Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Prostate Cancer | Review

The role of the methyltransferase METTL3 in prostate cancer: a potential therapeutic target

Authors: Xuming Zhou, Keqiang Chai, Hezhen Zhu, Cong Luo, Xiaofeng Zou, Junrong Zou, Guoxi Zhang

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

The incidence of prostate cancer (PCa), the most prevalent malignancy, is currently at the forefront. RNA modification is a subfield of the booming field of epigenetics. To date, more than 170 types of RNA modifications have been described, and N6-methyladenosine (m6A) is the most abundant and well-characterized internal modification of mRNAs involved in various aspects of cancer progression. METTL3, the first identified key methyltransferase, regulates human mRNA and non-coding RNA expression in an m6A-dependent manner. This review elucidates the biological function and role of METTL3 in PCa and discusses the implications of METTL3 as a potential therapeutic target for future research directions and clinical applications.
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef
2.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef
3.
go back to reference Dy GW, Gore JL, Forouzanfar MH, Naghavi M, Fitzmaurice C. Global burden of urologic cancers, 1990-2013. Eur Urol. 2017;71(3):437–46.PubMedCrossRef Dy GW, Gore JL, Forouzanfar MH, Naghavi M, Fitzmaurice C. Global burden of urologic cancers, 1990-2013. Eur Urol. 2017;71(3):437–46.PubMedCrossRef
4.
go back to reference Wong MC, Goggins WB, Wang HH, et al. Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 countries. Eur Urol. 2016;70(5):862–74.PubMedCrossRef Wong MC, Goggins WB, Wang HH, et al. Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 countries. Eur Urol. 2016;70(5):862–74.PubMedCrossRef
5.
go back to reference Gillessen S, Armstrong A, Attard G, et al. Management of patients with advanced prostate cancer: report from the advanced prostate cancer consensus conference 2021. Eur Urol. 2022;82(1):115–41.PubMedCrossRef Gillessen S, Armstrong A, Attard G, et al. Management of patients with advanced prostate cancer: report from the advanced prostate cancer consensus conference 2021. Eur Urol. 2022;82(1):115–41.PubMedCrossRef
9.
go back to reference Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger rna from novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71(10):3971–5.PubMedPubMedCentralCrossRef Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger rna from novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71(10):3971–5.PubMedPubMedCentralCrossRef
10.
11.
go back to reference Ding Z, Liu Y, Huang Q, Cheng C, Song L, Zhang C, et al. M6a-and immune-related lncrna signature confers robust predictive power for immune efficacy in lung squamous cell carcinoma. View. 2023;4(3):20220083.CrossRef Ding Z, Liu Y, Huang Q, Cheng C, Song L, Zhang C, et al. M6a-and immune-related lncrna signature confers robust predictive power for immune efficacy in lung squamous cell carcinoma. View. 2023;4(3):20220083.CrossRef
14.
go back to reference Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. Stem cells. M6a mrna methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 2015;347(6225):1002–6.PubMedCrossRef Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. Stem cells. M6a mrna methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 2015;347(6225):1002–6.PubMedCrossRef
15.
go back to reference Horiuchi K, Kawamura T, Iwanari H, et al. Identification of wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem. 2013;288(46):33292–302.PubMedPubMedCentralCrossRef Horiuchi K, Kawamura T, Iwanari H, et al. Identification of wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem. 2013;288(46):33292–302.PubMedPubMedCentralCrossRef
16.
go back to reference Schwartz S, Mumbach M, Jovanovic M, et al. Perturbation of m6a writers reveals two distinct classes of mrna methylation at internal and 5’ sites. Cell Rep. 2014;8(1):284–96.PubMedPubMedCentralCrossRef Schwartz S, Mumbach M, Jovanovic M, et al. Perturbation of m6a writers reveals two distinct classes of mrna methylation at internal and 5’ sites. Cell Rep. 2014;8(1):284–96.PubMedPubMedCentralCrossRef
18.
go back to reference Huang H, Weng H, Chen J. M(6)a modification in coding and non-coding rnas: roles and therapeutic implications in cancer. Cancer Cell. 2020;37(3):270–88.PubMedPubMedCentralCrossRef Huang H, Weng H, Chen J. M(6)a modification in coding and non-coding rnas: roles and therapeutic implications in cancer. Cancer Cell. 2020;37(3):270–88.PubMedPubMedCentralCrossRef
21.
go back to reference Xu C, Wang X, Liu K, et al. Structural basis for selective binding of m6a rna by the ythdc1 yth domain. Nat Chem Biol. 2014;10(11):927–9.PubMedCrossRef Xu C, Wang X, Liu K, et al. Structural basis for selective binding of m6a rna by the ythdc1 yth domain. Nat Chem Biol. 2014;10(11):927–9.PubMedCrossRef
22.
go back to reference Li F, Zhao D, Wu J, Shi Y. Structure of the yth domain of human ythdf2 in complex with an m(6)a mononucleotide reveals an aromatic cage for m(6)a recognition. Cell Res. 2014;24(12):1490–2.PubMedPubMedCentralCrossRef Li F, Zhao D, Wu J, Shi Y. Structure of the yth domain of human ythdf2 in complex with an m(6)a mononucleotide reveals an aromatic cage for m(6)a recognition. Cell Res. 2014;24(12):1490–2.PubMedPubMedCentralCrossRef
25.
go back to reference Li T, Hu PS, Zuo Z, et al. Mettl3 facilitates tumor progression via an m(6)a-igf2bp2-dependent mechanism in colorectal carcinoma. Mol Cancer. 2019;18(1):112.PubMedPubMedCentralCrossRef Li T, Hu PS, Zuo Z, et al. Mettl3 facilitates tumor progression via an m(6)a-igf2bp2-dependent mechanism in colorectal carcinoma. Mol Cancer. 2019;18(1):112.PubMedPubMedCentralCrossRef
31.
go back to reference Li E, Wei B, Wang X, Kang R. Mettl3 enhances cell adhesion through stabilizing integrin β1 mrna via an m6a-hur-dependent mechanism in prostatic carcinoma. Am J Cancer Res. 2020;10:1012–25.PubMedPubMedCentral Li E, Wei B, Wang X, Kang R. Mettl3 enhances cell adhesion through stabilizing integrin β1 mrna via an m6a-hur-dependent mechanism in prostatic carcinoma. Am J Cancer Res. 2020;10:1012–25.PubMedPubMedCentral
32.
go back to reference Boccaletto P, Stefaniak F, Ray A, et al. Modomics: a database of rna modification pathways. 2021 update. Nucleic Acids Res. 2022;50(d1):d231–5.PubMedCrossRef Boccaletto P, Stefaniak F, Ray A, et al. Modomics: a database of rna modification pathways. 2021 update. Nucleic Acids Res. 2022;50(d1):d231–5.PubMedCrossRef
33.
go back to reference Barbieri I, Kouzarides T. Role of rna modifications in cancer. Nat Rev Cancer. 2020;20(6):303–22.PubMedCrossRef Barbieri I, Kouzarides T. Role of rna modifications in cancer. Nat Rev Cancer. 2020;20(6):303–22.PubMedCrossRef
34.
36.
go back to reference Davalos V, Blanco S, Esteller M. Snapshot: messenger rna modifications. Cell. 2018;174(2):498–498.e1.PubMedCrossRef Davalos V, Blanco S, Esteller M. Snapshot: messenger rna modifications. Cell. 2018;174(2):498–498.e1.PubMedCrossRef
38.
39.
go back to reference Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. Hnrnpa2b1 is a mediator of m(6)a-dependent nuclear rna processing events. Cell. 2015;162(6):1299–308.PubMedPubMedCentralCrossRef Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. Hnrnpa2b1 is a mediator of m(6)a-dependent nuclear rna processing events. Cell. 2015;162(6):1299–308.PubMedPubMedCentralCrossRef
40.
43.
go back to reference Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N(6)-methyladenosine-dependent rna structural switches regulate rna-protein interactions. Nature. 2015;518(7540):560–4.PubMedPubMedCentralCrossRef Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N(6)-methyladenosine-dependent rna structural switches regulate rna-protein interactions. Nature. 2015;518(7540):560–4.PubMedPubMedCentralCrossRef
44.
go back to reference As W, Kretschmer J, Hackert P, et al. Human mettl16 is a n(6)-methyladenosine (m(6)a) methyltransferase that targets pre-mrnas and various non-coding rnas. EMBO Rep. 2017;18(11):2004–14.CrossRef As W, Kretschmer J, Hackert P, et al. Human mettl16 is a n(6)-methyladenosine (m(6)a) methyltransferase that targets pre-mrnas and various non-coding rnas. EMBO Rep. 2017;18(11):2004–14.CrossRef
45.
46.
go back to reference Niu Y, Zhao X, Wu YS, Li MM, Wang XJ, Yang YG. N6-methyl-adenosine (m6a) in rna: an old modification with a novel epigenetic function. Genom Proteom Bioinform. 2013;11(1):8–17.CrossRef Niu Y, Zhao X, Wu YS, Li MM, Wang XJ, Yang YG. N6-methyl-adenosine (m6a) in rna: an old modification with a novel epigenetic function. Genom Proteom Bioinform. 2013;11(1):8–17.CrossRef
47.
48.
go back to reference Chen Z, Zhong X, Xia M, Zhong J. The roles and mechanisms of the m6a reader protein ythdf1 in tumor biology and human diseases. Mol Ther Nucleic Acids. 2021;26:1270–9.PubMedPubMedCentralCrossRef Chen Z, Zhong X, Xia M, Zhong J. The roles and mechanisms of the m6a reader protein ythdf1 in tumor biology and human diseases. Mol Ther Nucleic Acids. 2021;26:1270–9.PubMedPubMedCentralCrossRef
49.
50.
51.
52.
go back to reference Knuckles P, Lence T, Haussmann IU, et al. Zc3h13/flacc is required for adenosine methylation by bridging the mrna-binding factor rbm15/spenito to the m(6)a machinery component wtap/fl(2)d. Genes Dev. 2018;32(5–6):415–29.PubMedPubMedCentralCrossRef Knuckles P, Lence T, Haussmann IU, et al. Zc3h13/flacc is required for adenosine methylation by bridging the mrna-binding factor rbm15/spenito to the m(6)a machinery component wtap/fl(2)d. Genes Dev. 2018;32(5–6):415–29.PubMedPubMedCentralCrossRef
53.
go back to reference Wen J, Lv R, Ma H, et al. Zc3h13 regulates nuclear rna m(6)a methylation and mouse embryonic stem cell self-renewal. Mol Cell. 2018;69(6):1028–1038.e6.PubMedPubMedCentralCrossRef Wen J, Lv R, Ma H, et al. Zc3h13 regulates nuclear rna m(6)a methylation and mouse embryonic stem cell self-renewal. Mol Cell. 2018;69(6):1028–1038.e6.PubMedPubMedCentralCrossRef
54.
go back to reference Wei J, Liu F, Lu Z, et al. Differential m(6)a, m(6)a(m), and m(1)a demethylation mediated by fto in the cell nucleus and cytoplasm. Mol Cell. 2018;71(6):973–985.e5.PubMedPubMedCentralCrossRef Wei J, Liu F, Lu Z, et al. Differential m(6)a, m(6)a(m), and m(1)a demethylation mediated by fto in the cell nucleus and cytoplasm. Mol Cell. 2018;71(6):973–985.e5.PubMedPubMedCentralCrossRef
55.
go back to reference Liu J, Jia G. Methylation modifications in eukaryotic messenger rna. J Genet Genomics. 2014;41(1):21–33.PubMedCrossRef Liu J, Jia G. Methylation modifications in eukaryotic messenger rna. J Genet Genomics. 2014;41(1):21–33.PubMedCrossRef
56.
go back to reference Zou S, Toh JD, Wong KH, Gao YG, Hong W, Woon EC. N(6)-methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases fto and alkbh5. Sci Rep. 2016;6:25677.PubMedPubMedCentralCrossRef Zou S, Toh JD, Wong KH, Gao YG, Hong W, Woon EC. N(6)-methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases fto and alkbh5. Sci Rep. 2016;6:25677.PubMedPubMedCentralCrossRef
57.
58.
go back to reference Cd A, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500.CrossRef Cd A, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500.CrossRef
59.
go back to reference Huang H, Weng H, Sun W, et al. Recognition of rna n(6)-methyladenosine by igf2bp proteins enhances mrna stability and translation. Nat Cell Biol. 2018;20(3):285–95.PubMedPubMedCentralCrossRef Huang H, Weng H, Sun W, et al. Recognition of rna n(6)-methyladenosine by igf2bp proteins enhances mrna stability and translation. Nat Cell Biol. 2018;20(3):285–95.PubMedPubMedCentralCrossRef
60.
go back to reference Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T. N6-methyladenosine alters rna structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 2017;45(10):6051–63.PubMedPubMedCentralCrossRef Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T. N6-methyladenosine alters rna structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 2017;45(10):6051–63.PubMedPubMedCentralCrossRef
61.
go back to reference Petri BJ, Klinge CM. M6a readers, writers, erasers, and the m6a epitranscriptome in breast cancer. J Mol Endocrinol. 2023;70(2) Petri BJ, Klinge CM. M6a readers, writers, erasers, and the m6a epitranscriptome in breast cancer. J Mol Endocrinol. 2023;70(2)
62.
go back to reference Sun T, Wu R, Ming L. The role of m6a rna methylation in cancer. Biomed Pharmacother. 2019;112:108613.PubMedCrossRef Sun T, Wu R, Ming L. The role of m6a rna methylation in cancer. Biomed Pharmacother. 2019;112:108613.PubMedCrossRef
65.
go back to reference Li Y, Su R, Deng X, Chen Y, Chen J. Fto in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer. 2022;8(7):598–614.PubMedCrossRef Li Y, Su R, Deng X, Chen Y, Chen J. Fto in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer. 2022;8(7):598–614.PubMedCrossRef
66.
67.
go back to reference Zaccara S, Ries Rj J Sr. Reading, writing and erasing mrna methylation. Nat Rev Mol Cell Biol. 2019;20(10):608–24.PubMedCrossRef Zaccara S, Ries Rj J Sr. Reading, writing and erasing mrna methylation. Nat Rev Mol Cell Biol. 2019;20(10):608–24.PubMedCrossRef
68.
69.
go back to reference Wu R, Li A, Sun B, et al. A novel m(6)a reader prrc2a controls oligodendroglial specification and myelination. Cell Res. 2019;29(1):23–41.PubMedCrossRef Wu R, Li A, Sun B, et al. A novel m(6)a reader prrc2a controls oligodendroglial specification and myelination. Cell Res. 2019;29(1):23–41.PubMedCrossRef
70.
go back to reference Zhang F, Kang Y, Wang M, et al. Fragile x mental retardation protein modulates the stability of its m6a-marked messenger rna targets. Hum Mol Genet. 2018;27(22):3936–50.PubMedPubMedCentral Zhang F, Kang Y, Wang M, et al. Fragile x mental retardation protein modulates the stability of its m6a-marked messenger rna targets. Hum Mol Genet. 2018;27(22):3936–50.PubMedPubMedCentral
73.
go back to reference Liao S, Sun H, Xu C. Yth domain: a family of n(6)-methyladenosine (m(6)a) readers. Genom Proteom Bioinform. 2018;16(2):99–107.CrossRef Liao S, Sun H, Xu C. Yth domain: a family of n(6)-methyladenosine (m(6)a) readers. Genom Proteom Bioinform. 2018;16(2):99–107.CrossRef
74.
go back to reference Patil DP, Pickering BF, Jaffrey SR. Reading m(6)a in the transcriptome: m(6)a-binding proteins. Trends Cell Biol. 2018;28(2):113–27.PubMedCrossRef Patil DP, Pickering BF, Jaffrey SR. Reading m(6)a in the transcriptome: m(6)a-binding proteins. Trends Cell Biol. 2018;28(2):113–27.PubMedCrossRef
75.
go back to reference Yang Y, Hsu PJ, Ys C, Yang YG. Dynamic transcriptomic m(6)a decoration: writers, erasers, readers and functions in rna metabolism. Cell Res. 2018;28(6):616–24.PubMedPubMedCentralCrossRef Yang Y, Hsu PJ, Ys C, Yang YG. Dynamic transcriptomic m(6)a decoration: writers, erasers, readers and functions in rna metabolism. Cell Res. 2018;28(6):616–24.PubMedPubMedCentralCrossRef
76.
go back to reference Peer E, Moshitch-Moshkovitz S, Rechavi G, Dominissini D. The epitranscriptome in translation regulation. Cold Spring Harb Perspect Biol. 2019;11(8) Peer E, Moshitch-Moshkovitz S, Rechavi G, Dominissini D. The epitranscriptome in translation regulation. Cold Spring Harb Perspect Biol. 2019;11(8)
77.
go back to reference Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G, Dominissini D. The m(6)a epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci. 2020;21(1):36–51.PubMedCrossRef Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G, Dominissini D. The m(6)a epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci. 2020;21(1):36–51.PubMedCrossRef
85.
go back to reference Luxton HJ, Simpson BS, Mills IG, Nr B, Ahmed Z, Stavrinides V, et al. The oncogene metadherin interacts with the known splicing proteins ythdc1, sam68 and t-star and plays a novel role in alternative mrna splicing. Cancers (basel). 2019;11 https://doi.org/10.3390/cancers11091233. Luxton HJ, Simpson BS, Mills IG, Nr B, Ahmed Z, Stavrinides V, et al. The oncogene metadherin interacts with the known splicing proteins ythdc1, sam68 and t-star and plays a novel role in alternative mrna splicing. Cancers (basel). 2019;11 https://​doi.​org/​10.​3390/​cancers11091233.
86.
go back to reference Song J, You G, Yin X, Zhu G, Wang W, Yu Y, et al. Overexpression of ythdc2 contributes to the progression of prostate cancer and predicts poor outcomes in patients with prostate cancer. J Biochem Mol Toxicol. 2023:e23308. https://doi.org/10.1002/jbt.23308. Song J, You G, Yin X, Zhu G, Wang W, Yu Y, et al. Overexpression of ythdc2 contributes to the progression of prostate cancer and predicts poor outcomes in patients with prostate cancer. J Biochem Mol Toxicol. 2023:e23308. https://​doi.​org/​10.​1002/​jbt.​23308.
96.
97.
98.
go back to reference Śledź P, Jinek M. Structural insights into the molecular mechanism of the m(6)a writer complex. Elife. 2016;5 Śledź P, Jinek M. Structural insights into the molecular mechanism of the m(6)a writer complex. Elife. 2016;5
99.
go back to reference Huang J, Dong X, Gong Z, et al. Solution structure of the rna recognition domain of mettl3-mettl14 n(6)-methyladenosine methyltransferase. Protein Cell. 2019;10(4):272–84.PubMedCrossRef Huang J, Dong X, Gong Z, et al. Solution structure of the rna recognition domain of mettl3-mettl14 n(6)-methyladenosine methyltransferase. Protein Cell. 2019;10(4):272–84.PubMedCrossRef
100.
go back to reference Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999;292(2):195–202.PubMedCrossRef Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999;292(2):195–202.PubMedCrossRef
101.
go back to reference Ward JJ, Mcguffin LJ, Bryson K, Buxton BF, Jones DT. The disopred server for the prediction of protein disorder. Bioinformatics. 2004;20(13):2138–9.PubMedCrossRef Ward JJ, Mcguffin LJ, Bryson K, Buxton BF, Jones DT. The disopred server for the prediction of protein disorder. Bioinformatics. 2004;20(13):2138–9.PubMedCrossRef
102.
go back to reference Schöller E, Weichmann F, Treiber T, et al. Interactions, localization, and phosphorylation of the m(6)a generating mettl3-mettl14-wtap complex. RNA. 2018;24(4):499–512.PubMedPubMedCentralCrossRef Schöller E, Weichmann F, Treiber T, et al. Interactions, localization, and phosphorylation of the m(6)a generating mettl3-mettl14-wtap complex. RNA. 2018;24(4):499–512.PubMedPubMedCentralCrossRef
114.
115.
go back to reference Yan R, Dai W, Wu R, Huang H, Shu M. Therapeutic targeting m6a-guided mir-146a-5p signaling contributes to the melittin-induced selective suppression of bladder cancer. Cancer Lett. 2022;534:215615.PubMedCrossRef Yan R, Dai W, Wu R, Huang H, Shu M. Therapeutic targeting m6a-guided mir-146a-5p signaling contributes to the melittin-induced selective suppression of bladder cancer. Cancer Lett. 2022;534:215615.PubMedCrossRef
116.
go back to reference Bi X, Lv X, Liu D, et al. Mettl3 promotes the initiation and metastasis of ovarian cancer by inhibiting ccng2 expression via promoting the maturation of pri-microrna-1246. Cell Death Discov. 2021;7(1):237.PubMedPubMedCentralCrossRef Bi X, Lv X, Liu D, et al. Mettl3 promotes the initiation and metastasis of ovarian cancer by inhibiting ccng2 expression via promoting the maturation of pri-microrna-1246. Cell Death Discov. 2021;7(1):237.PubMedPubMedCentralCrossRef
117.
go back to reference Jiang X, Yuan Y, Tang L, et al. Comprehensive pan-cancer analysis of the prognostic and immunological roles of the mettl3/lncrna-snhg1/mirna-140-3p/ube2c axis. Front Cell Dev Biol. 2021;9:765772.PubMedPubMedCentralCrossRef Jiang X, Yuan Y, Tang L, et al. Comprehensive pan-cancer analysis of the prognostic and immunological roles of the mettl3/lncrna-snhg1/mirna-140-3p/ube2c axis. Front Cell Dev Biol. 2021;9:765772.PubMedPubMedCentralCrossRef
118.
go back to reference Ji F, Lu Y, Chen S, et al. M(6)a methyltransferase mettl3-mediated lncrna foxd2-as1 promotes the tumorigenesis of cervical cancer. Mol Ther Oncolytics. 2021;22:574–81.PubMedPubMedCentralCrossRef Ji F, Lu Y, Chen S, et al. M(6)a methyltransferase mettl3-mediated lncrna foxd2-as1 promotes the tumorigenesis of cervical cancer. Mol Ther Oncolytics. 2021;22:574–81.PubMedPubMedCentralCrossRef
119.
go back to reference Xue L, Li J, Lin Y, et al. M(6) a transferase mettl3-induced lncrna abhd11-as1 promotes the Warburg effect of non-small-cell lung cancer. J Cell Physiol. 2021;236(4):2649–58.PubMedCrossRef Xue L, Li J, Lin Y, et al. M(6) a transferase mettl3-induced lncrna abhd11-as1 promotes the Warburg effect of non-small-cell lung cancer. J Cell Physiol. 2021;236(4):2649–58.PubMedCrossRef
120.
go back to reference Wang D, Wang X, Huang B, et al. Mettl3 promotes prostate cancer progression by regulating mir-182 maturation in m6a-dependent manner. Andrologia. 2022;54(7):1581–91.PubMedCrossRef Wang D, Wang X, Huang B, et al. Mettl3 promotes prostate cancer progression by regulating mir-182 maturation in m6a-dependent manner. Andrologia. 2022;54(7):1581–91.PubMedCrossRef
121.
go back to reference Ma H, Zhang F, Zhong Q, Hou J. Mettl3-mediated m6a modification of kif3c-mrna promotes prostate cancer progression and is negatively regulated by mir-320d. Aging. 2021;13(18):22332–44.PubMedPubMedCentralCrossRef Ma H, Zhang F, Zhong Q, Hou J. Mettl3-mediated m6a modification of kif3c-mrna promotes prostate cancer progression and is negatively regulated by mir-320d. Aging. 2021;13(18):22332–44.PubMedPubMedCentralCrossRef
122.
go back to reference Mao Y, Li W, Weng Y, et al. Mettl3-mediated m(6)a modification of lncrna malat1 facilitates prostate cancer growth by activation of pi3k/akt signaling. Cell Transplant. 2022;31:9636897221122997.PubMedCrossRef Mao Y, Li W, Weng Y, et al. Mettl3-mediated m(6)a modification of lncrna malat1 facilitates prostate cancer growth by activation of pi3k/akt signaling. Cell Transplant. 2022;31:9636897221122997.PubMedCrossRef
123.
go back to reference Chen B, Liu C, Long H, Bai G, Zhu Y, Xu H. N(6)-methyladenosine-induced long non-coding rna pvt1 regulates the mir-27b-3p/blm axis to promote prostate cancer progression. Int J Oncol. 2023;62(1) Chen B, Liu C, Long H, Bai G, Zhu Y, Xu H. N(6)-methyladenosine-induced long non-coding rna pvt1 regulates the mir-27b-3p/blm axis to promote prostate cancer progression. Int J Oncol. 2023;62(1)
125.
go back to reference Qu S, Huang C, Zhu T, Wang K, Zhang H, Wang L, et al. Olfml3, as a potential predictor of prognosis and therapeutic target for glioma, is closely related to immune cell infiltration. View. 2023;4:20220052.CrossRef Qu S, Huang C, Zhu T, Wang K, Zhang H, Wang L, et al. Olfml3, as a potential predictor of prognosis and therapeutic target for glioma, is closely related to immune cell infiltration. View. 2023;4:20220052.CrossRef
126.
127.
128.
go back to reference Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R, Pillai RS. Regulation of m6a transcripts by the 3’→5’ rna helicase ythdc2 is essential for a successful meiotic program in the mammalian germline. Mol Cell. 2017;68(2):374–387.e12.PubMedCrossRef Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R, Pillai RS. Regulation of m6a transcripts by the 3’→5’ rna helicase ythdc2 is essential for a successful meiotic program in the mammalian germline. Mol Cell. 2017;68(2):374–387.e12.PubMedCrossRef
129.
go back to reference Du H, Zhao Y, He J, et al. Ythdf2 destabilizes m(6)a-containing rna through direct recruitment of the ccr4-not deadenylase complex. Nat Commun. 2016;7:12626.PubMedPubMedCentralCrossRef Du H, Zhao Y, He J, et al. Ythdf2 destabilizes m(6)a-containing rna through direct recruitment of the ccr4-not deadenylase complex. Nat Commun. 2016;7:12626.PubMedPubMedCentralCrossRef
130.
go back to reference Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger rna stability. Nature. 2014;505(7481):117–20.PubMedCrossRef Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger rna stability. Nature. 2014;505(7481):117–20.PubMedCrossRef
131.
132.
go back to reference Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m(6)a mrna methylation directs translational control of heat shock response. Nature. 2015;526(7574):591–4.PubMedPubMedCentralCrossRef Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m(6)a mrna methylation directs translational control of heat shock response. Nature. 2015;526(7574):591–4.PubMedPubMedCentralCrossRef
137.
go back to reference Ma XX, Cao ZG, Zhao SL. M6a methyltransferase mettl3 promotes the progression of prostate cancer via m6a-modified lef1. Eur Rev Med Pharmacol Sci. 2020;24(7):3565–71.PubMed Ma XX, Cao ZG, Zhao SL. M6a methyltransferase mettl3 promotes the progression of prostate cancer via m6a-modified lef1. Eur Rev Med Pharmacol Sci. 2020;24(7):3565–71.PubMed
138.
go back to reference Babaei G, Aziz SG, Jaghi N. Emt, cancer stem cells and autophagy; the three main axes of metastasis. Biomed Pharmacother. 2021;133:110909.PubMedCrossRef Babaei G, Aziz SG, Jaghi N. Emt, cancer stem cells and autophagy; the three main axes of metastasis. Biomed Pharmacother. 2021;133:110909.PubMedCrossRef
139.
140.
141.
go back to reference Chen Y, Pan C, Wang X, et al. Silencing of mettl3 effectively hinders invasion and metastasis of prostate cancer cells. Theranostics. 2021;11(16):7640–57.PubMedPubMedCentralCrossRef Chen Y, Pan C, Wang X, et al. Silencing of mettl3 effectively hinders invasion and metastasis of prostate cancer cells. Theranostics. 2021;11(16):7640–57.PubMedPubMedCentralCrossRef
142.
go back to reference Liang L, Li Q, Huang LY, et al. Loss of arhgdia expression is associated with poor prognosis in hcc and promotes invasion and metastasis of hcc cells. Int J Oncol. 2014;45(2):659–66.PubMedCrossRef Liang L, Li Q, Huang LY, et al. Loss of arhgdia expression is associated with poor prognosis in hcc and promotes invasion and metastasis of hcc cells. Int J Oncol. 2014;45(2):659–66.PubMedCrossRef
144.
go back to reference Klaassen Z, Howard LE, De Hoedt A, et al. Factors predicting skeletal-related events in patients with bone metastatic castration-resistant prostate cancer. Cancer. 2017;123(9):1528–35.PubMedCrossRef Klaassen Z, Howard LE, De Hoedt A, et al. Factors predicting skeletal-related events in patients with bone metastatic castration-resistant prostate cancer. Cancer. 2017;123(9):1528–35.PubMedCrossRef
146.
go back to reference Carvalho TM, Cardoso HJ, Figueira MI, Vaz CV, Socorro S. The peculiarities of cancer cell metabolism: a route to metastasization and a target for therapy. Eur J Med Chem. 2019;171:343–63.PubMedCrossRef Carvalho TM, Cardoso HJ, Figueira MI, Vaz CV, Socorro S. The peculiarities of cancer cell metabolism: a route to metastasization and a target for therapy. Eur J Med Chem. 2019;171:343–63.PubMedCrossRef
147.
go back to reference Sadeghi RN, Karami-Tehrani F, Salami S. Targeting prostate cancer cell metabolism: impact of hexokinase and cpt-1 enzymes. Tumour Biol. 2015;36(4):2893–905.PubMedCrossRef Sadeghi RN, Karami-Tehrani F, Salami S. Targeting prostate cancer cell metabolism: impact of hexokinase and cpt-1 enzymes. Tumour Biol. 2015;36(4):2893–905.PubMedCrossRef
149.
go back to reference Liu J, Yuan JF, Wang YZ. Mettl3-stabilized lncrna snhg7 accelerates glycolysis in prostate cancer via srsf1/c-myc axis. Exp Cell Res. 2022;416(1):113149.PubMedCrossRef Liu J, Yuan JF, Wang YZ. Mettl3-stabilized lncrna snhg7 accelerates glycolysis in prostate cancer via srsf1/c-myc axis. Exp Cell Res. 2022;416(1):113149.PubMedCrossRef
151.
go back to reference Lin Y, Wei X, Jian Z, Zhang X. Mettl3 expression is associated with glycolysis metabolism and sensitivity to glycolytic stress in hepatocellular carcinoma. Cancer Med. 2020;9(8):2859–67.PubMedPubMedCentralCrossRef Lin Y, Wei X, Jian Z, Zhang X. Mettl3 expression is associated with glycolysis metabolism and sensitivity to glycolytic stress in hepatocellular carcinoma. Cancer Med. 2020;9(8):2859–67.PubMedPubMedCentralCrossRef
152.
go back to reference Wang Y, Chen J, Wu Z, et al. Mechanisms of enzalutamide resistance in castration-resistant prostate cancer and therapeutic strategies to overcome it. Br J Pharmacol. 2021;178(2):239–61.PubMedCrossRef Wang Y, Chen J, Wu Z, et al. Mechanisms of enzalutamide resistance in castration-resistant prostate cancer and therapeutic strategies to overcome it. Br J Pharmacol. 2021;178(2):239–61.PubMedCrossRef
153.
154.
go back to reference Cotter KA, Gallon J, Uebersax N, et al. Mapping of m(6)a and its regulatory targets in prostate cancer reveals a mettl3-low induction of therapy resistance. Mol Cancer Res. 2021;19(8):1398–411.PubMedPubMedCentralCrossRef Cotter KA, Gallon J, Uebersax N, et al. Mapping of m(6)a and its regulatory targets in prostate cancer reveals a mettl3-low induction of therapy resistance. Mol Cancer Res. 2021;19(8):1398–411.PubMedPubMedCentralCrossRef
155.
go back to reference Boriack-Sjodin PA, Ribich S, Copeland RA. Rna-modifying proteins as anticancer drug targets. Nat Rev Drug Discov. 2018;17(6):435–53.PubMedCrossRef Boriack-Sjodin PA, Ribich S, Copeland RA. Rna-modifying proteins as anticancer drug targets. Nat Rev Drug Discov. 2018;17(6):435–53.PubMedCrossRef
156.
go back to reference Bedi RK, Huang D, Eberle SA, Wiedmer L, Śledź P, Caflisch A. Small-molecule inhibitors of mettl3, the major human epitranscriptomic writer. Chemmedchem. 2020;15(9):744–8.PubMedCrossRef Bedi RK, Huang D, Eberle SA, Wiedmer L, Śledź P, Caflisch A. Small-molecule inhibitors of mettl3, the major human epitranscriptomic writer. Chemmedchem. 2020;15(9):744–8.PubMedCrossRef
157.
go back to reference Moroz-Omori EV, Huang D, Kumar Bedi R, et al. Mettl3 inhibitors for epitranscriptomic modulation of cellular processes. Chemmedchem. 2021;16(19):3035–43.PubMedPubMedCentralCrossRef Moroz-Omori EV, Huang D, Kumar Bedi R, et al. Mettl3 inhibitors for epitranscriptomic modulation of cellular processes. Chemmedchem. 2021;16(19):3035–43.PubMedPubMedCentralCrossRef
158.
go back to reference Dolbois A, Bedi RK, Bochenkova E, et al. 1,4,9-triazaspiro[5.5]undecan-2-one derivatives as potent and selective mettl3 inhibitors. J Med Chem. 2021;64(17):12738–60.PubMedCrossRef Dolbois A, Bedi RK, Bochenkova E, et al. 1,4,9-triazaspiro[5.5]undecan-2-one derivatives as potent and selective mettl3 inhibitors. J Med Chem. 2021;64(17):12738–60.PubMedCrossRef
159.
go back to reference Yankova E, Blackaby W, Albertella M, et al. Small-molecule inhibition of mettl3 as a strategy against myeloid leukaemia. Nature. 2021;593(7860):597–601.PubMedPubMedCentralCrossRef Yankova E, Blackaby W, Albertella M, et al. Small-molecule inhibition of mettl3 as a strategy against myeloid leukaemia. Nature. 2021;593(7860):597–601.PubMedPubMedCentralCrossRef
160.
go back to reference Ofir-Rosenfeld Y, Vasiliauskaitė L, Saunders C, et al. Stc-15, an oral small molecule inhibitor of the rna methyltransferase mettl3, inhibits tumour growth through activation of anti-cancer immune responses associated with increased interferon signalling, and synergises with t cell checkpoint blockade. Eur J Cancer. 2022;174:s123.CrossRef Ofir-Rosenfeld Y, Vasiliauskaitė L, Saunders C, et al. Stc-15, an oral small molecule inhibitor of the rna methyltransferase mettl3, inhibits tumour growth through activation of anti-cancer immune responses associated with increased interferon signalling, and synergises with t cell checkpoint blockade. Eur J Cancer. 2022;174:s123.CrossRef
174.
go back to reference Ni Z, Sun P, Zheng J, et al. Jnk signaling promotes bladder cancer immune escape by regulating mettl3-mediated m6a modification of pd-l1 mrna. Cancer Res. 2022;82(9):1789–802.PubMedCrossRef Ni Z, Sun P, Zheng J, et al. Jnk signaling promotes bladder cancer immune escape by regulating mettl3-mediated m6a modification of pd-l1 mrna. Cancer Res. 2022;82(9):1789–802.PubMedCrossRef
175.
go back to reference Song C, Zhou C. Hoxa10 mediates epithelial-mesenchymal transition to promote gastric cancer metastasis partly via modulation of tgfb2/smad/mettl3 signaling axis. J Exp Clin Cancer Res. 2021;40(1):62.PubMedPubMedCentralCrossRef Song C, Zhou C. Hoxa10 mediates epithelial-mesenchymal transition to promote gastric cancer metastasis partly via modulation of tgfb2/smad/mettl3 signaling axis. J Exp Clin Cancer Res. 2021;40(1):62.PubMedPubMedCentralCrossRef
176.
go back to reference Meng W, Xiao H, Mei P, et al. Critical roles of mettl3 in translation regulation of cancer. Biomolecules. 2023;13(2) Meng W, Xiao H, Mei P, et al. Critical roles of mettl3 in translation regulation of cancer. Biomolecules. 2023;13(2)
178.
go back to reference Chamorro-Jorganes A, Sweaad WK, Katare R, et al. Mettl3 regulates angiogenesis by modulating let-7e-5p and mirna-18a-5p expression in endothelial cells. Arterioscler Thromb Vasc Biol. 2021;41(6):e325–37.PubMedCrossRef Chamorro-Jorganes A, Sweaad WK, Katare R, et al. Mettl3 regulates angiogenesis by modulating let-7e-5p and mirna-18a-5p expression in endothelial cells. Arterioscler Thromb Vasc Biol. 2021;41(6):e325–37.PubMedCrossRef
179.
go back to reference Zhang G, Wang T, Huang Z, et al. Mettl3 dual regulation of the stability of linc00662 and vegfa rnas promotes colorectal cancer angiogenesis. Discov Oncol. 2022;13(1):89.PubMedPubMedCentralCrossRef Zhang G, Wang T, Huang Z, et al. Mettl3 dual regulation of the stability of linc00662 and vegfa rnas promotes colorectal cancer angiogenesis. Discov Oncol. 2022;13(1):89.PubMedPubMedCentralCrossRef
180.
go back to reference Wang G, Dai Y, Li K, et al. Deficiency of mettl3 in bladder cancer stem cells inhibits bladder cancer progression and angiogenesis. Front Cell Dev Biol. 2021;9:627706.PubMedPubMedCentralCrossRef Wang G, Dai Y, Li K, et al. Deficiency of mettl3 in bladder cancer stem cells inhibits bladder cancer progression and angiogenesis. Front Cell Dev Biol. 2021;9:627706.PubMedPubMedCentralCrossRef
181.
183.
go back to reference Gao Q, Zheng J, Ni Z, et al. The m(6)a methylation-regulated aff4 promotes self-renewal of bladder cancer stem cells. Stem Cells Int. 2020;2020:8849218.PubMedPubMedCentralCrossRef Gao Q, Zheng J, Ni Z, et al. The m(6)a methylation-regulated aff4 promotes self-renewal of bladder cancer stem cells. Stem Cells Int. 2020;2020:8849218.PubMedPubMedCentralCrossRef
184.
go back to reference Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast cancer stem cell phenotype by hif-dependent and alkbh5-mediated m6a-demethylation of nanog mrna. Proc Natl Acad Sci U S A. 2016;113(14):e2047–56.PubMedPubMedCentralCrossRef Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast cancer stem cell phenotype by hif-dependent and alkbh5-mediated m6a-demethylation of nanog mrna. Proc Natl Acad Sci U S A. 2016;113(14):e2047–56.PubMedPubMedCentralCrossRef
185.
186.
go back to reference Lothion-Roy J, Haigh DB, Harris AE, et al. Clinical and molecular significance of the rna m(6)a methyltransferase complex in prostate cancer. Front Genet. 2022;13:1096071.PubMedCrossRef Lothion-Roy J, Haigh DB, Harris AE, et al. Clinical and molecular significance of the rna m(6)a methyltransferase complex in prostate cancer. Front Genet. 2022;13:1096071.PubMedCrossRef
187.
go back to reference Cai C, He HH, Chen S, et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell. 2011;20(4):457–71.PubMedPubMedCentralCrossRef Cai C, He HH, Chen S, et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell. 2011;20(4):457–71.PubMedPubMedCentralCrossRef
188.
go back to reference Kashyap V, Ahmad S, Nilsson EM, et al. The lysine specific demethylase-1 (lsd1/kdm1a) regulates vegf-a expression in prostate cancer. Mol Oncol. 2013;7(3):555–66.PubMedPubMedCentralCrossRef Kashyap V, Ahmad S, Nilsson EM, et al. The lysine specific demethylase-1 (lsd1/kdm1a) regulates vegf-a expression in prostate cancer. Mol Oncol. 2013;7(3):555–66.PubMedPubMedCentralCrossRef
189.
go back to reference Cai C, He HH, Gao S, et al. Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity. Cell Rep. 2014;9(5):1618–27.PubMedPubMedCentralCrossRef Cai C, He HH, Gao S, et al. Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity. Cell Rep. 2014;9(5):1618–27.PubMedPubMedCentralCrossRef
190.
go back to reference Lence T, Akhtar J, Bayer M, et al. M(6)a modulates neuronal functions and sex determination in drosophila. Nature. 2016;540(7632):242–7.PubMedCrossRef Lence T, Akhtar J, Bayer M, et al. M(6)a modulates neuronal functions and sex determination in drosophila. Nature. 2016;540(7632):242–7.PubMedCrossRef
191.
go back to reference Haussmann IU, Bodi Z, Sanchez-Moran E, et al. M(6)a potentiates sxl alternative pre-mrna splicing for robust drosophila sex determination. Nature. 2016;540(7632):301–4.PubMedCrossRef Haussmann IU, Bodi Z, Sanchez-Moran E, et al. M(6)a potentiates sxl alternative pre-mrna splicing for robust drosophila sex determination. Nature. 2016;540(7632):301–4.PubMedCrossRef
Metadata
Title
The role of the methyltransferase METTL3 in prostate cancer: a potential therapeutic target
Authors
Xuming Zhou
Keqiang Chai
Hezhen Zhu
Cong Luo
Xiaofeng Zou
Junrong Zou
Guoxi Zhang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11741-1

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine