/proteinase-activated receptor-2/transient receptor potential vanilloid-1 cascade impacts pancreatic pain in mice. Life Sci 87(19–22):643–650PubMed Nishimura S, Ishikura H, Matsunami M, Shinozaki Y, Sekiguchi F, Naruse M et al (2010) The proteinase/proteinase-activated receptor-2/transient receptor potential vanilloid-1 cascade impacts pancreatic pain in mice. Life Sci 87(19–22):643–650PubMed
111.
go back to reference Zhang W, Gao J, Zhao T, Wei L, Wu W, Bai Y et al (2011) Proteinase-activated receptor 2 mediates thermal hyperalgesia and is upregulated in a rat model of chronic pancreatitis. Pancreas 40(2):300–307PubMed Zhang W, Gao J, Zhao T, Wei L, Wu W, Bai Y et al (2011) Proteinase-activated receptor 2 mediates thermal hyperalgesia and is upregulated in a rat model of chronic pancreatitis. Pancreas 40(2):300–307PubMed
112.
go back to reference Lam DK, Schmidt BL (2010) Serine proteases and protease-activated receptor 2-dependent allodynia: a novel cancer pain pathway. Pain 149(2):263–272PubMed Lam DK, Schmidt BL (2010) Serine proteases and protease-activated receptor 2-dependent allodynia: a novel cancer pain pathway. Pain 149(2):263–272PubMed
113.
go back to reference Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T et al (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117(7):1979–1987PubMed Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T et al (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117(7):1979–1987PubMed
114.
go back to reference Yu S, Gao G, Peterson BZ, Ouyang A (2009) TRPA1 in mast cell activation-induced long-lasting mechanical hypersensitivity of vagal afferent C-fibers in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 297(1):G34–G42PubMed Yu S, Gao G, Peterson BZ, Ouyang A (2009) TRPA1 in mast cell activation-induced long-lasting mechanical hypersensitivity of vagal afferent C-fibers in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 297(1):G34–G42PubMed
115.
go back to reference D'Andrea MR, Derian CK, Leturcq D, Baker SM, Brunmark A, Ling P et al (1998) Characterization of protease-activated receptor-2 immunoreactivity in normal human tissues. J Histochem Cytochem 46(2):157–164PubMed D'Andrea MR, Derian CK, Leturcq D, Baker SM, Brunmark A, Ling P et al (1998) Characterization of protease-activated receptor-2 immunoreactivity in normal human tissues. J Histochem Cytochem 46(2):157–164PubMed
116.
go back to reference Nguyen TD, Moody MW, Steinhoff M, Okolo C, Koh DS, Bunnett NW (1999) Trypsin activates pancreatic duct epithelial cell ion channels through proteinase-activated receptor-2. J Clin Invest 103(2):261–269PubMed Nguyen TD, Moody MW, Steinhoff M, Okolo C, Koh DS, Bunnett NW (1999) Trypsin activates pancreatic duct epithelial cell ion channels through proteinase-activated receptor-2. J Clin Invest 103(2):261–269PubMed
117.
go back to reference Kawabata A, Matsunami M, Sekiguchi F (2008) Gastrointestinal roles for proteinase-activated receptors in health and disease. Br J Pharmacol 153(Suppl 1):S230–S240PubMed Kawabata A, Matsunami M, Sekiguchi F (2008) Gastrointestinal roles for proteinase-activated receptors in health and disease. Br J Pharmacol 153(Suppl 1):S230–S240PubMed
118.
go back to reference Sekiguchi F, Hasegawa N, Inoshita K, Yonezawa D, Inoi N, Kanke T et al (2006) Mechanisms for modulation of mouse gastrointestinal motility by proteinase-activated receptor (PAR)-1 and −2 in vitro. Life Sci 78(9):950–957PubMed Sekiguchi F, Hasegawa N, Inoshita K, Yonezawa D, Inoi N, Kanke T et al (2006) Mechanisms for modulation of mouse gastrointestinal motility by proteinase-activated receptor (PAR)-1 and −2 in vitro. Life Sci 78(9):950–957PubMed
119.
go back to reference Laukkarinen JM, Weiss ER, van Acker GJ, Steer ML, Perides G (2008) Protease-activated receptor-2 exerts contrasting model-specific effects on acute experimental pancreatitis. J Biol Chem 283(30):20703–20712PubMed Laukkarinen JM, Weiss ER, van Acker GJ, Steer ML, Perides G (2008) Protease-activated receptor-2 exerts contrasting model-specific effects on acute experimental pancreatitis. J Biol Chem 283(30):20703–20712PubMed
120.
go back to reference Kawabata A, Nishikawa H, Kuroda R, Kawai K, Hollenberg MD (2000) Proteinase-activated receptor-2 (PAR-2): regulation of salivary and pancreatic exocrine secretion in vivo in rats and mice. Br J Pharmacol 129:1808–1814PubMed Kawabata A, Nishikawa H, Kuroda R, Kawai K, Hollenberg MD (2000) Proteinase-activated receptor-2 (PAR-2): regulation of salivary and pancreatic exocrine secretion in vivo in rats and mice. Br J Pharmacol 129:1808–1814PubMed
121.
go back to reference Singh VP, Bhagat L, Navina S, Sharif R, Dawra RK, Saluja AK (2007) Protease-activated receptor-2 protects against pancreatitis by stimulating exocrine secretion. Gut 56(7):958–964PubMed Singh VP, Bhagat L, Navina S, Sharif R, Dawra RK, Saluja AK (2007) Protease-activated receptor-2 protects against pancreatitis by stimulating exocrine secretion. Gut 56(7):958–964PubMed
122.
go back to reference Sharma A, Tao X, Gopal A, Ligon B, Andrade-Gordon P, Steer ML et al (2005) Protection against acute pancreatitis by activation of protease-activated receptor-2. Am J Physiol Gastrointest Liver Physiol 288(2):G388–G395PubMed Sharma A, Tao X, Gopal A, Ligon B, Andrade-Gordon P, Steer ML et al (2005) Protection against acute pancreatitis by activation of protease-activated receptor-2. Am J Physiol Gastrointest Liver Physiol 288(2):G388–G395PubMed
123.
go back to reference Cenac N, Andrews CN, Holzhausen M, Chapman K, Cottrell G, Andrade-Gordon P et al (2007) Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest 117(3):636–647PubMed Cenac N, Andrews CN, Holzhausen M, Chapman K, Cottrell G, Andrade-Gordon P et al (2007) Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest 117(3):636–647PubMed
124.
go back to reference Cenac N, Coelho AM, Nguyen C, Compton S, Andrade-Gordon P, Macnaughton WK et al (2002) Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2. Am J Pathol 161(5):1903–1915PubMed Cenac N, Coelho AM, Nguyen C, Compton S, Andrade-Gordon P, Macnaughton WK et al (2002) Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2. Am J Pathol 161(5):1903–1915PubMed
125.
go back to reference Demaude J, Leveque M, Chaumaz G, Eutamene H, Fioramonti J, Bueno L et al (2009) Acute stress increases colonic paracellular permeability in mice through a mast cell-independent mechanism: involvement of pancreatic trypsin. Life Sci 84(23–24):847–852PubMed Demaude J, Leveque M, Chaumaz G, Eutamene H, Fioramonti J, Bueno L et al (2009) Acute stress increases colonic paracellular permeability in mice through a mast cell-independent mechanism: involvement of pancreatic trypsin. Life Sci 84(23–24):847–852PubMed
126.
go back to reference Hansen KK, Sherman PM, Cellars L, Andrade-Gordon P, Pan Z, Baruch A et al (2005) A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc Natl Acad Sci U S A 102(23):8363–8368PubMed Hansen KK, Sherman PM, Cellars L, Andrade-Gordon P, Pan Z, Baruch A et al (2005) A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc Natl Acad Sci U S A 102(23):8363–8368PubMed
127.
go back to reference Hyun E, Andrade-Gordon P, Steinhoff M, Vergnolle N (2008) Protease-activated receptor-2 activation: a major actor in intestinal inflammation. Gut 57(9):1222–1229PubMed Hyun E, Andrade-Gordon P, Steinhoff M, Vergnolle N (2008) Protease-activated receptor-2 activation: a major actor in intestinal inflammation. Gut 57(9):1222–1229PubMed
128.
go back to reference Cenac N, Chin AC, Garcia-Villar R, Salvador-Cartier C, Ferrier L, Vergnolle N et al (2004) PAR2 activation alters colonic paracellular permeability in mice via IFN-gamma-dependent and -independent pathways. J Physiol 558(Pt 3):913–925PubMed Cenac N, Chin AC, Garcia-Villar R, Salvador-Cartier C, Ferrier L, Vergnolle N et al (2004) PAR2 activation alters colonic paracellular permeability in mice via IFN-gamma-dependent and -independent pathways. J Physiol 558(Pt 3):913–925PubMed
129.
go back to reference Jacob C, Yang PC, Darmoul D, Amadesi S, Saito T, Cottrell GS et al (2005) Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins. J Biol Chem 280(36):31936–31948PubMed Jacob C, Yang PC, Darmoul D, Amadesi S, Saito T, Cottrell GS et al (2005) Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins. J Biol Chem 280(36):31936–31948PubMed
130.
go back to reference Moriez R, Leveque M, Salvador-Cartier C, Barreau F, Theodorou V, Fioramonti J et al (2007) Mucosal mast cell proteases are involved in colonic permeability alterations and subsequent bacterial translocation in endotoxemic rats. Shock 28(1):118–124PubMed Moriez R, Leveque M, Salvador-Cartier C, Barreau F, Theodorou V, Fioramonti J et al (2007) Mucosal mast cell proteases are involved in colonic permeability alterations and subsequent bacterial translocation in endotoxemic rats. Shock 28(1):118–124PubMed
131.
go back to reference Kim DH, Cho YJ, Kim JH, Kim YB, Lee KJ (2010) Stress-induced alterations in mast cell numbers and proteinase-activated receptor-2 expression of the colon: role of corticotrophin-releasing factor. J Korean Med Sci 25(9):1330–1335PubMed Kim DH, Cho YJ, Kim JH, Kim YB, Lee KJ (2010) Stress-induced alterations in mast cell numbers and proteinase-activated receptor-2 expression of the colon: role of corticotrophin-releasing factor. J Korean Med Sci 25(9):1330–1335PubMed
132.
go back to reference Roka R, Demaude J, Cenac N, Ferrier L, Salvador-Cartier C, Garcia-Villar R et al (2007) Colonic luminal proteases activate colonocyte proteinase-activated receptor-2 and regulate paracellular permeability in mice. Neurogastroenterol Motil 19(1):57–65PubMed Roka R, Demaude J, Cenac N, Ferrier L, Salvador-Cartier C, Garcia-Villar R et al (2007) Colonic luminal proteases activate colonocyte proteinase-activated receptor-2 and regulate paracellular permeability in mice. Neurogastroenterol Motil 19(1):57–65PubMed
133.
go back to reference Buzza MS, Netzel-Arnett S, Shea-Donohue T, Zhao A, Lin CY, List K et al (2010) Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine. Proc Natl Acad Sci U S A 107(9):4200–4205PubMed Buzza MS, Netzel-Arnett S, Shea-Donohue T, Zhao A, Lin CY, List K et al (2010) Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine. Proc Natl Acad Sci U S A 107(9):4200–4205PubMed
134.
go back to reference Lindner JR, Kahn ML, Coughlin SR, Sambrano GR, Schauble E, Bernstein D et al (2000) Delayed onset of inflammation in protease-activated receptor-2-deficient mice. J Immunol 165:6504–6510PubMed Lindner JR, Kahn ML, Coughlin SR, Sambrano GR, Schauble E, Bernstein D et al (2000) Delayed onset of inflammation in protease-activated receptor-2-deficient mice. J Immunol 165:6504–6510PubMed
135.
go back to reference Hyun E, Andrade-Gordon P, Steinhoff M, Beck PL, Vergnolle N (2010) Contribution of bone marrow-derived cells to the pro-inflammatory effects of protease-activated receptor-2 in colitis. Inflamm Res 59(9):699–709PubMed Hyun E, Andrade-Gordon P, Steinhoff M, Beck PL, Vergnolle N (2010) Contribution of bone marrow-derived cells to the pro-inflammatory effects of protease-activated receptor-2 in colitis. Inflamm Res 59(9):699–709PubMed
136.
go back to reference Anthoni C, Russell J, Wood KC, Stokes KY, Vowinkel T, Kirchhofer D et al (2007) Tissue factor: a mediator of inflammatory cell recruitment, tissue injury, and thrombus formation in experimental colitis. J Exp Med 204(7):1595–1601PubMed Anthoni C, Russell J, Wood KC, Stokes KY, Vowinkel T, Kirchhofer D et al (2007) Tissue factor: a mediator of inflammatory cell recruitment, tissue injury, and thrombus formation in experimental colitis. J Exp Med 204(7):1595–1601PubMed
137.
go back to reference Steinbrecher KA, Horowitz NA, Blevins EA, Barney KA, Shaw MA, Harmel-Laws E et al (2010) Colitis-associated cancer is dependent on the interplay between the hemostatic and inflammatory systems and supported by integrin alpha(M)beta(2) engagement of fibrinogen. Cancer Res 70(7):2634–2643PubMed Steinbrecher KA, Horowitz NA, Blevins EA, Barney KA, Shaw MA, Harmel-Laws E et al (2010) Colitis-associated cancer is dependent on the interplay between the hemostatic and inflammatory systems and supported by integrin alpha(M)beta(2) engagement of fibrinogen. Cancer Res 70(7):2634–2643PubMed
138.
go back to reference Giacaman RA, Asrani AC, Ross KF, Herzberg MC (2009) Cleavage of protease-activated receptors on an immortalized oral epithelial cell line by Porphyromonas gingivalis gingipains. Microbiology 155(Pt 10):3238–3246PubMed Giacaman RA, Asrani AC, Ross KF, Herzberg MC (2009) Cleavage of protease-activated receptors on an immortalized oral epithelial cell line by Porphyromonas gingivalis gingipains. Microbiology 155(Pt 10):3238–3246PubMed
139.
go back to reference Chung WO, Hansen SR, Rao D, Dale BA (2004) Protease-activated receptor signaling increases epithelial antimicrobial peptide expression. J Immunol 173(8):5165–5170PubMed Chung WO, Hansen SR, Rao D, Dale BA (2004) Protease-activated receptor signaling increases epithelial antimicrobial peptide expression. J Immunol 173(8):5165–5170PubMed
140.
go back to reference Dommisch H, Chung WO, Rohani MG, Williams D, Rangarajan M, Curtis MA et al (2007) Protease-activated receptor 2 mediates human beta-defensin 2 and CC chemokine ligand 20 mRNA expression in response to proteases secreted by Porphyromonas gingivalis. Infect Immun 75(9):4326–4333PubMed Dommisch H, Chung WO, Rohani MG, Williams D, Rangarajan M, Curtis MA et al (2007) Protease-activated receptor 2 mediates human beta-defensin 2 and CC chemokine ligand 20 mRNA expression in response to proteases secreted by Porphyromonas gingivalis. Infect Immun 75(9):4326–4333PubMed
141.
go back to reference Cocks TM, Fong B, Chow JM, Anderson GP, Frauman AG, Goldie RG et al (1999) A protective role for protease-activated receptors in the airways. Nature 398(6723):156–160PubMed Cocks TM, Fong B, Chow JM, Anderson GP, Frauman AG, Goldie RG et al (1999) A protective role for protease-activated receptors in the airways. Nature 398(6723):156–160PubMed
142.
go back to reference Khoufache K, LeBouder F, Morello E, Laurent F, Riffault S, Andrade-Gordon P et al (2009) Protective role for protease-activated receptor-2 against influenza virus pathogenesis via an IFN-gamma-dependent pathway. J Immunol 182(12):7795–7802PubMed Khoufache K, LeBouder F, Morello E, Laurent F, Riffault S, Andrade-Gordon P et al (2009) Protective role for protease-activated receptor-2 against influenza virus pathogenesis via an IFN-gamma-dependent pathway. J Immunol 182(12):7795–7802PubMed
143.
go back to reference Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW et al (2002) Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol 169(9):5315–5321PubMed Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW et al (2002) Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol 169(9):5315–5321PubMed
144.
go back to reference Takizawa T, Tamiya M, Hara T, Matsumoto J, Saito N, Kanke T et al (2005) Abrogation of bronchial eosinophilic inflammation and attenuated eotaxin content in protease-activated receptor 2-deficient mice. J Pharmacol Sci 98(1):99–102PubMed Takizawa T, Tamiya M, Hara T, Matsumoto J, Saito N, Kanke T et al (2005) Abrogation of bronchial eosinophilic inflammation and attenuated eotaxin content in protease-activated receptor 2-deficient mice. J Pharmacol Sci 98(1):99–102PubMed
145.
go back to reference Matsuwaki Y, Wada K, White TA, Benson LM, Charlesworth MC, Checkel JL et al (2009) Recognition of fungal protease activities induces cellular activation and eosinophil-derived neurotoxin release in human eosinophils. J Immunol 183(10):6708–6716PubMed Matsuwaki Y, Wada K, White TA, Benson LM, Charlesworth MC, Checkel JL et al (2009) Recognition of fungal protease activities induces cellular activation and eosinophil-derived neurotoxin release in human eosinophils. J Immunol 183(10):6708–6716PubMed
146.
go back to reference Moretti S, Bellocchio S, Bonifazi P, Bozza S, Zelante T, Bistoni F et al (2008) The contribution of PARs to inflammation and immunity to fungi. Mucosal Immunol 1(2):156–168PubMed Moretti S, Bellocchio S, Bonifazi P, Bozza S, Zelante T, Bistoni F et al (2008) The contribution of PARs to inflammation and immunity to fungi. Mucosal Immunol 1(2):156–168PubMed
147.
go back to reference Antalis TM, Buzza MS, Hodge KM, Hooper JD, Netzel-Arnett S (2010) The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment. Biochem J 428(3):325–346PubMed Antalis TM, Buzza MS, Hodge KM, Hooper JD, Netzel-Arnett S (2010) The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment. Biochem J 428(3):325–346PubMed
148.
go back to reference Szabo R, Kosa P, List K, Bugge TH (2009) Loss of matriptase suppression underlies spint1 mutation-associated ichthyosis and postnatal lethality. Am J Pathol 174(6):2015–2022PubMed Szabo R, Kosa P, List K, Bugge TH (2009) Loss of matriptase suppression underlies spint1 mutation-associated ichthyosis and postnatal lethality. Am J Pathol 174(6):2015–2022PubMed
149.
go back to reference Netzel-Arnett S, Currie BM, Szabo R, Lin CY, Chen LM, Chai KX et al (2006) Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem 281(44):32941–32945PubMed Netzel-Arnett S, Currie BM, Szabo R, Lin CY, Chen LM, Chai KX et al (2006) Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem 281(44):32941–32945PubMed
150.
go back to reference Camerer E, Barker A, Duong DN, Ganesan R, Kataoka H, Cornelissen I et al (2010) Local protease signaling contributes to neural tube closure in the mouse embryo. Dev Cell 18(1):25–38PubMed Camerer E, Barker A, Duong DN, Ganesan R, Kataoka H, Cornelissen I et al (2010) Local protease signaling contributes to neural tube closure in the mouse embryo. Dev Cell 18(1):25–38PubMed
151.
go back to reference Szabo R, Hobson JP, Christoph K, Kosa P, List K, Bugge TH (2009) Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice. Development 136(15):2653–2663PubMed Szabo R, Hobson JP, Christoph K, Kosa P, List K, Bugge TH (2009) Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice. Development 136(15):2653–2663PubMed
152.
go back to reference Sales KU, Masedunskas A, Bey AL, Rasmussen AL, Weigert R, List K et al (2010) Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nat Genet 42(8):676–683PubMed Sales KU, Masedunskas A, Bey AL, Rasmussen AL, Weigert R, List K et al (2010) Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nat Genet 42(8):676–683PubMed
153.
go back to reference Hansson L, Backman A, Ny A, Edlund M, Ekholm E, Ekstrand HB et al (2002) Epidermal overexpression of stratum corneum chymotryptic enzyme in mice: a model for chronic itchy dermatitis. J Invest Dermatol 118(3):444–449PubMed Hansson L, Backman A, Ny A, Edlund M, Ekholm E, Ekstrand HB et al (2002) Epidermal overexpression of stratum corneum chymotryptic enzyme in mice: a model for chronic itchy dermatitis. J Invest Dermatol 118(3):444–449PubMed
154.
go back to reference Oikonomopoulou K, Hansen KK, Saifeddine M, Tea I, Blaber M, Blaber SI et al (2006) Proteinase-activated receptors, targets for kallikrein signaling. J Biol Chem 281(43):32095–32112PubMed Oikonomopoulou K, Hansen KK, Saifeddine M, Tea I, Blaber M, Blaber SI et al (2006) Proteinase-activated receptors, targets for kallikrein signaling. J Biol Chem 281(43):32095–32112PubMed
155.
go back to reference Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C et al (2009) Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med 206(5):1135–1147PubMed Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C et al (2009) Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med 206(5):1135–1147PubMed
156.
go back to reference Briot A, Lacroix M, Robin A, Steinhoff M, Deraison C, Hovnanian A (2010) Par2 inactivation inhibits early production of TSLP, but not cutaneous inflammation, in Netherton syndrome adult mouse model. J Invest Dermatol 130(12):2736–2742PubMed Briot A, Lacroix M, Robin A, Steinhoff M, Deraison C, Hovnanian A (2010) Par2 inactivation inhibits early production of TSLP, but not cutaneous inflammation, in Netherton syndrome adult mouse model. J Invest Dermatol 130(12):2736–2742PubMed
157.
go back to reference Frateschi S, Camerer E, Crisante G, Rieser S, Membrez M, Charles RP et al (2011) PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/Prss8 expression in mouse skin. Nat Commun 2(1):161PubMed Frateschi S, Camerer E, Crisante G, Rieser S, Membrez M, Charles RP et al (2011) PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/Prss8 expression in mouse skin. Nat Commun 2(1):161PubMed
158.
go back to reference Chen M, Chen LM, Lin CY, Chai KX (2010) Hepsin activates prostasin and cleaves the extracellular domain of the epidermal growth factor receptor. Mol Cell Biochem 337(1–2):259–266PubMed Chen M, Chen LM, Lin CY, Chai KX (2010) Hepsin activates prostasin and cleaves the extracellular domain of the epidermal growth factor receptor. Mol Cell Biochem 337(1–2):259–266PubMed
159.
go back to reference Kazama Y, Hamamoto T, Foster DC, Kisiel W (1995) Hepsin, a putative membrane-associated serine protease, activates human factor VII and initiates a pathway of blood coagulation on the cell surface leading to thrombin formation. J Biol Chem 270:66–72PubMed Kazama Y, Hamamoto T, Foster DC, Kisiel W (1995) Hepsin, a putative membrane-associated serine protease, activates human factor VII and initiates a pathway of blood coagulation on the cell surface leading to thrombin formation. J Biol Chem 270:66–72PubMed
160.
go back to reference Camerer E, Gjernes E, Wiiger M, Pringle S, Prydz H (2000) Binding of factor VIIa to tissue factor on keratinocytes induces gene expression. J Biol Chem 275:6580–6585PubMed Camerer E, Gjernes E, Wiiger M, Pringle S, Prydz H (2000) Binding of factor VIIa to tissue factor on keratinocytes induces gene expression. J Biol Chem 275:6580–6585PubMed
161.
go back to reference Xu Z, Xu H, Ploplis VA, Castellino FJ (2010) Factor VII deficiency impairs cutaneous wound healing in mice. Mol Med 16(5–6):167–176PubMed Xu Z, Xu H, Ploplis VA, Castellino FJ (2010) Factor VII deficiency impairs cutaneous wound healing in mice. Mol Med 16(5–6):167–176PubMed
162.
go back to reference Ruf W, Mueller BM (2006) Thrombin generation and the pathogenesis of cancer. Semin Thromb Hemost 32(Suppl 1):61–68PubMed Ruf W, Mueller BM (2006) Thrombin generation and the pathogenesis of cancer. Semin Thromb Hemost 32(Suppl 1):61–68PubMed
163.
go back to reference Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR (2004) Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104(2):397–401PubMed Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR (2004) Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104(2):397–401PubMed
164.
go back to reference Shi X, Gangadharan B, Brass LF, Ruf W, Mueller BM (2004) Protease-activated receptor 1 (PAR1) and PAR2 contribute to tumor cell motility and metastasis. Mol Cancer Res 2(7):395–402PubMed Shi X, Gangadharan B, Brass LF, Ruf W, Mueller BM (2004) Protease-activated receptor 1 (PAR1) and PAR2 contribute to tumor cell motility and metastasis. Mol Cancer Res 2(7):395–402PubMed
165.
go back to reference Schaffner F, Ruf W (2009) Tissue factor and PAR2 signaling in the tumor microenvironment. Arterioscler Thromb Vasc Biol 29(12):1999–2004PubMed Schaffner F, Ruf W (2009) Tissue factor and PAR2 signaling in the tumor microenvironment. Arterioscler Thromb Vasc Biol 29(12):1999–2004PubMed
166.
go back to reference Yu JL, May L, Lhotak V, Shahrzad S, Shirasawa S, Weitz JI et al (2005) Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 105(4):1734–1741PubMed Yu JL, May L, Lhotak V, Shahrzad S, Shirasawa S, Weitz JI et al (2005) Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 105(4):1734–1741PubMed
167.
go back to reference Milsom CC, Yu JL, Mackman N, Micallef J, Anderson GM, Guha A et al (2008) Tissue factor regulation by epidermal growth factor receptor and epithelial-to-mesenchymal transitions: effect on tumor initiation and angiogenesis. Cancer Res 68(24):10068–10076PubMed Milsom CC, Yu JL, Mackman N, Micallef J, Anderson GM, Guha A et al (2008) Tissue factor regulation by epidermal growth factor receptor and epithelial-to-mesenchymal transitions: effect on tumor initiation and angiogenesis. Cancer Res 68(24):10068–10076PubMed
168.
go back to reference Provencal M, Labbe D, Veitch R, Boivin D, Rivard GE, Sartelet H et al (2009) c-Met activation in medulloblastoma induces tissue factor expression and activity: effects on cell migration. Carcinogenesis 30(7):1089–1096PubMed Provencal M, Labbe D, Veitch R, Boivin D, Rivard GE, Sartelet H et al (2009) c-Met activation in medulloblastoma induces tissue factor expression and activity: effects on cell migration. Carcinogenesis 30(7):1089–1096PubMed
169.
go back to reference Rong Y, Hu F, Huang R, Mackman N, Horowitz JM, Jensen RL et al (2006) Early growth response gene-1 regulates hypoxia-induced expression of tissue factor in glioblastoma multiforme through hypoxia-inducible factor-1-independent mechanisms. Cancer Res 66(14):7067–7074PubMed Rong Y, Hu F, Huang R, Mackman N, Horowitz JM, Jensen RL et al (2006) Early growth response gene-1 regulates hypoxia-induced expression of tissue factor in glioblastoma multiforme through hypoxia-inducible factor-1-independent mechanisms. Cancer Res 66(14):7067–7074PubMed
170.
go back to reference Rong Y, Belozerov VE, Tucker-Burden C, Chen G, Durden DL, Olson JJ et al (2009) Epidermal growth factor receptor and PTEN modulate tissue factor expression in glioblastoma through JunD/activator protein-1 transcriptional activity. Cancer Res 69(6):2540–2549PubMed Rong Y, Belozerov VE, Tucker-Burden C, Chen G, Durden DL, Olson JJ et al (2009) Epidermal growth factor receptor and PTEN modulate tissue factor expression in glioblastoma through JunD/activator protein-1 transcriptional activity. Cancer Res 69(6):2540–2549PubMed
171.
go back to reference Rong Y, Post DE, Pieper RO, Durden DL, Van Meir EG, Brat DJ (2005) PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res 65(4):1406–1413PubMed Rong Y, Post DE, Pieper RO, Durden DL, Van Meir EG, Brat DJ (2005) PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res 65(4):1406–1413PubMed
172.
go back to reference Koizume S, Jin M-S, Miyagi E, Hirahara F, Nakamura Y, Piao J-H et al (2006) Activation of cancer cell migration and invasion by ectopic synthesis of coagulation factor VII. Cancer Res 66(19):9453–9460PubMed Koizume S, Jin M-S, Miyagi E, Hirahara F, Nakamura Y, Piao J-H et al (2006) Activation of cancer cell migration and invasion by ectopic synthesis of coagulation factor VII. Cancer Res 66(19):9453–9460PubMed
173.
go back to reference Magnus N, Garnier D, Rak J (2010) Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood 116(5):815–818PubMed Magnus N, Garnier D, Rak J (2010) Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood 116(5):815–818PubMed
174.
go back to reference Ryden L, Grabau D, Schaffner F, Jonsson PE, Ruf W, Belting M (2010) Evidence for tissue factor phosphorylation and its correlation with protease activated receptor expression and the prognosis of primary breast cancer. Int J Cancer 126(10):2330–2340PubMed Ryden L, Grabau D, Schaffner F, Jonsson PE, Ruf W, Belting M (2010) Evidence for tissue factor phosphorylation and its correlation with protease activated receptor expression and the prognosis of primary breast cancer. Int J Cancer 126(10):2330–2340PubMed
175.
go back to reference Albrektsen T, Sorensen BB, Hjortoe GM, Fleckner J, Rao LVM, Petersen LC (2007) Transcriptional program induced by factor VIIa-tissue factor, PAR1 and PAR2 in MDA-MB-231 cells. J Thromb Haemost 5:1588–1597PubMed Albrektsen T, Sorensen BB, Hjortoe GM, Fleckner J, Rao LVM, Petersen LC (2007) Transcriptional program induced by factor VIIa-tissue factor, PAR1 and PAR2 in MDA-MB-231 cells. J Thromb Haemost 5:1588–1597PubMed
176.
go back to reference Versteeg HH, Spek CA, Richel DJ, Peppelenbosch MP (2004) Coagulation factors VIIa and Xa inhibit apoptosis and anoikis. Oncogene 23(2):410–417PubMed Versteeg HH, Spek CA, Richel DJ, Peppelenbosch MP (2004) Coagulation factors VIIa and Xa inhibit apoptosis and anoikis. Oncogene 23(2):410–417PubMed
177.
go back to reference Sorensen BB, Rao LVM, Tornehave D, Gammeltoft S, Petersen LC (2003) Anti-apoptotic effect of coagulation factor VIIa. Blood 102(5):1708–1715PubMed Sorensen BB, Rao LVM, Tornehave D, Gammeltoft S, Petersen LC (2003) Anti-apoptotic effect of coagulation factor VIIa. Blood 102(5):1708–1715PubMed
178.
go back to reference Wang W, Wyckoff JB, Goswami S, Wang Y, Sidani M, Segall JE et al (2007) Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67(8):3505–3511PubMed Wang W, Wyckoff JB, Goswami S, Wang Y, Sidani M, Segall JE et al (2007) Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67(8):3505–3511PubMed
179.
go back to reference Hjortoe GM, Petersen LC, Albrektsen T, Sorensen BB, Norby PL, Mandal SK et al (2004) Tissue factor-factor VIIa specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated via PAR-2 and results in increased cell migration. Blood 103(8):3029–3037PubMed Hjortoe GM, Petersen LC, Albrektsen T, Sorensen BB, Norby PL, Mandal SK et al (2004) Tissue factor-factor VIIa specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated via PAR-2 and results in increased cell migration. Blood 103(8):3029–3037PubMed
180.
go back to reference Versteeg HH, Schaffner F, Kerver M, Petersen HH, Ahamed J, Felding-Habermann B et al (2008) Inhibition of tissue factor signaling suppresses tumor growth. Blood 111(1):190–199PubMed Versteeg HH, Schaffner F, Kerver M, Petersen HH, Ahamed J, Felding-Habermann B et al (2008) Inhibition of tissue factor signaling suppresses tumor growth. Blood 111(1):190–199PubMed
181.
go back to reference Drake TA, Morrissey JH, Edgington TS (1989) Selective cellular expression of tissue factor in human tissues. Am J Pathol 134:1087–1097PubMed Drake TA, Morrissey JH, Edgington TS (1989) Selective cellular expression of tissue factor in human tissues. Am J Pathol 134:1087–1097PubMed
182.
go back to reference Dorfleutner A, Hintermann E, Tarui T, Takada Y, Ruf W (2004) Crosstalk of integrin a3b1 and tissue factor in cell migration. Mol Biol Cell 15(10):4416–4425PubMed Dorfleutner A, Hintermann E, Tarui T, Takada Y, Ruf W (2004) Crosstalk of integrin a3b1 and tissue factor in cell migration. Mol Biol Cell 15(10):4416–4425PubMed
183.
go back to reference Jiang X, Zhu S, Panetti TS, Bromberg ME (2008) Formation of tissue factor-factor VIIa-factor Xa complex induces activation of the mTOR pathway which regulates migration of human breast cancer cells. Thromb Haemost 100(1):127–133PubMed Jiang X, Zhu S, Panetti TS, Bromberg ME (2008) Formation of tissue factor-factor VIIa-factor Xa complex induces activation of the mTOR pathway which regulates migration of human breast cancer cells. Thromb Haemost 100(1):127–133PubMed
184.
go back to reference Jiang X, Bailly MA, Panetti TS, Cappello M, Konigsberg WH, Bromberg ME (2004) Formation of tissue factor-factor VIIa-factor Xa complex promotes cellular signaling and migration of human breast cancer cells. J Thromb Haemost 2(1):93–101PubMed Jiang X, Bailly MA, Panetti TS, Cappello M, Konigsberg WH, Bromberg ME (2004) Formation of tissue factor-factor VIIa-factor Xa complex promotes cellular signaling and migration of human breast cancer cells. J Thromb Haemost 2(1):93–101PubMed
185.
go back to reference Morris DR, Ding Y, Ricks TK, Gullapalli A, Wolfe BL, Trejo J (2006) Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Res 66(1):307–314PubMed Morris DR, Ding Y, Ricks TK, Gullapalli A, Wolfe BL, Trejo J (2006) Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Res 66(1):307–314PubMed
186.
go back to reference Liu Y, Mueller BM (2006) Protease-activated receptor-2 regulates vascular endothelial growth factor expression in MDA-MB-231 cells via MAPK pathways. Biochem Biophys Res Commun 344(4):1263–1270PubMed Liu Y, Mueller BM (2006) Protease-activated receptor-2 regulates vascular endothelial growth factor expression in MDA-MB-231 cells via MAPK pathways. Biochem Biophys Res Commun 344(4):1263–1270PubMed
187.
go back to reference Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51PubMed Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51PubMed
188.
go back to reference Gessler F, Voss V, Dutzmann S, Seifert V, Gerlach R, Kogel D (2010) Inhibition of tissue factor/protease-activated receptor-2 signaling limits proliferation, migration and invasion of malignant glioma cells. Neuroscience 165(4):1312–1322PubMed Gessler F, Voss V, Dutzmann S, Seifert V, Gerlach R, Kogel D (2010) Inhibition of tissue factor/protease-activated receptor-2 signaling limits proliferation, migration and invasion of malignant glioma cells. Neuroscience 165(4):1312–1322PubMed
189.
go back to reference Versteeg HH, Schaffner F, Kerver M, Ellies LG, Andrade-Gordon P, Mueller BM et al (2008) Protease activated receptor (PAR)2, but not PAR1 signaling promotes the development of mammary adenocarcinoma in PyMT mice. Cancer Res 68(17):7219–7227PubMed Versteeg HH, Schaffner F, Kerver M, Ellies LG, Andrade-Gordon P, Mueller BM et al (2008) Protease activated receptor (PAR)2, but not PAR1 signaling promotes the development of mammary adenocarcinoma in PyMT mice. Cancer Res 68(17):7219–7227PubMed
190.
go back to reference Schaffner F, Versteeg HH, Schillert A, Yokota N, Petersen LC, Mueller BM et al (2010) Cooperation of tissue factor cytoplasmic domain and PAR2 signaling in breast cancer development. Blood 116(26):6106–6113PubMed Schaffner F, Versteeg HH, Schillert A, Yokota N, Petersen LC, Mueller BM et al (2010) Cooperation of tissue factor cytoplasmic domain and PAR2 signaling in breast cancer development. Blood 116(26):6106–6113PubMed
191.
go back to reference Abe K, Shoji M, Chen J, Bierhaus A, Danave I, Micko C et al (1999) Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc Natl Acad Sci U S A 96(15):8663–8668PubMed Abe K, Shoji M, Chen J, Bierhaus A, Danave I, Micko C et al (1999) Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc Natl Acad Sci U S A 96(15):8663–8668PubMed
192.
go back to reference Zhang Y, Deng Y, Luther T, Müller M, Ziegler R, Waldherr R et al (1994) Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice. J Clin Invest 94:1320–1327PubMed Zhang Y, Deng Y, Luther T, Müller M, Ziegler R, Waldherr R et al (1994) Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice. J Clin Invest 94:1320–1327PubMed
193.
go back to reference Connolly AJ, Ishihara H, Kahn ML, Farese RV Jr, Coughlin SR (1996) Role of the thrombin receptor in development and evidence for a second receptor. Nature 381:516–519PubMed Connolly AJ, Ishihara H, Kahn ML, Farese RV Jr, Coughlin SR (1996) Role of the thrombin receptor in development and evidence for a second receptor. Nature 381:516–519PubMed
194.
go back to reference Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I et al (1996) Role of tissue factor in embryonic blood vessel development. Nature 383:73–75PubMed Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I et al (1996) Role of tissue factor in embryonic blood vessel development. Nature 383:73–75PubMed
195.
go back to reference Nierodzik ML, Karpatkin S (2006) Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 10(5):355–362PubMed Nierodzik ML, Karpatkin S (2006) Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 10(5):355–362PubMed
196.
go back to reference Uusitalo-Jarvinen H, Kurokawa T, Mueller BM, Andrade-Gordon P, Friedlander M, Ruf W (2007) Role of protease activated receptor 1 and 2 signaling in hypoxia-induced angiogenesis. Arterioscler Thromb Vasc Biol 27(6):1456–1462PubMed Uusitalo-Jarvinen H, Kurokawa T, Mueller BM, Andrade-Gordon P, Friedlander M, Ruf W (2007) Role of protease activated receptor 1 and 2 signaling in hypoxia-induced angiogenesis. Arterioscler Thromb Vasc Biol 27(6):1456–1462PubMed
197.
go back to reference Belting M, Dorrell MI, Sandgren S, Aguilar E, Ahamed J, Dorfleutner A et al (2004) Regulation of angiogenesis by tissue factor cytoplasmic domain signaling. Nature Med 10(5):502–509PubMed Belting M, Dorrell MI, Sandgren S, Aguilar E, Ahamed J, Dorfleutner A et al (2004) Regulation of angiogenesis by tissue factor cytoplasmic domain signaling. Nature Med 10(5):502–509PubMed
198.
go back to reference Zhu T, Sennlaub F, Beauchamp MH, Fan L, Joyal JS, Checchin D et al (2006) Proangiogenic effects of protease-activated receptor 2 are tumor necrosis factor-{alpha} and consecutively Tie2 dependent. Arterioscler Thromb Vasc Biol 26(4):744–750PubMed Zhu T, Sennlaub F, Beauchamp MH, Fan L, Joyal JS, Checchin D et al (2006) Proangiogenic effects of protease-activated receptor 2 are tumor necrosis factor-{alpha} and consecutively Tie2 dependent. Arterioscler Thromb Vasc Biol 26(4):744–750PubMed
199.
go back to reference Milia AF, Salis MB, Stacca T, Pinna A, Madeddu P, Trevisani M et al (2002) Protease-activated receptor-2 stimulates angiogenesis and accelerates hemodynamic recovery in a mouse model of hindlimb ischemia. Circ Res 91(4):346–352PubMed Milia AF, Salis MB, Stacca T, Pinna A, Madeddu P, Trevisani M et al (2002) Protease-activated receptor-2 stimulates angiogenesis and accelerates hemodynamic recovery in a mouse model of hindlimb ischemia. Circ Res 91(4):346–352PubMed
200.
go back to reference van den Berg YW, van den Hengel LG, Myers HR, Ayachi O, Jordanova E, Ruf W et al (2009) Alternatively spliced tissue factor induces angiogenesis through integrin ligation. Proc Natl Acad Sci U S A 106(46):19497–19502PubMed van den Berg YW, van den Hengel LG, Myers HR, Ayachi O, Jordanova E, Ruf W et al (2009) Alternatively spliced tissue factor induces angiogenesis through integrin ligation. Proc Natl Acad Sci U S A 106(46):19497–19502PubMed
201.
go back to reference Signaevsky M, Hobbs J, Doll J, Liu N, Soff GA (2008) Role of alternatively spliced tissue factor in pancreatic cancer growth and angiogenesis. Semin Thromb Hemost 34(2):161–169PubMed Signaevsky M, Hobbs J, Doll J, Liu N, Soff GA (2008) Role of alternatively spliced tissue factor in pancreatic cancer growth and angiogenesis. Semin Thromb Hemost 34(2):161–169PubMed
202.
go back to reference Srinivasan R, Ozhegov E, van den Berg YW, Aronow BJ, Franco RS, Palascak MB et al (2011) Splice variants of tissue factor promote monocyte-endothelial interactions by triggering the expression of cell adhesion molecules via integrin-mediated signaling. J Thromb Haemost. Aug 3. doi:10.1111/j.1538-7836.2011.04454.x Srinivasan R, Ozhegov E, van den Berg YW, Aronow BJ, Franco RS, Palascak MB et al (2011) Splice variants of tissue factor promote monocyte-endothelial interactions by triggering the expression of cell adhesion molecules via integrin-mediated signaling. J Thromb Haemost. Aug 3. doi:10.​1111/​j.​1538-7836.​2011.​04454.​x
203.
go back to reference Napoli C, Cicala C, Wallace JL, de Nigris F, Santagada V, Caliendo G et al (2000) Protease-activated receptor-2 modulates myocardial ischemia-reperfusion injury in the rat heart. Proc Natl Acad Sci U S A 97:3678–3683PubMed Napoli C, Cicala C, Wallace JL, de Nigris F, Santagada V, Caliendo G et al (2000) Protease-activated receptor-2 modulates myocardial ischemia-reperfusion injury in the rat heart. Proc Natl Acad Sci U S A 97:3678–3683PubMed
204.
go back to reference Gardell LR, Ma JN, Seitzberg JG, Knapp AE, Schiffer HH, Tabatabaei A et al (2008) Identification and characterization of novel small-molecule protease-activated receptor 2 agonists. J Pharmacol Exp Ther 327(3):799–808PubMed Gardell LR, Ma JN, Seitzberg JG, Knapp AE, Schiffer HH, Tabatabaei A et al (2008) Identification and characterization of novel small-molecule protease-activated receptor 2 agonists. J Pharmacol Exp Ther 327(3):799–808PubMed
205.
go back to reference Kelso EB, Lockhart JC, Hembrough T, Dunning L, Plevin R, Hollenberg MD et al (2006) Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J Pharmacol Exp Ther 316(3):1017–1024PubMed Kelso EB, Lockhart JC, Hembrough T, Dunning L, Plevin R, Hollenberg MD et al (2006) Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J Pharmacol Exp Ther 316(3):1017–1024PubMed
206.
go back to reference Goh FG, Ng PY, Nilsson M, Kanke T, Plevin R (2009) Dual effect of the novel peptide antagonist K-14585 on proteinase-activated receptor-2-mediated signalling. Br J Pharmacol 158(7):1695–1704PubMed Goh FG, Ng PY, Nilsson M, Kanke T, Plevin R (2009) Dual effect of the novel peptide antagonist K-14585 on proteinase-activated receptor-2-mediated signalling. Br J Pharmacol 158(7):1695–1704PubMed
207.
go back to reference Kanke T, Kabeya M, Kubo S, Kondo S, Yasuoka K, Tagashira J et al (2009) Novel antagonists for proteinase-activated receptor 2: inhibition of cellular and vascular responses in vitro and in vivo. Br J Pharmacol 158(1):361–371PubMed Kanke T, Kabeya M, Kubo S, Kondo S, Yasuoka K, Tagashira J et al (2009) Novel antagonists for proteinase-activated receptor 2: inhibition of cellular and vascular responses in vitro and in vivo. Br J Pharmacol 158(1):361–371PubMed
208.
go back to reference Barry GD, Suen JY, Le GT, Cotterell A, Reid RC, Fairlie DP (2010) Novel agonists and antagonists for human protease activated receptor 2. J Med Chem 53(20):7428–7440PubMed Barry GD, Suen JY, Le GT, Cotterell A, Reid RC, Fairlie DP (2010) Novel agonists and antagonists for human protease activated receptor 2. J Med Chem 53(20):7428–7440PubMed
209.
go back to reference Suen JY, Barry GD, Lohman RJ, Halili MA, Cotterell AJ, Le GT et al (2011) Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). Br J Pharmacol 10–5381 Suen JY, Barry GD, Lohman RJ, Halili MA, Cotterell AJ, Le GT et al (2011) Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). Br J Pharmacol 10–5381
210.
go back to reference Larsen KS, Ostergaard H, Olsen OH, Bjelke JR, Ruf W, Petersen LC (2010) Engineering of substrate selectivity for tissue factor-factor VIIa complex signaling through protease activated receptor 2. J Biol Chem 285(26):19959–19966PubMed Larsen KS, Ostergaard H, Olsen OH, Bjelke JR, Ruf W, Petersen LC (2010) Engineering of substrate selectivity for tissue factor-factor VIIa complex signaling through protease activated receptor 2. J Biol Chem 285(26):19959–19966PubMed
Metadata
Title
Protease-activated receptor 2 signaling in inflammation
Authors
Andrea S. Rothmeier
Wolfram Ruf
Publication date
01-01-2012
Publisher
Springer-Verlag
Published in
Seminars in Immunopathology / Issue 1/2012
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-011-0289-1

Other articles of this Issue 1/2012

Seminars in Immunopathology 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.