Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Prostate Cancer | Research article

Transcriptional landscape of PTEN loss in primary prostate cancer

Authors: Eddie Luidy Imada, Diego Fernando Sanchez, Wikum Dinalankara, Thiago Vidotto, Ericka M. Ebot, Svitlana Tyekucheva, Gloria Regina Franco, Lorelei Ann Mucci, Massimo Loda, Edward Matthew Schaeffer, Tamara Lotan, Luigi Marchionni

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

PTEN is the most frequently lost tumor suppressor in primary prostate cancer (PCa) and its loss is associated with aggressive disease. However, the transcriptional changes associated with PTEN loss in PCa have not been described in detail. In this study, we highlight the transcriptional changes associated with PTEN loss in PCa.

Methods

Using a meta-analysis approach, we leveraged two large PCa cohorts with experimentally validated PTEN and ERG status by Immunohistochemistry (IHC), to derive a transcriptomic signature of PTEN loss, while also accounting for potential confounders due to ERG rearrangements. This signature was expanded to lncRNAs using the TCGA quantifications from the FC-R2 expression atlas.

Results

The signatures indicate a strong activation of both innate and adaptive immune systems upon PTEN loss, as well as an expected activation of cell-cycle genes. Moreover, we made use of our recently developed FC-R2 expression atlas to expand this signature to include many non-coding RNAs recently annotated by the FANTOM consortium. Highlighting potential novel lncRNAs associated with PTEN loss and PCa progression.

Conclusion

We created a PCa specific signature of the transcriptional landscape of PTEN loss that comprises both the coding and an extensive non-coding counterpart, highlighting potential new players in PCa progression. We also show that contrary to what is observed in other cancers, PTEN loss in PCa leads to increased activation of the immune system. These findings can help the development of new biomarkers and help guide therapy choices.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cancer Genome Atlas Research Network, TCGA. The molecular taxonomy of primary prostate Cancer. Cell. 2015;163(4):1011–25.CrossRef Cancer Genome Atlas Research Network, TCGA. The molecular taxonomy of primary prostate Cancer. Cell. 2015;163(4):1011–25.CrossRef
3.
go back to reference Baca S, Garraway L. The genomic landscape of prostate cancer. Front Endocrinol (Lausanne). 2012;3:69.CrossRef Baca S, Garraway L. The genomic landscape of prostate cancer. Front Endocrinol (Lausanne). 2012;3:69.CrossRef
5.
go back to reference Lee Y-R, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol. 2018;19(9):1–16.CrossRef Lee Y-R, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol. 2018;19(9):1–16.CrossRef
9.
go back to reference Lotan TL, Wei W, Ludkovski O, Morais CL, Guedes LB, Jamaspishvili T, et al. Analytic validation of a clinical-grade PTEN immunohistochemistry assay in prostate cancer by comparison with PTEN FISH. Nat Genet. 2016;29(8):904–14. Lotan TL, Wei W, Ludkovski O, Morais CL, Guedes LB, Jamaspishvili T, et al. Analytic validation of a clinical-grade PTEN immunohistochemistry assay in prostate cancer by comparison with PTEN FISH. Nat Genet. 2016;29(8):904–14.
21.
go back to reference Imada EL, Sanchez DF, Collado-Torres L, Wilks C, Matam T, Dinalankara W, et al. Recounting the FANTOM CAGE--Associated Transcriptome. Genome Res. 2020;30(7):gr--254656.CrossRef Imada EL, Sanchez DF, Collado-Torres L, Wilks C, Matam T, Dinalankara W, et al. Recounting the FANTOM CAGE--Associated Transcriptome. Genome Res. 2020;30(7):gr--254656.CrossRef
26.
go back to reference Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3.CrossRefPubMed Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3.CrossRefPubMed
27.
28.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;Series B(1):289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;Series B(1):289–300.
36.
go back to reference Network CGAR, Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113–20.CrossRef Network CGAR, Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113–20.CrossRef
39.
52.
go back to reference Whiteland H, Spencer-Harty S, Morgan C, Kynaston H, Thomas DH, Bose P, et al. A role for STEAP2 in prostate cancer progression. Clin Exp Metastasis. 2014;31(8):909–20.CrossRefPubMed Whiteland H, Spencer-Harty S, Morgan C, Kynaston H, Thomas DH, Bose P, et al. A role for STEAP2 in prostate cancer progression. Clin Exp Metastasis. 2014;31(8):909–20.CrossRefPubMed
54.
go back to reference Patel N, Itakura T, Jeong S, Liao C-PP, Roy-Burman P, Zandi E, et al. Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression. Robson CN, editor. PLoS One. 2015;10(2):e0117758.CrossRefPubMedPubMedCentral Patel N, Itakura T, Jeong S, Liao C-PP, Roy-Burman P, Zandi E, et al. Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression. Robson CN, editor. PLoS One. 2015;10(2):e0117758.CrossRefPubMedPubMedCentral
72.
go back to reference Katsha A, Soutto M, Sehdev V, Peng D, Washington MK, Piazuelo MB, et al. Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology. 2013;145(6):1312–22.e1–8.CrossRefPubMed Katsha A, Soutto M, Sehdev V, Peng D, Washington MK, Piazuelo MB, et al. Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology. 2013;145(6):1312–22.e1–8.CrossRefPubMed
Metadata
Title
Transcriptional landscape of PTEN loss in primary prostate cancer
Authors
Eddie Luidy Imada
Diego Fernando Sanchez
Wikum Dinalankara
Thiago Vidotto
Ericka M. Ebot
Svitlana Tyekucheva
Gloria Regina Franco
Lorelei Ann Mucci
Massimo Loda
Edward Matthew Schaeffer
Tamara Lotan
Luigi Marchionni
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-08593-y

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine