Skip to main content
Top
Published in: BMC Urology 1/2022

Open Access 01-12-2022 | Prostate Cancer | Research

Identification of castration-dependent and -independent driver genes and pathways in castration-resistant prostate cancer (CRPC)

Authors: Yan Li, Hui Shi, Zhenjun Zhao, Minghui Xu

Published in: BMC Urology | Issue 1/2022

Login to get access

Abstract

Background

Prostate cancer (PCa) is one of the most diagnosed cancers in the world. PCa inevitably progresses to castration-resistant prostate cancer (CRPC) after androgen deprivation therapy treatment, and castration-resistant state means a shorter survival time than other causes. Here we aimed to define castration-dependent and -independent diver genes and molecular pathways in CRPC which are responsible for such lethal metastatic events.

Methods

By employing digital gene expression (DGE) profiling, the alterations of the epididymal gene expression profile in the mature and bilateral castrated rat were explored. Then we detect and characterize the castration-dependent and -independent genes and pathways with two data set of CPRC-associated gene expression profiles publicly available on the NCBI.

Results

We identified 1,632 up-regulated and 816 down-regulated genes in rat’s epididymis after bilateral castration. Differential expression analysis of CRPC samples compared with the primary PCa samples was also done. In contrast to castration, we identified 97 up-regulated genes and 128 down-regulated genes that changed in both GEO dataset and DGE profile, and 120 up-regulated genes and 136 down-regulated genes changed only in CRPC, considered as CRPC-specific genes independent of castration. CRPC-specific DEGs were mainly enriched in cell proliferation, while CRPC-castration genes were associated with prostate gland development. NUSAP1 and NCAPG were identified as key genes, which might be promising biomarkers of the diagnosis and prognosis of CRPC.

Conclusion

Our study will provide insights into gene regulation of CRPC dependent or independent of castration and will improve understandings of CRPC development and progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weischenfeldt J, Simon R, Feuerbach L, Schlangen K, Weichenhan D, Minner S, et al. Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell. 2013;23(2):159–70.PubMedCrossRef Weischenfeldt J, Simon R, Feuerbach L, Schlangen K, Weichenhan D, Minner S, et al. Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell. 2013;23(2):159–70.PubMedCrossRef
2.
go back to reference Mansinho A, Macedo D, Fernandes I, Costa L. Castration-resistant prostate cancer: mechanisms, targets and treatment. Adv Exp Med Biol. 2018;1096:117–33.PubMedCrossRef Mansinho A, Macedo D, Fernandes I, Costa L. Castration-resistant prostate cancer: mechanisms, targets and treatment. Adv Exp Med Biol. 2018;1096:117–33.PubMedCrossRef
3.
go back to reference Karantanos T, Corn PG, Thompson TC. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene. 2013;32(49):5501–11.PubMedPubMedCentralCrossRef Karantanos T, Corn PG, Thompson TC. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene. 2013;32(49):5501–11.PubMedPubMedCentralCrossRef
4.
go back to reference Kirby M, Hirst C, Crawford ED. Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract. 2011;65(11):1180–92.PubMedCrossRef Kirby M, Hirst C, Crawford ED. Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract. 2011;65(11):1180–92.PubMedCrossRef
5.
go back to reference Cookson MS, Roth BJ, Dahm P, Engstrom C, Freedland SJ, Hussain M, et al. Castration-resistant prostate cancer: AUA Guideline. J Urol. 2013;190(2):429–38.PubMedCrossRef Cookson MS, Roth BJ, Dahm P, Engstrom C, Freedland SJ, Hussain M, et al. Castration-resistant prostate cancer: AUA Guideline. J Urol. 2013;190(2):429–38.PubMedCrossRef
6.
go back to reference Mottet N, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2011;59(4):572–83.PubMedCrossRef Mottet N, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2011;59(4):572–83.PubMedCrossRef
8.
go back to reference Achard V, Putora PM, Omlin A, Zilli T, Fischer S. Metastatic prostate cancer: treatment options. Oncology. 2022;100(1):48–59.PubMedCrossRef Achard V, Putora PM, Omlin A, Zilli T, Fischer S. Metastatic prostate cancer: treatment options. Oncology. 2022;100(1):48–59.PubMedCrossRef
10.
go back to reference Komura K, Sweeney CJ, Inamoto T, Ibuki N, Azuma H, Kantoff PW. Current treatment strategies for advanced prostate cancer. Int J Urol. 2018;25(3):220–31.PubMedCrossRef Komura K, Sweeney CJ, Inamoto T, Ibuki N, Azuma H, Kantoff PW. Current treatment strategies for advanced prostate cancer. Int J Urol. 2018;25(3):220–31.PubMedCrossRef
12.
go back to reference Shpilsky J, Stevens J, Bubley G. An up-to-date evaluation of abiraterone for the treatment of prostate cancer. Expert Opin Pharmacother. 2021;22(10):1227–34.PubMedCrossRef Shpilsky J, Stevens J, Bubley G. An up-to-date evaluation of abiraterone for the treatment of prostate cancer. Expert Opin Pharmacother. 2021;22(10):1227–34.PubMedCrossRef
13.
go back to reference Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15(12):701–11.PubMedPubMedCentralCrossRef Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15(12):701–11.PubMedPubMedCentralCrossRef
14.
go back to reference Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028–38.PubMedPubMedCentralCrossRef Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028–38.PubMedPubMedCentralCrossRef
15.
go back to reference Yun SJ, Kim SK, Kim J, Cha EJ, Kim JS, Kim SJ, et al. Transcriptomic features of primary prostate cancer and their prognostic relevance to castration-resistant prostate cancer. Oncotarget. 2017;8(70):114845–55.PubMedPubMedCentralCrossRef Yun SJ, Kim SK, Kim J, Cha EJ, Kim JS, Kim SJ, et al. Transcriptomic features of primary prostate cancer and their prognostic relevance to castration-resistant prostate cancer. Oncotarget. 2017;8(70):114845–55.PubMedPubMedCentralCrossRef
16.
go back to reference D’Antonio JM, Ma C, Monzon FA, Pflug BR. Longitudinal analysis of androgen deprivation of prostate cancer cells identifies pathways to androgen independence. Prostate. 2008;68(7):698–714.PubMedCrossRef D’Antonio JM, Ma C, Monzon FA, Pflug BR. Longitudinal analysis of androgen deprivation of prostate cancer cells identifies pathways to androgen independence. Prostate. 2008;68(7):698–714.PubMedCrossRef
17.
go back to reference Terada N, Shimizu Y, Kamba T, Inoue T, Maeno A, Kobayashi T, et al. Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model. Cancer Res. 2010;70(4):1606–15.PubMedCrossRef Terada N, Shimizu Y, Kamba T, Inoue T, Maeno A, Kobayashi T, et al. Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model. Cancer Res. 2010;70(4):1606–15.PubMedCrossRef
18.
go back to reference Brooks DE. Metabolic activity in the epididymis and its regulation by androgens. Physiol Rev. 1981;61(3):515–55.PubMedCrossRef Brooks DE. Metabolic activity in the epididymis and its regulation by androgens. Physiol Rev. 1981;61(3):515–55.PubMedCrossRef
20.
go back to reference Ezer N, Robaire B. Gene expression is differentially regulated in the epididymis after orchidectomy. Endocrinology. 2003;144(3):975–88.PubMedCrossRef Ezer N, Robaire B. Gene expression is differentially regulated in the epididymis after orchidectomy. Endocrinology. 2003;144(3):975–88.PubMedCrossRef
21.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.PubMedCrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.PubMedCrossRef
22.
go back to reference Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7(10):986–95.PubMedCrossRef Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7(10):986–95.PubMedCrossRef
23.
go back to reference Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125(1–2):279–84.PubMedCrossRef Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125(1–2):279–84.PubMedCrossRef
24.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.PubMedPubMedCentralCrossRef Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.PubMedPubMedCentralCrossRef
25.
go back to reference Su LN, Song XQ, Xue ZX, Zheng CQ, Yin HF, Wei HP. Network analysis of microRNAs, transcription factors, and target genes involved in axon regeneration. J Zhejiang Univ Sci B. 2018;19(4):293–304.PubMedPubMedCentralCrossRef Su LN, Song XQ, Xue ZX, Zheng CQ, Yin HF, Wei HP. Network analysis of microRNAs, transcription factors, and target genes involved in axon regeneration. J Zhejiang Univ Sci B. 2018;19(4):293–304.PubMedPubMedCentralCrossRef
26.
go back to reference Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(5):P3.PubMedCrossRef Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(5):P3.PubMedCrossRef
27.
go back to reference Drilon A, Siena S, Ou SI, Patel M, Ahn MJ, Lee J, et al. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017;7(4):400–09.PubMedPubMedCentralCrossRef Drilon A, Siena S, Ou SI, Patel M, Ahn MJ, Lee J, et al. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017;7(4):400–09.PubMedPubMedCentralCrossRef
28.
go back to reference Huang D, Zhang B, Han T, Liu G, Chen X, Zhao Z, et al. Genome-wide prediction and comparative transcriptomic analysis reveals the G protein-coupled receptors involved in gonadal development of Apostichopus japonicus. Genomics. 2021;113(1 Pt 2):967–78.PubMedCrossRef Huang D, Zhang B, Han T, Liu G, Chen X, Zhao Z, et al. Genome-wide prediction and comparative transcriptomic analysis reveals the G protein-coupled receptors involved in gonadal development of Apostichopus japonicus. Genomics. 2021;113(1 Pt 2):967–78.PubMedCrossRef
29.
go back to reference Puig RR, Holmas S, Mironov V, Kuiper M. Network building with the cytoscape BioGateway App explained in five use cases. Curr Protoc Bioinformatics. 2020;72(1):e106.PubMedCrossRef Puig RR, Holmas S, Mironov V, Kuiper M. Network building with the cytoscape BioGateway App explained in five use cases. Curr Protoc Bioinformatics. 2020;72(1):e106.PubMedCrossRef
30.
go back to reference Herden J, Schwarte A, Werner T, Behrendt U, Heidenreich A, Weissbach L. Long-term outcomes of active surveillance for clinically localized prostate cancer in a community-based setting: results from a prospective non-interventional study. World J Urol. 2020;39(7):2515–23.PubMedPubMedCentralCrossRef Herden J, Schwarte A, Werner T, Behrendt U, Heidenreich A, Weissbach L. Long-term outcomes of active surveillance for clinically localized prostate cancer in a community-based setting: results from a prospective non-interventional study. World J Urol. 2020;39(7):2515–23.PubMedPubMedCentralCrossRef
31.
go back to reference Iyer J, Moghe S, Furukawa M, Tsai MY. What’s Nu(SAP) in mitosis and cancer? Cell Signal. 2011;23(6):991–8.PubMedCrossRef Iyer J, Moghe S, Furukawa M, Tsai MY. What’s Nu(SAP) in mitosis and cancer? Cell Signal. 2011;23(6):991–8.PubMedCrossRef
32.
go back to reference Stuart JE, Lusis EA, Scheck AC, Coons SW, Lal A, Perry A, et al. Identification of gene markers associated with aggressive meningioma by filtering across multiple sets of gene expression arrays. J Neuropathol Exp Neurol. 2011;70(1):1–12.PubMedCrossRef Stuart JE, Lusis EA, Scheck AC, Coons SW, Lal A, Perry A, et al. Identification of gene markers associated with aggressive meningioma by filtering across multiple sets of gene expression arrays. J Neuropathol Exp Neurol. 2011;70(1):1–12.PubMedCrossRef
33.
go back to reference Ribbeck K, Raemaekers T, Carmeliet G, Mattaj IW. A role for NuSAP in linking microtubules to mitotic chromosomes. Curr Biol. 2007;17(3):230–6.PubMedCrossRef Ribbeck K, Raemaekers T, Carmeliet G, Mattaj IW. A role for NuSAP in linking microtubules to mitotic chromosomes. Curr Biol. 2007;17(3):230–6.PubMedCrossRef
34.
go back to reference Li C, Zhang Y, Yang Q, Ye F, Sun SY, Chen ES, et al. NuSAP modulates the dynamics of kinetochore microtubules by attenuating MCAK depolymerisation activity. Sci Rep. 2016;6:18773.PubMedPubMedCentralCrossRef Li C, Zhang Y, Yang Q, Ye F, Sun SY, Chen ES, et al. NuSAP modulates the dynamics of kinetochore microtubules by attenuating MCAK depolymerisation activity. Sci Rep. 2016;6:18773.PubMedPubMedCentralCrossRef
35.
go back to reference Gordon CA, Gulzar ZG, Brooks JD. NUSAP1 expression is upregulated by loss of RB1 in prostate cancer cells. Prostate. 2015;75(5):517–26.PubMedCrossRef Gordon CA, Gulzar ZG, Brooks JD. NUSAP1 expression is upregulated by loss of RB1 in prostate cancer cells. Prostate. 2015;75(5):517–26.PubMedCrossRef
36.
go back to reference Gay O, Gilquin B, Nakamura F, Jenkins ZA, McCartney R, Krakow D, et al. RefilinB (FAM101B) targets filamin A to organize perinuclear actin networks and regulates nuclear shape. Proc Natl Acad Sci U S A. 2011;108(28):11464–9.PubMedPubMedCentralCrossRef Gay O, Gilquin B, Nakamura F, Jenkins ZA, McCartney R, Krakow D, et al. RefilinB (FAM101B) targets filamin A to organize perinuclear actin networks and regulates nuclear shape. Proc Natl Acad Sci U S A. 2011;108(28):11464–9.PubMedPubMedCentralCrossRef
37.
go back to reference Placencio VR, Sharif-Afshar AR, Li X, Huang H, Uwamariya C, Neilson EG, et al. Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity. Cancer Res. 2008;68(12):4709–18.PubMedPubMedCentralCrossRef Placencio VR, Sharif-Afshar AR, Li X, Huang H, Uwamariya C, Neilson EG, et al. Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity. Cancer Res. 2008;68(12):4709–18.PubMedPubMedCentralCrossRef
38.
go back to reference Ge Y, Li Q, Lin L, Jiang M, Shi L, Wang B, et al. Downregulation of NUSAP1 suppresses cell proliferation, migration, and invasion via inhibiting mTORC1 signalling pathway in gastric cancer. Cell Biochem Funct. 2020;38(1):28–37.PubMedCrossRef Ge Y, Li Q, Lin L, Jiang M, Shi L, Wang B, et al. Downregulation of NUSAP1 suppresses cell proliferation, migration, and invasion via inhibiting mTORC1 signalling pathway in gastric cancer. Cell Biochem Funct. 2020;38(1):28–37.PubMedCrossRef
39.
go back to reference Goto Y, Kurozumi A, Arai T, Nohata N, Kojima S, Okato A, et al. Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer. Br J Cancer. 2017;117(3):409–20.PubMedPubMedCentralCrossRef Goto Y, Kurozumi A, Arai T, Nohata N, Kojima S, Okato A, et al. Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer. Br J Cancer. 2017;117(3):409–20.PubMedPubMedCentralCrossRef
40.
go back to reference Arai T, Okato A, Yamada Y, Sugawara S, Kurozumi A, Kojima S, et al. Regulation of NCAPG by miR-99a-3p (passenger strand) inhibits cancer cell aggressiveness and is involved in CRPC. Cancer Med. 2018;7(5):1988–2002.PubMedPubMedCentralCrossRef Arai T, Okato A, Yamada Y, Sugawara S, Kurozumi A, Kojima S, et al. Regulation of NCAPG by miR-99a-3p (passenger strand) inhibits cancer cell aggressiveness and is involved in CRPC. Cancer Med. 2018;7(5):1988–2002.PubMedPubMedCentralCrossRef
41.
go back to reference Gong C, Ai J, Fan Y, Gao J, Liu W, Feng Q, et al. NCAPG promotes the proliferation of hepatocellular carcinoma through PI3K/AKT signaling. Onco Targets Ther. 2019;12:8537–52.PubMedPubMedCentralCrossRef Gong C, Ai J, Fan Y, Gao J, Liu W, Feng Q, et al. NCAPG promotes the proliferation of hepatocellular carcinoma through PI3K/AKT signaling. Onco Targets Ther. 2019;12:8537–52.PubMedPubMedCentralCrossRef
Metadata
Title
Identification of castration-dependent and -independent driver genes and pathways in castration-resistant prostate cancer (CRPC)
Authors
Yan Li
Hui Shi
Zhenjun Zhao
Minghui Xu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2022
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-022-01113-5

Other articles of this Issue 1/2022

BMC Urology 1/2022 Go to the issue