Skip to main content
Top
Published in: Cancer Cell International 1/2024

Open Access 01-12-2024 | Prostate Cancer | Research

Targeting of H19/cell adhesion molecules circuitry by GSK-J4 epidrug inhibits metastatic progression in prostate cancer

Authors: Valeria Pecci, Fabiola Troisi, Aurora Aiello, Sara De Martino, Angela Carlino, Vincenzo Fiorentino, Cristian Ripoli, Dante Rotili, Francesco Pierconti, Maurizio Martini, Manuela Porru, Francesco Pinto, Antonello Mai, Pier Francesco Bassi, Claudio Grassi, Carlo Gaetano, Alfredo Pontecorvi, Lidia Strigari, Antonella Farsetti, Simona Nanni

Published in: Cancer Cell International | Issue 1/2024

Login to get access

Abstract

Background

About 30% of Prostate cancer (PCa) patients progress to metastatic PCa that remains largely incurable. This evidence underlines the need for the development of innovative therapies. In this direction, the potential research focus might be on long non-coding RNAs (lncRNAs) like H19, which serve critical biological functions and show significant dysregulation in cancer. Previously, we showed a transcriptional down-regulation of H19 under combined pro-tumoral estrogen and hypoxia treatment in PCa cells that, in turn, induced both E-cadherin and β4 integrin expression. H19, indeed, acts as transcriptional repressor of cell adhesion molecules affecting the PCa metastatic properties. Here, we investigated the role of H19/cell adhesion molecules circuitry on in vivo PCa experimental tumor growth and metastatic dissemination models.

Methods

H19 was silenced in luciferase-positive PC-3 and 22Rv1 cells and in vitro effect was evaluated by gene expression, proliferation and invasion assays before and after treatment with the histone lysine demethylase inhibitor, GSK-J4. In vivo tumor growth and metastasis dissemination, in the presence or absence of GSK-J4, were analyzed in two models of human tumor in immunodeficient mice by in vivo bioluminescent imaging and immunohistochemistry (IHC) on explanted tissues. Organotypic Slice Cultures (OSCs) from fresh PCa-explant were used as ex vivo model to test GSK-J4 effects.

Results

H19 silencing in both PC-3 and 22Rv1 cells increased: i) E-cadherin and β4 integrin expression as well as proliferation and invasion, ii) in vivo tumor growth, and iii) metastasis formation at bone, lung, and liver. Of note, treatment with GSK-J4 reduced lesions. In parallel, GSK-J4 efficiently induced cell death in PCa-derived OSCs.

Conclusions

Our findings underscore the potential of the H19/cell adhesion molecules circuitry as a targeted approach in PCa treatment. Modulating this interaction has proven effective in inhibiting tumor growth and metastasis, presenting a logical foundation for targeted therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRef
2.
go back to reference Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate Cancer incidence and mortality rates. Eur Urol. 2020;77(1):38–52.PubMedCrossRef Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate Cancer incidence and mortality rates. Eur Urol. 2020;77(1):38–52.PubMedCrossRef
3.
go back to reference Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Dorey FJ, Walsh PC et al. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA. 2005;294(4):433–9. Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Dorey FJ, Walsh PC et al. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA. 2005;294(4):433–9.
4.
go back to reference Daher M, Telvizian T, Dagher C, Abdul-Sater Z, Massih SA, Chediak AE, et al. High rates of advanced prostate cancer in the Middle East: analysis from a tertiary care center. Urol Ann. 2021;13(4):418–23.PubMedPubMedCentralCrossRef Daher M, Telvizian T, Dagher C, Abdul-Sater Z, Massih SA, Chediak AE, et al. High rates of advanced prostate cancer in the Middle East: analysis from a tertiary care center. Urol Ann. 2021;13(4):418–23.PubMedPubMedCentralCrossRef
5.
go back to reference Manna FL, Karkampouna S, Zoni E, De Menna M, Hensel J, Thalmann GN et al. Metastases in prostate cancer. Cold Spring Harb Perspect Med. 2019;9(3):a033688. Manna FL, Karkampouna S, Zoni E, De Menna M, Hensel J, Thalmann GN et al. Metastases in prostate cancer. Cold Spring Harb Perspect Med. 2019;9(3):a033688.
6.
go back to reference Gandaglia G, Abdollah F, Schiffmann J, Trudeau V, Shariat SF, Kim SP, et al. Distribution of metastatic sites in patients with prostate cancer: a population-based analysis. The Prostate. 2014;74(2):210–6.CrossRef Gandaglia G, Abdollah F, Schiffmann J, Trudeau V, Shariat SF, Kim SP, et al. Distribution of metastatic sites in patients with prostate cancer: a population-based analysis. The Prostate. 2014;74(2):210–6.CrossRef
7.
go back to reference Pouessel D, Gallet B, Bibeau F, Avancès C, Iborra F, Sénesse P, et al. Liver metastases in prostate carcinoma: clinical characteristics and outcome. BJU Int. 2007;99(4):807–11.PubMedCrossRef Pouessel D, Gallet B, Bibeau F, Avancès C, Iborra F, Sénesse P, et al. Liver metastases in prostate carcinoma: clinical characteristics and outcome. BJU Int. 2007;99(4):807–11.PubMedCrossRef
8.
go back to reference Connor MJ, Shah TT, Horan G, Bevan CL, Winkler M, Ahmed HU. Cytoreductive treatment strategies for de novo metastatic prostate cancer. Nat Rev Clin Oncol. 2020;17(3):168–82.CrossRef Connor MJ, Shah TT, Horan G, Bevan CL, Winkler M, Ahmed HU. Cytoreductive treatment strategies for de novo metastatic prostate cancer. Nat Rev Clin Oncol. 2020;17(3):168–82.CrossRef
9.
go back to reference Ong S, O’Brien J, Medhurst E, Lawrentschuk N, Murphy D, Azad A. Current treatment options for newly diagnosed metastatic hormone-sensitive prostate cancer-a narrative review. Transl Androl Urol. 2021;10(10):3918–30.CrossRef Ong S, O’Brien J, Medhurst E, Lawrentschuk N, Murphy D, Azad A. Current treatment options for newly diagnosed metastatic hormone-sensitive prostate cancer-a narrative review. Transl Androl Urol. 2021;10(10):3918–30.CrossRef
10.
go back to reference Wang H, Li B, Zhang P, Yao Y, Chang J. Clinical characteristics and prognostic factors of prostate cancer with liver metastases. Tumour Biol. 2014;35(1):595–601.PubMedCrossRef Wang H, Li B, Zhang P, Yao Y, Chang J. Clinical characteristics and prognostic factors of prostate cancer with liver metastases. Tumour Biol. 2014;35(1):595–601.PubMedCrossRef
12.
go back to reference Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev. 2018;32(17–18):1105–40.CrossRef Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev. 2018;32(17–18):1105–40.CrossRef
13.
go back to reference Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin Epigenetics. 2016;8:98.PubMedPubMedCentralCrossRef Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin Epigenetics. 2016;8:98.PubMedPubMedCentralCrossRef
15.
go back to reference Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44 + CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer. 2008;98(4):756–65.CrossRef Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44 + CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer. 2008;98(4):756–65.CrossRef
16.
go back to reference Jeter CR, Liu B, Liu X, Chen X, Liu C, Calhoun-Davis T, et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene. 2011;30(36):3833–45.PubMedPubMedCentralCrossRef Jeter CR, Liu B, Liu X, Chen X, Liu C, Calhoun-Davis T, et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene. 2011;30(36):3833–45.PubMedPubMedCentralCrossRef
17.
go back to reference Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature. 1991;351(6322):153–5.ADSPubMedCrossRef Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature. 1991;351(6322):153–5.ADSPubMedCrossRef
18.
go back to reference Poirier F, Chan CT, Timmons PM, Robertson EJ, Evans MJ, Rigby PW. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development. 1991;113(4):1105–14.PubMedCrossRef Poirier F, Chan CT, Timmons PM, Robertson EJ, Evans MJ, Rigby PW. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development. 1991;113(4):1105–14.PubMedCrossRef
19.
go back to reference Zhang EB, Han L, Yin DD, Kong R, De W, Chen J. c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Med Oncol. 2014;31(5):914.PubMedCrossRef Zhang EB, Han L, Yin DD, Kong R, De W, Chen J. c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Med Oncol. 2014;31(5):914.PubMedCrossRef
20.
go back to reference Sohda T, Iwata K, Soejima H, Kamimura S, Shijo H, Yun K. In situ detection of insulin-like growth factor II (IGF2) and H19 gene expression in hepatocellular carcinoma. J Hum Genet. 1998;43(1):49–53.PubMedCrossRef Sohda T, Iwata K, Soejima H, Kamimura S, Shijo H, Yun K. In situ detection of insulin-like growth factor II (IGF2) and H19 gene expression in hepatocellular carcinoma. J Hum Genet. 1998;43(1):49–53.PubMedCrossRef
21.
go back to reference Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 2013;333(2):213–21.PubMedCrossRef Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 2013;333(2):213–21.PubMedCrossRef
22.
go back to reference Alipoor B, Parvar SN, Sabati Z, Ghaedi H, Ghasemi H. An updated review of the H19 lncRNA in human cancer: molecular mechanism and diagnostic and therapeutic importance. Mol Biol Rep Agosto. 2020;47(8):6357–74.CrossRef Alipoor B, Parvar SN, Sabati Z, Ghaedi H, Ghasemi H. An updated review of the H19 lncRNA in human cancer: molecular mechanism and diagnostic and therapeutic importance. Mol Biol Rep Agosto. 2020;47(8):6357–74.CrossRef
23.
go back to reference Fazi B, Garbo S, Toschi N, Mangiola A, Lombari M, Sicari D, et al. The lncRNA H19 positively affects the tumorigenic properties of glioblastoma cells and contributes to NKD1 repression through the recruitment of EZH2 on its promoter. Oncotarget. 2018;9(21):15512–25.PubMedPubMedCentralCrossRef Fazi B, Garbo S, Toschi N, Mangiola A, Lombari M, Sicari D, et al. The lncRNA H19 positively affects the tumorigenic properties of glioblastoma cells and contributes to NKD1 repression through the recruitment of EZH2 on its promoter. Oncotarget. 2018;9(21):15512–25.PubMedPubMedCentralCrossRef
24.
go back to reference Bacci L, Aiello A, Ripoli C, Loria R, Pugliese D, Pierconti F, et al. H19-Dependent transcriptional regulation of β3 and β4 Integrins upon Estrogen and Hypoxia favors metastatic potential in prostate Cancer. Int J Mol Sci. 2019;20(16):E4012.CrossRef Bacci L, Aiello A, Ripoli C, Loria R, Pugliese D, Pierconti F, et al. H19-Dependent transcriptional regulation of β3 and β4 Integrins upon Estrogen and Hypoxia favors metastatic potential in prostate Cancer. Int J Mol Sci. 2019;20(16):E4012.CrossRef
25.
go back to reference Hotoboc IE, Fudulu A, Grigore R, Bertesteanu S, Huica I, Iancu IV et al. The association between lncRNA H19 and EZH2 expression in patients with EBV-positive laryngeal carcinoma. Acta Otorhinolaryngol Ital. 2021;41(6):537–43. Hotoboc IE, Fudulu A, Grigore R, Bertesteanu S, Huica I, Iancu IV et al. The association between lncRNA H19 and EZH2 expression in patients with EBV-positive laryngeal carcinoma. Acta Otorhinolaryngol Ital. 2021;41(6):537–43.
26.
go back to reference Shermane Lim YW, Xiang X, Garg M, Le MT, Li-Ann Wong A, Wang L, et al. The double-edged sword of H19 lncRNA: insights into cancer therapy. Cancer Lett. 2021;500:253–62.PubMedCrossRef Shermane Lim YW, Xiang X, Garg M, Le MT, Li-Ann Wong A, Wang L, et al. The double-edged sword of H19 lncRNA: insights into cancer therapy. Cancer Lett. 2021;500:253–62.PubMedCrossRef
27.
go back to reference Singh N, Ramnarine VR, Song JH, Pandey R, Padi SKR, Nouri M, et al. The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer. Nat Commun. 2021;12(1):7349.ADSPubMedPubMedCentralCrossRef Singh N, Ramnarine VR, Song JH, Pandey R, Padi SKR, Nouri M, et al. The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer. Nat Commun. 2021;12(1):7349.ADSPubMedPubMedCentralCrossRef
28.
go back to reference Zhu M, Chen Q, Liu X, Sun Q, Zhao X, Deng R, et al. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J. 2014;281(16):3766–75.PubMedCrossRef Zhu M, Chen Q, Liu X, Sun Q, Zhao X, Deng R, et al. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J. 2014;281(16):3766–75.PubMedCrossRef
29.
go back to reference Harryman WL, Hinton JP, Rubenstein CP, Singh P, Nagle RB, Parker SJ, et al. The cohesive metastasis phenotype in human prostate cancer. Biochim Biophys Acta. 2016;1866(2):221–31.PubMedPubMedCentral Harryman WL, Hinton JP, Rubenstein CP, Singh P, Nagle RB, Parker SJ, et al. The cohesive metastasis phenotype in human prostate cancer. Biochim Biophys Acta. 2016;1866(2):221–31.PubMedPubMedCentral
30.
go back to reference Kumaraswamy A, Welker Leng KR, Westbrook TC, Yates JA, Zhao SG, Evans CP, et al. Recent advances in epigenetic biomarkers and epigenetic targeting in prostate Cancer. Eur Urol. 2021;80(1):71–81.PubMedPubMedCentralCrossRef Kumaraswamy A, Welker Leng KR, Westbrook TC, Yates JA, Zhao SG, Evans CP, et al. Recent advances in epigenetic biomarkers and epigenetic targeting in prostate Cancer. Eur Urol. 2021;80(1):71–81.PubMedPubMedCentralCrossRef
31.
go back to reference Hillyar C, Rallis KS, Varghese J. Advances in epigenetic cancer therapeutics. Cureus 27. 2020;12(11):e11725. Hillyar C, Rallis KS, Varghese J. Advances in epigenetic cancer therapeutics. Cureus 27. 2020;12(11):e11725.
32.
go back to reference Sedky NK, Hamdan AA, Emad S, Allam AL, Ali M, Tolba MF. Insights into the therapeutic potential of histone deacetylase inhibitor/immunotherapy combination regimens in solid tumors. Clin Transl Oncol. 2022;24(7):1262–73.CrossRef Sedky NK, Hamdan AA, Emad S, Allam AL, Ali M, Tolba MF. Insights into the therapeutic potential of histone deacetylase inhibitor/immunotherapy combination regimens in solid tumors. Clin Transl Oncol. 2022;24(7):1262–73.CrossRef
33.
go back to reference Biswas S, Rao CM. Epigenetic tools (the writers, the readers and the erasers) and their implications in cancer therapy. Eur J Pharmacol. 2018;837:8–24.CrossRef Biswas S, Rao CM. Epigenetic tools (the writers, the readers and the erasers) and their implications in cancer therapy. Eur J Pharmacol. 2018;837:8–24.CrossRef
34.
go back to reference Yin X, Yang S, Zhang M, Yue Y. The role and prospect of JMJD3 in stem cells and cancer. Biomed Pharmacother. 2019;118:109384.PubMedCrossRef Yin X, Yang S, Zhang M, Yue Y. The role and prospect of JMJD3 in stem cells and cancer. Biomed Pharmacother. 2019;118:109384.PubMedCrossRef
35.
go back to reference Sanchez A, Houfaf Khoufaf FZ, Idrissou M, Penault-Llorca F, Bignon YJ, Guy L, et al. The functions of the demethylase JMJD3 in Cancer. Int J Mol Sci. 2021;22(2):968.PubMedPubMedCentralCrossRef Sanchez A, Houfaf Khoufaf FZ, Idrissou M, Penault-Llorca F, Bignon YJ, Guy L, et al. The functions of the demethylase JMJD3 in Cancer. Int J Mol Sci. 2021;22(2):968.PubMedPubMedCentralCrossRef
36.
go back to reference Kruidenier L, Chung C, wa, Cheng Z, Liddle J, Che K, Joberty G, et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 2012;488(7411):404–8.ADSPubMedPubMedCentralCrossRef Kruidenier L, Chung C, wa, Cheng Z, Liddle J, Che K, Joberty G, et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 2012;488(7411):404–8.ADSPubMedPubMedCentralCrossRef
37.
go back to reference Morozov VM, Li Y, Clowers MM, Ishov AM. Inhibitor of H3K27 demethylase JMJD3/UTX GSK-J4 is a potential therapeutic option for castration resistant prostate cancer. Oncotarget. 2017;8(37):62131–42.PubMedPubMedCentralCrossRef Morozov VM, Li Y, Clowers MM, Ishov AM. Inhibitor of H3K27 demethylase JMJD3/UTX GSK-J4 is a potential therapeutic option for castration resistant prostate cancer. Oncotarget. 2017;8(37):62131–42.PubMedPubMedCentralCrossRef
38.
go back to reference Daures M, Idrissou M, Judes G, Rifaï K, Penault-Llorca F, Bignon YJ et al. A new metabolic gene signature in prostate cancer regulated by JMJD3 and EZH2. Oncotarget. 2018;9(34):23413–25. Daures M, Idrissou M, Judes G, Rifaï K, Penault-Llorca F, Bignon YJ et al. A new metabolic gene signature in prostate cancer regulated by JMJD3 and EZH2. Oncotarget. 2018;9(34):23413–25.
39.
go back to reference Sanchez A, El Ouardi D, Houfaf Khoufaf FZ, Idrissou M, Boisnier T, Penault-Llorca F, et al. Role of JMJD3 demethylase and its inhibitor GSK-J4 in regulation of MGMT, TRA2A, RPS6KA2, and U2AF1 genes in prostate cancer cell lines. Omics. 2020;24(8):505–7. Sanchez A, El Ouardi D, Houfaf Khoufaf FZ, Idrissou M, Boisnier T, Penault-Llorca F, et al. Role of JMJD3 demethylase and its inhibitor GSK-J4 in regulation of MGMT, TRA2A, RPS6KA2, and U2AF1 genes in prostate cancer cell lines. Omics. 2020;24(8):505–7.
40.
go back to reference Cao Z, Shi X, Tian F, Fang Y, Wu JB, Mrdenovic S, et al. KDM6B is an androgen regulated gene and plays oncogenic roles by demethylating H3K27me3 at cyclin D1 promoter in prostate cancer. Cell Death Dis. 2021;12(1):2.PubMedPubMedCentralCrossRef Cao Z, Shi X, Tian F, Fang Y, Wu JB, Mrdenovic S, et al. KDM6B is an androgen regulated gene and plays oncogenic roles by demethylating H3K27me3 at cyclin D1 promoter in prostate cancer. Cell Death Dis. 2021;12(1):2.PubMedPubMedCentralCrossRef
41.
go back to reference Drake JM, Gabriel CL, Henry MD. Assessing tumor growth and distribution in a model of prostate cancer metastasis using bioluminescence imaging. Clin Exp Metastasis. 2005;22(8):674–84.PubMedCrossRef Drake JM, Gabriel CL, Henry MD. Assessing tumor growth and distribution in a model of prostate cancer metastasis using bioluminescence imaging. Clin Exp Metastasis. 2005;22(8):674–84.PubMedCrossRef
42.
go back to reference Possieri C, Locantore P, Salis C, Bacci L, Aiello A, Fadda G, et al. Combined molecular and mathematical analysis of long noncoding RNAs expression in fine needle aspiration biopsies as novel tool for early diagnosis of thyroid cancer. Endocrine. 2021;72(3):711–20.PubMedCrossRef Possieri C, Locantore P, Salis C, Bacci L, Aiello A, Fadda G, et al. Combined molecular and mathematical analysis of long noncoding RNAs expression in fine needle aspiration biopsies as novel tool for early diagnosis of thyroid cancer. Endocrine. 2021;72(3):711–20.PubMedCrossRef
43.
go back to reference Aiello A, Bacci L, Re A, Ripoli C, Pierconti F, Pinto F, et al. MALAT1 and HOTAIR Long non-coding RNAs play opposite role in estrogen-mediated transcriptional regulation in prostate Cancer cells. Sci Rep. 2016;6:38414.ADSPubMedPubMedCentralCrossRef Aiello A, Bacci L, Re A, Ripoli C, Pierconti F, Pinto F, et al. MALAT1 and HOTAIR Long non-coding RNAs play opposite role in estrogen-mediated transcriptional regulation in prostate Cancer cells. Sci Rep. 2016;6:38414.ADSPubMedPubMedCentralCrossRef
44.
go back to reference De Martino S, Iorio E, Cencioni C, Aiello A, Spallotta F, Chirico M, et al. MALAT1 as a regulator of the androgen-dependent choline kinase a gene in the metabolic rewiring of prostate Cancer. Cancers. 2022;14(12):2902.CrossRef De Martino S, Iorio E, Cencioni C, Aiello A, Spallotta F, Chirico M, et al. MALAT1 as a regulator of the androgen-dependent choline kinase a gene in the metabolic rewiring of prostate Cancer. Cancers. 2022;14(12):2902.CrossRef
45.
go back to reference Benyoucef A, Palii CG, Wang C, Porter CJ, Chu A, Dai F, et al. UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia. Genes Dev. 2016;30(5):508–21.CrossRef Benyoucef A, Palii CG, Wang C, Porter CJ, Chu A, Dai F, et al. UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia. Genes Dev. 2016;30(5):508–21.CrossRef
46.
go back to reference Nanni S, Aiello A, Salis C, Re A, Cencioni C, Bacci L et al. Metabolic reprogramming by malat1 depletion in prostate cancer. Cancers. 2020;13(1):E15. Nanni S, Aiello A, Salis C, Re A, Cencioni C, Bacci L et al. Metabolic reprogramming by malat1 depletion in prostate cancer. Cancers. 2020;13(1):E15.
47.
go back to reference Vaira V, Fedele G, Pyne S, Fasoli E, Zadra G, Bailey D, et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc Natl Acad Sci. 2010;107(18):8352–6.ADSPubMedPubMedCentralCrossRef Vaira V, Fedele G, Pyne S, Fasoli E, Zadra G, Bailey D, et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc Natl Acad Sci. 2010;107(18):8352–6.ADSPubMedPubMedCentralCrossRef
48.
go back to reference Flum M, Dicks S, Teng YH, Schrempp M, Nyström A, Boerries M, et al. Canonical TGFβ signaling induces collective invasion in colorectal carcinogenesis through a Snail1- and Zeb1-independent partial EMT. Oncogene. 2022;41(10):1492–506.PubMedPubMedCentralCrossRef Flum M, Dicks S, Teng YH, Schrempp M, Nyström A, Boerries M, et al. Canonical TGFβ signaling induces collective invasion in colorectal carcinogenesis through a Snail1- and Zeb1-independent partial EMT. Oncogene. 2022;41(10):1492–506.PubMedPubMedCentralCrossRef
49.
go back to reference Goyal N, Singh M, Sagar N, Khurana N, Singh I. Association of E-cadherin & vimentin expression with clinicopathological parameters in lingual squamous cell carcinomas & their role in incomplete epithelial mesenchymal transition. Indian J Med Res. 2021;153(4):484–91.PubMedPubMedCentralCrossRef Goyal N, Singh M, Sagar N, Khurana N, Singh I. Association of E-cadherin & vimentin expression with clinicopathological parameters in lingual squamous cell carcinomas & their role in incomplete epithelial mesenchymal transition. Indian J Med Res. 2021;153(4):484–91.PubMedPubMedCentralCrossRef
50.
go back to reference Sanchez A, Penault-Llorca F, Bignon YJ, Guy L, Bernard-Gallon D. Effects of GSK-J4 on JMJD3 histone demethylase in mouse prostate Cancer xenografts. Cancer Genomics Proteomics. 2022;19(3):339–49.PubMedPubMedCentralCrossRef Sanchez A, Penault-Llorca F, Bignon YJ, Guy L, Bernard-Gallon D. Effects of GSK-J4 on JMJD3 histone demethylase in mouse prostate Cancer xenografts. Cancer Genomics Proteomics. 2022;19(3):339–49.PubMedPubMedCentralCrossRef
51.
go back to reference Lu B, Zou C, Yang M, He Y, He J, Zhang C, et al. Pharmacological inhibition of core regulatory circuitry liquid-liquid phase separation suppresses metastasis and chemoresistance in osteosarcoma. Adv Sci (Weinh). 2021;8(20):e2101895.PubMedCrossRef Lu B, Zou C, Yang M, He Y, He J, Zhang C, et al. Pharmacological inhibition of core regulatory circuitry liquid-liquid phase separation suppresses metastasis and chemoresistance in osteosarcoma. Adv Sci (Weinh). 2021;8(20):e2101895.PubMedCrossRef
52.
go back to reference Zha L, Cao Q, Cui X, Li F, Liang H, Xue B, et al. Epigenetic regulation of E-cadherin expression by the histone demethylase UTX in colon cancer cells. Med Oncol. 2016;33(3):21.PubMedCrossRef Zha L, Cao Q, Cui X, Li F, Liang H, Xue B, et al. Epigenetic regulation of E-cadherin expression by the histone demethylase UTX in colon cancer cells. Med Oncol. 2016;33(3):21.PubMedCrossRef
53.
go back to reference Ezponda T, Dupéré-Richer D, Will CM, Small EC, Varghese N, Patel T, et al. UTX/KDM6A loss enhances the malignant phenotype of multiple myeloma and sensitizes cells to EZH2 inhibition. Cell Rep. 2017;21(3):628–40.PubMedPubMedCentralCrossRef Ezponda T, Dupéré-Richer D, Will CM, Small EC, Varghese N, Patel T, et al. UTX/KDM6A loss enhances the malignant phenotype of multiple myeloma and sensitizes cells to EZH2 inhibition. Cell Rep. 2017;21(3):628–40.PubMedPubMedCentralCrossRef
Metadata
Title
Targeting of H19/cell adhesion molecules circuitry by GSK-J4 epidrug inhibits metastatic progression in prostate cancer
Authors
Valeria Pecci
Fabiola Troisi
Aurora Aiello
Sara De Martino
Angela Carlino
Vincenzo Fiorentino
Cristian Ripoli
Dante Rotili
Francesco Pierconti
Maurizio Martini
Manuela Porru
Francesco Pinto
Antonello Mai
Pier Francesco Bassi
Claudio Grassi
Carlo Gaetano
Alfredo Pontecorvi
Lidia Strigari
Antonella Farsetti
Simona Nanni
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2024
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-024-03231-6

Other articles of this Issue 1/2024

Cancer Cell International 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine