Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Glioblastoma | Research

CLEC19A overexpression inhibits tumor cell proliferation/migration and promotes apoptosis concomitant suppression of PI3K/AKT/NF-κB signaling pathway in glioblastoma multiforme

Authors: Fatemeh Mohajerani, Zahra Moazezi Tehrankhah, Saeid Rahmani, Nastaran Afsordeh, Sajad Shafiee, Mohammad Hossein Pourgholami, Bahram M. Soltani, Majid Sadeghizadeh

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

GBM is the most frequent malignant primary brain tumor in humans. The CLEC19A is a member of the C-type lectin family, which has a high expression in brain tissue. Herein, we sought to carry out an in-depth analysis to pinpoint the role of CLEC19A expression in GBM.

Methods

To determine the localization of CLEC19A, this protein was detected using Western blot, Immunocytochemistry/Immunofluorescence, and confocal microscopy imaging. CLEC19A expression in glioma cells and tissues was evaluated by qRT-PCR. Cell viability, proliferation, migration, and apoptosis were examined through MTT assay, CFSE assay, colony formation, wound healing assay, transwell test, and flow cytometry respectively after CLEC19A overexpression. The effect of CLEC19A overexpression on the PI3K/AKT/NF-κB signaling pathway was investigated using Western blot. An in vivo experiment substantiated the in vitro results using the glioblastoma rat models.

Results

Our in-silico analysis using TCGA data and measuring CLEC19A expression level by qRT-PCR determined significantly lower expression of CLEC19A in human glioma tissues compared to healthy brain tissues. By employment of ICC/IF, confocal microscopy imaging, and Western blot we could show that CLEC19A is plausibly a secreted protein. Results obtained from several in vitro readouts showed that CLEC19A overexpression in U87 and C6 glioma cell lines is associated with the inhibition of cell proliferation, viability, and migration. Further, qRT-PCR and Western blot analysis showed CLEC19A overexpression could reduce the expression levels of PI3K, VEGFα, MMP2, and NF-κB and increase PTEN, TIMP3, RECK, and PDCD4 expression levels in glioma cell lines. Furthermore, flow cytometry results revealed that CLEC19A overexpression was associated with significant cell cycle arrest and promotion of apoptosis in glioma cell lines. Interestingly, using a glioma rat model we could substantiate that CLEC19A overexpression suppresses glioma tumor growth.

Conclusions

To our knowledge, this is the first report providing in-silico, molecular, cellular, and in vivo evidences on the role of CLEC19A as a putative tumor suppressor gene in GBM. These results enhance our understanding of the role of CLEC19A in glioma and warrant further exploration of CLEC19A as a potential therapeutic target for GBM.
Appendix
Available only for authorised users
Literature
3.
go back to reference Verhoeff JJC, Van Tellingen O, Claes A, Stalpers LJA, Van Linde ME, Richel DJ, et al. Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme. BMC Cancer. 2009;9:1–9.CrossRef Verhoeff JJC, Van Tellingen O, Claes A, Stalpers LJA, Van Linde ME, Richel DJ, et al. Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme. BMC Cancer. 2009;9:1–9.CrossRef
4.
go back to reference Moradi F, Mohajerani F, Sadeghizadeh M. CCAT2 knockdown inhibits cell growth, and migration and promotes apoptosis through regulating the hsa-mir-145-5p/AKT3/mTOR axis in tamoxifen-resistant MCF7 cells. Life Sci. 2022;15(311): 121183.CrossRef Moradi F, Mohajerani F, Sadeghizadeh M. CCAT2 knockdown inhibits cell growth, and migration and promotes apoptosis through regulating the hsa-mir-145-5p/AKT3/mTOR axis in tamoxifen-resistant MCF7 cells. Life Sci. 2022;15(311): 121183.CrossRef
5.
go back to reference Chen X, Pan Y, Yan M, Bao G, Sun X. Identification of potential crucial genes and molecular mechanisms in glioblastoma multiforme by bioinformatics analysis. Mol Med Rep. 2020;22(2):859–69.CrossRefPubMedPubMedCentral Chen X, Pan Y, Yan M, Bao G, Sun X. Identification of potential crucial genes and molecular mechanisms in glioblastoma multiforme by bioinformatics analysis. Mol Med Rep. 2020;22(2):859–69.CrossRefPubMedPubMedCentral
6.
go back to reference Urbanska K, Sokolowska J, Szmidt M, Sysa P. Glioblastoma multiforme - An overview. Wspolczesna Onkol. 2014;18(5):307–12.CrossRef Urbanska K, Sokolowska J, Szmidt M, Sysa P. Glioblastoma multiforme - An overview. Wspolczesna Onkol. 2014;18(5):307–12.CrossRef
8.
go back to reference Michaelsen SR, Staberg M, Pedersen H, Jensen KE, Majewski W, Broholm H, et al. VEGF-C sustains VEGFR2 activation under bevacizumab therapy and promotes glioblastoma maintenance. Neuro Oncol. 2018;20(11):1462–74.CrossRefPubMedPubMedCentral Michaelsen SR, Staberg M, Pedersen H, Jensen KE, Majewski W, Broholm H, et al. VEGF-C sustains VEGFR2 activation under bevacizumab therapy and promotes glioblastoma maintenance. Neuro Oncol. 2018;20(11):1462–74.CrossRefPubMedPubMedCentral
11.
go back to reference Niland S, Riscanevo AX, Eble JA. Matrix metalloproteinases shape the tumor microenvironment in cancer progression. Int J Mol Sci. 2022;23(1):146. Niland S, Riscanevo AX, Eble JA. Matrix metalloproteinases shape the tumor microenvironment in cancer progression. Int J Mol Sci. 2022;23(1):146.
13.
go back to reference Kremsreiter SM, Kroell ASH, Weinberger K, Boehm H. Glycan–lectin interactions in cancer and viral infections and how to disrupt them. Int J Mol Sci. 2021;22(19):10577. Kremsreiter SM, Kroell ASH, Weinberger K, Boehm H. Glycan–lectin interactions in cancer and viral infections and how to disrupt them. Int J Mol Sci. 2021;22(19):10577.
14.
go back to reference Catacuzzeno L, Sforna L, Esposito V, Limatola C, Franciolini F. Ion Channels in Glioma Malignancy. Rev Physiol Biochem Pharmacol. 2021;181:223–67.CrossRefPubMed Catacuzzeno L, Sforna L, Esposito V, Limatola C, Franciolini F. Ion Channels in Glioma Malignancy. Rev Physiol Biochem Pharmacol. 2021;181:223–67.CrossRefPubMed
15.
go back to reference Wang W, Yu S, Huang S, Deng R, Ding Y, Wu Y, et al. A complex role for calcium signaling in colorectal cancer development and progression. Mol Cancer Res. 2019;17(11):2145–53.CrossRefPubMed Wang W, Yu S, Huang S, Deng R, Ding Y, Wu Y, et al. A complex role for calcium signaling in colorectal cancer development and progression. Mol Cancer Res. 2019;17(11):2145–53.CrossRefPubMed
16.
go back to reference Zhang H, Chen Z, Zhang A, Gupte AA, Hamilton DJ. The Role of Calcium Signaling in Melanoma. Int J Mol Sci. 2022;23(3):1–17.CrossRef Zhang H, Chen Z, Zhang A, Gupte AA, Hamilton DJ. The Role of Calcium Signaling in Melanoma. Int J Mol Sci. 2022;23(3):1–17.CrossRef
18.
go back to reference Guo RM, Zhao C Bin, Li P, Zhang L, Zang SH, Yang B. Overexpression of CLEC18B Associates With the Proliferation, Migration, and Prognosis of Glioblastoma. ASN Neuro. 2018;10:1759091418781949. Guo RM, Zhao C Bin, Li P, Zhang L, Zang SH, Yang B. Overexpression of CLEC18B Associates With the Proliferation, Migration, and Prognosis of Glioblastoma. ASN Neuro. 2018;10:1759091418781949.
19.
go back to reference Willier S, Rothämel P, Hastreiter M, Wilhelm J, Stenger D, Blaeschke F, et al. CLEC12A and CD33 coexpression as a preferential target for pediatric AML combinatorial immunotherapy. Blood. 2021;137(8):1037–49.CrossRefPubMed Willier S, Rothämel P, Hastreiter M, Wilhelm J, Stenger D, Blaeschke F, et al. CLEC12A and CD33 coexpression as a preferential target for pediatric AML combinatorial immunotherapy. Blood. 2021;137(8):1037–49.CrossRefPubMed
21.
go back to reference Xie XW, Jiang SS, Li X. CLEC3B as a Potential Prognostic Biomarker in Hepatocellular Carcinoma. Front Mol Biosci. 2021;7(January):1–8. Xie XW, Jiang SS, Li X. CLEC3B as a Potential Prognostic Biomarker in Hepatocellular Carcinoma. Front Mol Biosci. 2021;7(January):1–8.
22.
go back to reference Zhang Y, Wei H, Fan L, Fang M, He X, Lu B, et al. CLEC4s as Potential Therapeutic Targets in Hepatocellular Carcinoma Microenvironment. Front Cell Dev Biol. 2021;9(August):1–15. Zhang Y, Wei H, Fan L, Fang M, He X, Lu B, et al. CLEC4s as Potential Therapeutic Targets in Hepatocellular Carcinoma Microenvironment. Front Cell Dev Biol. 2021;9(August):1–15.
23.
go back to reference Zhou S, Sun Y, Chen T, Wang J, He J, Lyu J, et al. The Landscape of the Tumor Microenvironment in Skin Cutaneous Melanoma Reveals a Prognostic and Immunotherapeutically Relevant Gene Signature. Front Cell Dev Biol. 2021;9(October):1–17. Zhou S, Sun Y, Chen T, Wang J, He J, Lyu J, et al. The Landscape of the Tumor Microenvironment in Skin Cutaneous Melanoma Reveals a Prognostic and Immunotherapeutically Relevant Gene Signature. Front Cell Dev Biol. 2021;9(October):1–17.
24.
go back to reference Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K, Clark K, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2019;47(D1):D23–8.CrossRefPubMed Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K, Clark K, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2019;47(D1):D23–8.CrossRefPubMed
25.
go back to reference Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8): e71.CrossRefPubMed Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8): e71.CrossRefPubMed
26.
go back to reference Silva TC, Colaprico A, Olsen C, D’Angelo F, Bontempi G, Ceccarelli M, et al. TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages. F1000Research. 2016;5(0):1542. Silva TC, Colaprico A, Olsen C, D’Angelo F, Bontempi G, Ceccarelli M, et al. TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages. F1000Research. 2016;5(0):1542.
27.
go back to reference Mounir M, Lucchetta M, Silva TC, Olsen C, Bontempi G, Chen X, et al. New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEX. PLoS Comput Biol. 2019;15(3):e1006701. Mounir M, Lucchetta M, Silva TC, Olsen C, Bontempi G, Chen X, et al. New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEX. PLoS Comput Biol. 2019;15(3):e1006701.
30.
go back to reference Gohara DW. WPBMB Entrez: An interface to NCBI Entrez for Wordpress. Biophys Chem. 2018;1(234):1–5.CrossRef Gohara DW. WPBMB Entrez: An interface to NCBI Entrez for Wordpress. Biophys Chem. 2018;1(234):1–5.CrossRef
34.
go back to reference Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999;292(2):195–202.CrossRefPubMed Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999;292(2):195–202.CrossRefPubMed
40.
go back to reference Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera - A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.CrossRefPubMed Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera - A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.CrossRefPubMed
43.
go back to reference Kluesner MG, Nedveck DA, Lahr WS, Garbe JR, Abrahante JE, Webber BR, et al. EditR: A Method to Quantify Base Editing from Sanger Sequencing. Cris J. 2018;1(3):239–50.CrossRef Kluesner MG, Nedveck DA, Lahr WS, Garbe JR, Abrahante JE, Webber BR, et al. EditR: A Method to Quantify Base Editing from Sanger Sequencing. Cris J. 2018;1(3):239–50.CrossRef
45.
go back to reference He F. Bradford Protein Assay. Bio-Protocol. 2011;1(6):e45. He F. Bradford Protein Assay. Bio-Protocol. 2011;1(6):e45.
46.
go back to reference Monfared H, Jahangard Y, Nikkhah M, Mirnajafi-Zadeh J, Mowla SJ. Potential therapeutic effects of exosomes packed with a miR-21-sponge construct in a rat model of glioblastoma. Front Oncol. 2019;9(AUG):1–11. Monfared H, Jahangard Y, Nikkhah M, Mirnajafi-Zadeh J, Mowla SJ. Potential therapeutic effects of exosomes packed with a miR-21-sponge construct in a rat model of glioblastoma. Front Oncol. 2019;9(AUG):1–11.
47.
go back to reference Dietrich MF, van der Weyden L, Prosser HM, Bradley A, Herz J, Adams DJ. Ectodomains of the LDL receptor-related proteins LRP1b and LRP4 have anchorage independent functions in vivo. PLoS ONE. 2010;5(4):1–7.CrossRef Dietrich MF, van der Weyden L, Prosser HM, Bradley A, Herz J, Adams DJ. Ectodomains of the LDL receptor-related proteins LRP1b and LRP4 have anchorage independent functions in vivo. PLoS ONE. 2010;5(4):1–7.CrossRef
48.
go back to reference Taylor OG, Brzozowski JS, Skelding KA. Glioblastoma multiforme: An overview of emerging therapeutic targets. Front Oncol. 2019;9(SEP):1–11. Taylor OG, Brzozowski JS, Skelding KA. Glioblastoma multiforme: An overview of emerging therapeutic targets. Front Oncol. 2019;9(SEP):1–11.
49.
go back to reference Song D, Xu D, Gao Q, Hu P, Guo F. Intracranial Metastases Originating From Pediatric Primary Spinal Cord Glioblastoma Multiforme: A Case Report and Literature Review. Front Oncol. 2020;10(February):1–7. Song D, Xu D, Gao Q, Hu P, Guo F. Intracranial Metastases Originating From Pediatric Primary Spinal Cord Glioblastoma Multiforme: A Case Report and Literature Review. Front Oncol. 2020;10(February):1–7.
50.
go back to reference Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev. 2014;23(10):1985–96.CrossRefPubMedPubMedCentral Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev. 2014;23(10):1985–96.CrossRefPubMedPubMedCentral
51.
go back to reference Buzdin A, Sorokin M, Garazha A, Sekacheva M, Kim E, Zhukov N, et al. Molecular pathway activation - New type of biomarkers for tumor morphology and personalized selection of target drugs. Semin Cancer Biol. 2018;53:110–24. Available from: https://pubmed.ncbi.nlm.nih.gov/29935311/. [cited 2022 Dec 13]. Buzdin A, Sorokin M, Garazha A, Sekacheva M, Kim E, Zhukov N, et al. Molecular pathway activation - New type of biomarkers for tumor morphology and personalized selection of target drugs. Semin Cancer Biol. 2018;53:110–24. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​29935311/​. [cited 2022 Dec 13].
52.
go back to reference Hällfors J, Palviainen T, Surakka I, Gupta R, Buchwald J, Raevuori A, et al. Genome-wide association study in Finnish twins highlights the connection between nicotine addiction and neurotrophin signaling pathway. Addict Biol. 2019;24(3):549–61.CrossRefPubMed Hällfors J, Palviainen T, Surakka I, Gupta R, Buchwald J, Raevuori A, et al. Genome-wide association study in Finnish twins highlights the connection between nicotine addiction and neurotrophin signaling pathway. Addict Biol. 2019;24(3):549–61.CrossRefPubMed
53.
go back to reference Nauroy P, Hughes S, Naba A, Ruggiero F. The in-silico zebrafish matrisome: A new tool to study extracellular matrix gene and protein functions. Matrix Biol. 2018;1(65):5–13.CrossRef Nauroy P, Hughes S, Naba A, Ruggiero F. The in-silico zebrafish matrisome: A new tool to study extracellular matrix gene and protein functions. Matrix Biol. 2018;1(65):5–13.CrossRef
55.
go back to reference Patergnani S, Danese A, Bouhamida E, Aguiari G, Previati M, Pinton P, et al. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int J Mol Sci. 2020;21(21):1–27.CrossRef Patergnani S, Danese A, Bouhamida E, Aguiari G, Previati M, Pinton P, et al. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int J Mol Sci. 2020;21(21):1–27.CrossRef
56.
go back to reference Su C, Shi K, Cheng X, Han Y, Li Y, Yu D LZ. Methylation of CLEC14A is associated with its expression and lung adenocarcinoma progression. J Cell Physiology. 2019;234(3):2954-62. Su C, Shi K, Cheng X, Han Y, Li Y, Yu D LZ. Methylation of CLEC14A is associated with its expression and lung adenocarcinoma progression. J Cell Physiology. 2019;234(3):2954-62.
58.
go back to reference Wang Z, Liu F, Liao W, Yu L, Hu Z, Li M, et al. Curcumin suppresses glioblastoma cell proliferation by p-AKT/mTOR pathway and increases the PTEN expression. Arch Biochem Biophys. 2020;15(689): 108412.CrossRef Wang Z, Liu F, Liao W, Yu L, Hu Z, Li M, et al. Curcumin suppresses glioblastoma cell proliferation by p-AKT/mTOR pathway and increases the PTEN expression. Arch Biochem Biophys. 2020;15(689): 108412.CrossRef
62.
go back to reference Yue YC, Yang BY, Lu J, Zhang SW, Liu L, Nassar K, et al. Metabolite secretions of Lactobacillus plantarum YYC-3 may inhibit colon cancer cell metastasis by suppressing the VEGF-MMP2/9 signaling pathway. Microb Cell Fact. 2020;19(1). Yue YC, Yang BY, Lu J, Zhang SW, Liu L, Nassar K, et al. Metabolite secretions of Lactobacillus plantarum YYC-3 may inhibit colon cancer cell metastasis by suppressing the VEGF-MMP2/9 signaling pathway. Microb Cell Fact. 2020;19(1).
64.
go back to reference Tang S, Zhang Y, Lin X, Wang H, Yong L, Zhang H, et al. CLEC10A can serve as a potential therapeutic target and its level correlates with immune infiltration in breast cancer. Oncol Lett. 2022;24(2):1–11.CrossRef Tang S, Zhang Y, Lin X, Wang H, Yong L, Zhang H, et al. CLEC10A can serve as a potential therapeutic target and its level correlates with immune infiltration in breast cancer. Oncol Lett. 2022;24(2):1–11.CrossRef
65.
go back to reference Wang Y, Lv Y, Liu TS, Di YW, Chen LY, Li ZH, et al. Cordycepin suppresses cell proliferation and migration by targeting CLEC2 in human gastric cancer cells via Akt signaling pathway. Life Sci. 2019;15(223):110–9.CrossRef Wang Y, Lv Y, Liu TS, Di YW, Chen LY, Li ZH, et al. Cordycepin suppresses cell proliferation and migration by targeting CLEC2 in human gastric cancer cells via Akt signaling pathway. Life Sci. 2019;15(223):110–9.CrossRef
66.
go back to reference Miao F, Lou Z, Ji S, Wang D, Sun Y, Liu H, et al. Downregulated Expression of CLEC9A as Novel Biomarkers for Lung Adenocarcinoma. Front Oncol. 2021;11(September):1–11. Miao F, Lou Z, Ji S, Wang D, Sun Y, Liu H, et al. Downregulated Expression of CLEC9A as Novel Biomarkers for Lung Adenocarcinoma. Front Oncol. 2021;11(September):1–11.
67.
go back to reference Wang Q, Shi M, Sun S, Zhou Q, Ding L, Jiang C, et al. CLEC5A promotes the proliferation of gastric cancer cells by activating the PI3K/AKT/mTOR pathway. Biochem Biophys Res Commun. 2020;524(3):656–62.CrossRefPubMed Wang Q, Shi M, Sun S, Zhou Q, Ding L, Jiang C, et al. CLEC5A promotes the proliferation of gastric cancer cells by activating the PI3K/AKT/mTOR pathway. Biochem Biophys Res Commun. 2020;524(3):656–62.CrossRefPubMed
Metadata
Title
CLEC19A overexpression inhibits tumor cell proliferation/migration and promotes apoptosis concomitant suppression of PI3K/AKT/NF-κB signaling pathway in glioblastoma multiforme
Authors
Fatemeh Mohajerani
Zahra Moazezi Tehrankhah
Saeid Rahmani
Nastaran Afsordeh
Sajad Shafiee
Mohammad Hossein Pourgholami
Bahram M. Soltani
Majid Sadeghizadeh
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11755-9

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine