Skip to main content
Top
Published in: Cancer Imaging 1/2024

Open Access 01-12-2024 | Prostate Cancer | Research article

Automated segmentation of lesions and organs at risk on [68Ga]Ga-PSMA-11 PET/CT images using self-supervised learning with Swin UNETR

Authors: Elmira Yazdani, Najme Karamzadeh-Ziarati, Seyyed Saeid Cheshmi, Mahdi Sadeghi, Parham Geramifar, Habibeh Vosoughi, Mahmood Kazemi Jahromi, Saeed Reza Kheradpisheh

Published in: Cancer Imaging | Issue 1/2024

Login to get access

Abstract

Background

Prostate-specific membrane antigen (PSMA) PET/CT imaging is widely used for quantitative image analysis, especially in radioligand therapy (RLT) for metastatic castration-resistant prostate cancer (mCRPC). Unknown features influencing PSMA biodistribution can be explored by analyzing segmented organs at risk (OAR) and lesions. Manual segmentation is time-consuming and labor-intensive, so automated segmentation methods are desirable. Training deep-learning segmentation models is challenging due to the scarcity of high-quality annotated images. Addressing this, we developed shifted windows UNEt TRansformers (Swin UNETR) for fully automated segmentation. Within a self-supervised framework, the model’s encoder was pre-trained on unlabeled data. The entire model was fine-tuned, including its decoder, using labeled data.

Methods

In this work, 752 whole-body [68Ga]Ga-PSMA-11 PET/CT images were collected from two centers. For self-supervised model pre-training, 652 unlabeled images were employed. The remaining 100 images were manually labeled for supervised training. In the supervised training phase, 5-fold cross-validation was used with 64 images for model training and 16 for validation, from one center. For testing, 20 hold-out images, evenly distributed between two centers, were used. Image segmentation and quantification metrics were evaluated on the test set compared to the ground-truth segmentation conducted by a nuclear medicine physician.

Results

The model generates high-quality OARs and lesion segmentation in lesion-positive cases, including mCRPC. The results show that self-supervised pre-training significantly improved the average dice similarity coefficient (DSC) for all classes by about 3%. Compared to nnU-Net, a well-established model in medical image segmentation, our approach outperformed with a 5% higher DSC. This improvement was attributed to our model’s combined use of self-supervised pre-training and supervised fine-tuning, specifically when applied to PET/CT input. Our best model had the lowest DSC for lesions at 0.68 and the highest for liver at 0.95.

Conclusions

We developed a state-of-the-art neural network using self-supervised pre-training on whole-body [68Ga]Ga-PSMA-11 PET/CT images, followed by fine-tuning on a limited set of annotated images. The model generates high-quality OARs and lesion segmentation for PSMA image analysis. The generalizable model holds potential for various clinical applications, including enhanced RLT and patient-specific internal dosimetry.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. Cancer J Clin. 2018;68(1):7–30. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. Cancer J Clin. 2018;68(1):7–30.
2.
go back to reference Maurer T, Eiber M, Schwaiger M, Gschwend JE. Current use of PSMA–PET in prostate cancer management. Nat Reviews Urol. 2016;13(4):226–35. Maurer T, Eiber M, Schwaiger M, Gschwend JE. Current use of PSMA–PET in prostate cancer management. Nat Reviews Urol. 2016;13(4):226–35.
4.
go back to reference Kirby M, Hirst C, Crawford E. Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract. 2011;65(11):1180–92.CrossRefPubMed Kirby M, Hirst C, Crawford E. Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract. 2011;65(11):1180–92.CrossRefPubMed
5.
go back to reference Azad AA, Eigl BJ, Murray RN, Kollmannsberger C, Chi KN. Efficacy of enzalutamide following abiraterone acetate in chemotherapy-naive metastatic castration-resistant prostate cancer patients. Eur Urol. 2015;67(1):23–9.CrossRefPubMed Azad AA, Eigl BJ, Murray RN, Kollmannsberger C, Chi KN. Efficacy of enzalutamide following abiraterone acetate in chemotherapy-naive metastatic castration-resistant prostate cancer patients. Eur Urol. 2015;67(1):23–9.CrossRefPubMed
6.
go back to reference Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2014;65(2):467–79.CrossRefPubMed Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2014;65(2):467–79.CrossRefPubMed
7.
go back to reference Baum RP, Kulkarni HR, Schuchardt C, Singh A, Wirtz M, Wiessalla S, et al. 177Lu-labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J Nucl Med. 2016;57(7):1006–13.CrossRefPubMed Baum RP, Kulkarni HR, Schuchardt C, Singh A, Wirtz M, Wiessalla S, et al. 177Lu-labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J Nucl Med. 2016;57(7):1006–13.CrossRefPubMed
8.
go back to reference Ahmadzadehfar H, Aryana K, Pirayesh E, Farzanehfar S, Assadi M, Fallahi B, et al. The Iranian Society of Nuclear Medicine practical guideline on radioligand therapy in metastatic castration-resistant prostate cancer using 177Lu-PSMA. Iran J Nuclear Med. 2018;26(1):2. Ahmadzadehfar H, Aryana K, Pirayesh E, Farzanehfar S, Assadi M, Fallahi B, et al. The Iranian Society of Nuclear Medicine practical guideline on radioligand therapy in metastatic castration-resistant prostate cancer using 177Lu-PSMA. Iran J Nuclear Med. 2018;26(1):2.
9.
go back to reference Chang SS. Overview of prostate-specific membrane antigen. Rev Urol. 2004;6(Suppl 10):13. Chang SS. Overview of prostate-specific membrane antigen. Rev Urol. 2004;6(Suppl 10):13.
10.
go back to reference Silver DA, Pellicer I, Fair WR, Heston W, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin cancer Research: Official J Am Association Cancer Res. 1997;3(1):81–5. Silver DA, Pellicer I, Fair WR, Heston W, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin cancer Research: Official J Am Association Cancer Res. 1997;3(1):81–5.
12.
go back to reference Perner S, Hofer MD, Kim R, Shah RB, Li H, Möller P, et al. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol. 2007;38(5):696–701.CrossRefPubMed Perner S, Hofer MD, Kim R, Shah RB, Li H, Möller P, et al. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol. 2007;38(5):696–701.CrossRefPubMed
13.
14.
go back to reference Afshar-Oromieh A, Babich JW, Kratochwil C, Giesel FL, Eisenhut M, Kopka K, et al. The rise of PSMA ligands for diagnosis and therapy of prostate cancer. J Nucl Med. 2016;57(Supplement 3):79S–89S.CrossRefPubMed Afshar-Oromieh A, Babich JW, Kratochwil C, Giesel FL, Eisenhut M, Kopka K, et al. The rise of PSMA ligands for diagnosis and therapy of prostate cancer. J Nucl Med. 2016;57(Supplement 3):79S–89S.CrossRefPubMed
15.
go back to reference Fallahi B, Khademi N, Karamzade-Ziarati N, Fard-Esfahani A, Emami-Ardekani A, Farzanefar S, et al. 99mTc-PSMA SPECT/CT versus 68Ga-PSMA PET/CT in the evaluation of metastatic prostate cancer. Clin Nucl Med. 2021;46(2):e68–e74.CrossRefPubMed Fallahi B, Khademi N, Karamzade-Ziarati N, Fard-Esfahani A, Emami-Ardekani A, Farzanefar S, et al. 99mTc-PSMA SPECT/CT versus 68Ga-PSMA PET/CT in the evaluation of metastatic prostate cancer. Clin Nucl Med. 2021;46(2):e68–e74.CrossRefPubMed
17.
go back to reference Maurer T, Gschwend JE, Rauscher I, Souvatzoglou M, Haller B, Weirich G, et al. Diagnostic efficacy of 68gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol. 2016;195(5):1436–43. Maurer T, Gschwend JE, Rauscher I, Souvatzoglou M, Haller B, Weirich G, et al. Diagnostic efficacy of 68gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol. 2016;195(5):1436–43.
18.
go back to reference Harsini S, Fallahi B, Ziarati NK, Razi A, Amini E, Emami-Ardekani A, et al. A prospective study on [68Ga]-PSMA PET/CT imaging in newly diagnosed Intermediate-and high-risk prostate Cancer. Asia Ocean J Nuclear Med Biology. 2021;9(2):101. Harsini S, Fallahi B, Ziarati NK, Razi A, Amini E, Emami-Ardekani A, et al. A prospective study on [68Ga]-PSMA PET/CT imaging in newly diagnosed Intermediate-and high-risk prostate Cancer. Asia Ocean J Nuclear Med Biology. 2021;9(2):101.
19.
go back to reference Yazdani E, Geramifar P, Karamzade-Ziarati N, Sadeghi M, Amini P, Rahmim A. Radiomics and Artificial Intelligence in Radiotheranostics: a review of applications for Radioligands Targeting somatostatin receptors and prostate-specific membrane antigens. Diagnostics. 2024;14(2):181.CrossRefPubMedPubMedCentral Yazdani E, Geramifar P, Karamzade-Ziarati N, Sadeghi M, Amini P, Rahmim A. Radiomics and Artificial Intelligence in Radiotheranostics: a review of applications for Radioligands Targeting somatostatin receptors and prostate-specific membrane antigens. Diagnostics. 2024;14(2):181.CrossRefPubMedPubMedCentral
20.
go back to reference Yazdani E, Geramifar P, Karamzade-Ziarati N, Sadeghi M, Amini P, Rahmim A. Radiomics and Artificial Intelligence in Radiotheranostics. A Review of Applications for Radioligands Targeting SSTR and PSMA; 2023. Yazdani E, Geramifar P, Karamzade-Ziarati N, Sadeghi M, Amini P, Rahmim A. Radiomics and Artificial Intelligence in Radiotheranostics. A Review of Applications for Radioligands Targeting SSTR and PSMA; 2023.
21.
go back to reference Seifert R, Herrmann K, Kleesiek J, Schäfers M, Shah V, Xu Z, et al. Semiautomatically quantified tumor volume using 68Ga-PSMA-11 PET as a biomarker for survival in patients with advanced prostate cancer. J Nucl Med. 2020;61(12):1786–92.CrossRefPubMed Seifert R, Herrmann K, Kleesiek J, Schäfers M, Shah V, Xu Z, et al. Semiautomatically quantified tumor volume using 68Ga-PSMA-11 PET as a biomarker for survival in patients with advanced prostate cancer. J Nucl Med. 2020;61(12):1786–92.CrossRefPubMed
22.
go back to reference Zhao Y, Gafita A, Vollnberg B, Tetteh G, Haupt F, Afshar-Oromieh A, et al. Deep neural network for automatic characterization of lesions on 68Ga-PSMA-11 PET/CT. Eur J Nucl Med Mol Imaging. 2020;47(3):603–13.CrossRefPubMed Zhao Y, Gafita A, Vollnberg B, Tetteh G, Haupt F, Afshar-Oromieh A, et al. Deep neural network for automatic characterization of lesions on 68Ga-PSMA-11 PET/CT. Eur J Nucl Med Mol Imaging. 2020;47(3):603–13.CrossRefPubMed
23.
go back to reference Arabi H, Zaidi H. Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy. Eur J Hybrid Imaging. 2020;4(1):1–23.CrossRef Arabi H, Zaidi H. Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy. Eur J Hybrid Imaging. 2020;4(1):1–23.CrossRef
24.
go back to reference Yousefirizi F, Jha AK, Brosch-Lenz J, Saboury B, Rahmim A. Toward high-throughput artificial intelligence-based segmentation in oncological PET imaging. PET Clin. 2021;16(4):577–96.CrossRefPubMed Yousefirizi F, Jha AK, Brosch-Lenz J, Saboury B, Rahmim A. Toward high-throughput artificial intelligence-based segmentation in oncological PET imaging. PET Clin. 2021;16(4):577–96.CrossRefPubMed
25.
go back to reference Pfaehler E, Mesotten L, Kramer G, Thomeer M, Vanhove K, de Jong J, et al. Repeatability of two semi-automatic artificial intelligence approaches for tumor segmentation in PET. EJNMMI Res. 2021;11(1):1–11. Pfaehler E, Mesotten L, Kramer G, Thomeer M, Vanhove K, de Jong J, et al. Repeatability of two semi-automatic artificial intelligence approaches for tumor segmentation in PET. EJNMMI Res. 2021;11(1):1–11.
26.
27.
go back to reference Wang R, Lei T, Cui R, Zhang B, Meng H, Nandi AK. Medical image segmentation using deep learning: a survey. IET Image Proc. 2022;16(5):1243–67.CrossRef Wang R, Lei T, Cui R, Zhang B, Meng H, Nandi AK. Medical image segmentation using deep learning: a survey. IET Image Proc. 2022;16(5):1243–67.CrossRef
28.
go back to reference Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T et al. An image is worth 16x16 words: transformers for image recognition at scale. arXiv Preprint arXiv:201011929. 2020. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T et al. An image is worth 16x16 words: transformers for image recognition at scale. arXiv Preprint arXiv:201011929. 2020.
29.
go back to reference Atito S, Awais M, Kittler J, Sit. Self-supervised vision transformer. arXiv Preprint arXiv:210403602. 2021. Atito S, Awais M, Kittler J, Sit. Self-supervised vision transformer. arXiv Preprint arXiv:210403602. 2021.
30.
go back to reference Ericsson L, Gouk H, Loy CC, Hospedales TM. Self-supervised representation learning: introduction, advances, and challenges. IEEE Signal Process Mag. 2022;39(3):42–62.CrossRef Ericsson L, Gouk H, Loy CC, Hospedales TM. Self-supervised representation learning: introduction, advances, and challenges. IEEE Signal Process Mag. 2022;39(3):42–62.CrossRef
31.
go back to reference Krishnan R, Rajpurkar P, Topol EJ. Self-supervised learning in medicine and healthcare. Nat Biomedical Eng. 2022;6(12):1346–52.CrossRef Krishnan R, Rajpurkar P, Topol EJ. Self-supervised learning in medicine and healthcare. Nat Biomedical Eng. 2022;6(12):1346–52.CrossRef
32.
go back to reference Hatamizadeh A, Nath V, Tang Y, Yang D, Roth HR, Xu D, editors. Swin unetr: swin transformers for semantic segmentation of brain tumors in mri images. International MICCAI Brainlesion Workshop; 2021. Hatamizadeh A, Nath V, Tang Y, Yang D, Roth HR, Xu D, editors. Swin unetr: swin transformers for semantic segmentation of brain tumors in mri images. International MICCAI Brainlesion Workshop; 2021.
33.
go back to reference Tang Y, Yang D, Li W, Roth HR, Landman B, Xu D, et al. editors. Self-supervised pre-training of swin transformers for 3d medical image analysis. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2022. Tang Y, Yang D, Li W, Roth HR, Landman B, Xu D, et al. editors. Self-supervised pre-training of swin transformers for 3d medical image analysis. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2022.
34.
go back to reference Vosoughi H, Momennezhad M, Emami F, Hajizadeh M, Rahmim A, Geramifar P. Multicenter quantitative 18F-fluorodeoxyglucose positron emission tomography performance harmonization: use of hottest voxels towards more robust quantification. Quant Imaging Med Surg. 2023;13(4):2218.CrossRefPubMedPubMedCentral Vosoughi H, Momennezhad M, Emami F, Hajizadeh M, Rahmim A, Geramifar P. Multicenter quantitative 18F-fluorodeoxyglucose positron emission tomography performance harmonization: use of hottest voxels towards more robust quantification. Quant Imaging Med Surg. 2023;13(4):2218.CrossRefPubMedPubMedCentral
35.
go back to reference Leube J, Horn M, Hartrampf PE, Buck AK, Lassmann M, Tran-Gia J. PSMA-PET improves deep learning-based automated CT kidney segmentation. Z Med Phys. 2023. Leube J, Horn M, Hartrampf PE, Buck AK, Lassmann M, Tran-Gia J. PSMA-PET improves deep learning-based automated CT kidney segmentation. Z Med Phys. 2023.
36.
go back to reference Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. editors. Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF international conference on computer vision; 2021. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. editors. Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF international conference on computer vision; 2021.
37.
go back to reference Loshchilov I, Hutter F. Decoupled weight decay regularization. arXiv Preprint arXiv:171105101. 2017. Loshchilov I, Hutter F. Decoupled weight decay regularization. arXiv Preprint arXiv:171105101. 2017.
38.
go back to reference Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, et al. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology. 2019;291(3):781–91.CrossRefPubMed Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, et al. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology. 2019;291(3):781–91.CrossRefPubMed
39.
go back to reference Gafita A, Bieth M, Krönke M, Tetteh G, Navarro F, Wang H, et al. qPSMA: semiautomatic software for whole-body tumor burden assessment in prostate cancer using 68Ga-PSMA11 PET/CT. J Nucl Med. 2019;60(9):1277–83.CrossRefPubMedPubMedCentral Gafita A, Bieth M, Krönke M, Tetteh G, Navarro F, Wang H, et al. qPSMA: semiautomatic software for whole-body tumor burden assessment in prostate cancer using 68Ga-PSMA11 PET/CT. J Nucl Med. 2019;60(9):1277–83.CrossRefPubMedPubMedCentral
40.
go back to reference Johnsson K, Brynolfsson J, Sahlstedt H, Nickols NG, Rettig M, Probst S, et al. Analytical performance of aPROMISE: automated anatomic contextualization, detection, and quantification of [18F] DCFPyL (PSMA) imaging for standardized reporting. Eur J Nucl Med Mol Imaging. 2022;49(3):1041–51.CrossRefPubMed Johnsson K, Brynolfsson J, Sahlstedt H, Nickols NG, Rettig M, Probst S, et al. Analytical performance of aPROMISE: automated anatomic contextualization, detection, and quantification of [18F] DCFPyL (PSMA) imaging for standardized reporting. Eur J Nucl Med Mol Imaging. 2022;49(3):1041–51.CrossRefPubMed
41.
go back to reference Nickols N, Anand A, Johnsson K, Brynolfsson J, Borreli P, Parikh N, et al. aPROMISE: a novel automated PROMISE platform to standardize evaluation of tumor burden in 18F-DCFPyL images of veterans with prostate cancer. J Nucl Med. 2022;63(2):233–9.CrossRefPubMed Nickols N, Anand A, Johnsson K, Brynolfsson J, Borreli P, Parikh N, et al. aPROMISE: a novel automated PROMISE platform to standardize evaluation of tumor burden in 18F-DCFPyL images of veterans with prostate cancer. J Nucl Med. 2022;63(2):233–9.CrossRefPubMed
43.
go back to reference Mora-Ramirez E, Santoro L, Cassol E, Ocampo‐Ramos JC, Clayton N, Kayal G, et al. Comparison of commercial dosimetric software platforms in patients treated with 177Lu‐DOTATATE for peptide receptor radionuclide therapy. Med Phys. 2020;47(9):4602–15.CrossRefPubMed Mora-Ramirez E, Santoro L, Cassol E, Ocampo‐Ramos JC, Clayton N, Kayal G, et al. Comparison of commercial dosimetric software platforms in patients treated with 177Lu‐DOTATATE for peptide receptor radionuclide therapy. Med Phys. 2020;47(9):4602–15.CrossRefPubMed
44.
go back to reference Morgan R, Chin BB, Lanning R. Feasibility of rapid integrated radiation therapy planning with follow-up FDG PET/CT to improve overall treatment assessment in head and neck cancer. Am J Nucl Med Mol Imaging. 2019;9(1):24.PubMedPubMedCentral Morgan R, Chin BB, Lanning R. Feasibility of rapid integrated radiation therapy planning with follow-up FDG PET/CT to improve overall treatment assessment in head and neck cancer. Am J Nucl Med Mol Imaging. 2019;9(1):24.PubMedPubMedCentral
45.
go back to reference Brosch-Lenz J, Yousefirizi F, Zukotynski K, Beauregard J-M, Gaudet V, Saboury B, et al. Role of artificial intelligence in theranostics: toward routine personalized radiopharmaceutical therapies. PET Clin. 2021;16(4):627–41.CrossRefPubMed Brosch-Lenz J, Yousefirizi F, Zukotynski K, Beauregard J-M, Gaudet V, Saboury B, et al. Role of artificial intelligence in theranostics: toward routine personalized radiopharmaceutical therapies. PET Clin. 2021;16(4):627–41.CrossRefPubMed
46.
go back to reference Hennrich U, Eder M. [68Ga] Ga-PSMA-11: the first FDA-approved 68Ga-radiopharmaceutical for PET imaging of prostate cancer. Pharmaceuticals. 2021;14(8):713.CrossRefPubMedPubMedCentral Hennrich U, Eder M. [68Ga] Ga-PSMA-11: the first FDA-approved 68Ga-radiopharmaceutical for PET imaging of prostate cancer. Pharmaceuticals. 2021;14(8):713.CrossRefPubMedPubMedCentral
47.
go back to reference Giesel FL, Hadaschik B, Cardinale J, Radtke J, Vinsensia M, Lehnert W, et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2017;44:678–88.CrossRefPubMed Giesel FL, Hadaschik B, Cardinale J, Radtke J, Vinsensia M, Lehnert W, et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2017;44:678–88.CrossRefPubMed
48.
go back to reference Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging. 2015;15(1):1–28.CrossRef Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging. 2015;15(1):1–28.CrossRef
49.
go back to reference Yousefirizi F, Dubljevic N, Ahamed S, Bloise I, Gowdy C, Farag Y, et al. editors. Convolutional neural network with a hybrid loss function for fully automated segmentation of lymphoma lesions in FDG PET images. Medical Imaging 2022: Image Processing; 2022: SPIE. Yousefirizi F, Dubljevic N, Ahamed S, Bloise I, Gowdy C, Farag Y, et al. editors. Convolutional neural network with a hybrid loss function for fully automated segmentation of lymphoma lesions in FDG PET images. Medical Imaging 2022: Image Processing; 2022: SPIE.
50.
go back to reference Ahamed S, Rahmim A. Generalized dice focal loss trained 3D residual UNet for automated lesion segmentation in whole-body FDG PET/CT images. arXiv preprint arXiv:230913553. 2023. Ahamed S, Rahmim A. Generalized dice focal loss trained 3D residual UNet for automated lesion segmentation in whole-body FDG PET/CT images. arXiv preprint arXiv:230913553. 2023.
51.
go back to reference Peng Y, Kim J, Feng D, Bi L. Automatic tumor segmentation via False Positive Reduction Network for whole-body multi-modal PET/CT images. arXiv preprint arXiv:220907705. 2022. Peng Y, Kim J, Feng D, Bi L. Automatic tumor segmentation via False Positive Reduction Network for whole-body multi-modal PET/CT images. arXiv preprint arXiv:220907705. 2022.
52.
go back to reference Xu Y, Klyuzhin I, Harsini S, Ortiz A, Zhang S, Bénard F, et al. Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss. Comput Biol Med. 2023;158:106882.CrossRefPubMed Xu Y, Klyuzhin I, Harsini S, Ortiz A, Zhang S, Bénard F, et al. Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss. Comput Biol Med. 2023;158:106882.CrossRefPubMed
53.
go back to reference Toosi A, Chausse G, Chen C, Klyuzhin I, Benard F, Rahmim A. Multi-modal, multi-organ deep segmentation of salivary and lacrimal glands in PSMA PET/CT images. Soc Nuclear Med; 2022. Toosi A, Chausse G, Chen C, Klyuzhin I, Benard F, Rahmim A. Multi-modal, multi-organ deep segmentation of salivary and lacrimal glands in PSMA PET/CT images. Soc Nuclear Med; 2022.
54.
go back to reference Klyuzhin I, Chausse G, Bloise I, Ferres JL, Uribe C, Rahmim A. Automated deep segmentation of healthy organs in PSMA PET/CT images. Soc Nuclear Med; 2021. Klyuzhin I, Chausse G, Bloise I, Ferres JL, Uribe C, Rahmim A. Automated deep segmentation of healthy organs in PSMA PET/CT images. Soc Nuclear Med; 2021.
55.
go back to reference Afshar-Oromieh A, Holland-Letz T, Giesel FL, Kratochwil C, Mier W, Haufe S, et al. Diagnostic performance of 68 Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging. 2017;44:1258–68.CrossRefPubMedPubMedCentral Afshar-Oromieh A, Holland-Letz T, Giesel FL, Kratochwil C, Mier W, Haufe S, et al. Diagnostic performance of 68 Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging. 2017;44:1258–68.CrossRefPubMedPubMedCentral
56.
go back to reference Bolton D, Hong A, Papa N, Perera M, Kelly B, Duncan C, et al. Cribriform pattern disease over-represented in pelvic lymph node metastases identified on 68GA PSMA‐PET/CT. BJUI Compass. 2022;3(5):371–6.CrossRefPubMedPubMedCentral Bolton D, Hong A, Papa N, Perera M, Kelly B, Duncan C, et al. Cribriform pattern disease over-represented in pelvic lymph node metastases identified on 68GA PSMA‐PET/CT. BJUI Compass. 2022;3(5):371–6.CrossRefPubMedPubMedCentral
57.
go back to reference Koerber SA, Stach G, Kratochwil C, Haefner MF, Rathke H, Herfarth K, et al. Lymph node involvement in treatment-naïve prostate cancer patients: correlation of PSMA PET/CT imaging and roach formula in 280 men in radiotherapeutic management. J Nucl Med. 2020;61(1):46–50.CrossRefPubMedPubMedCentral Koerber SA, Stach G, Kratochwil C, Haefner MF, Rathke H, Herfarth K, et al. Lymph node involvement in treatment-naïve prostate cancer patients: correlation of PSMA PET/CT imaging and roach formula in 280 men in radiotherapeutic management. J Nucl Med. 2020;61(1):46–50.CrossRefPubMedPubMedCentral
58.
go back to reference Karki K, Saraiya S, Hugo GD, Mukhopadhyay N, Jan N, Schuster J, et al. Variabilities of magnetic resonance imaging–, computed tomography–, and positron emission tomography–computed tomography–based tumor and lymph node delineations for lung cancer radiation therapy planning. Int J Radiation Oncology* Biology* Phys. 2017;99(1):80–9.CrossRef Karki K, Saraiya S, Hugo GD, Mukhopadhyay N, Jan N, Schuster J, et al. Variabilities of magnetic resonance imaging–, computed tomography–, and positron emission tomography–computed tomography–based tumor and lymph node delineations for lung cancer radiation therapy planning. Int J Radiation Oncology* Biology* Phys. 2017;99(1):80–9.CrossRef
59.
go back to reference Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J big Data. 2021;8:1–74.CrossRef Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J big Data. 2021;8:1–74.CrossRef
Metadata
Title
Automated segmentation of lesions and organs at risk on [68Ga]Ga-PSMA-11 PET/CT images using self-supervised learning with Swin UNETR
Authors
Elmira Yazdani
Najme Karamzadeh-Ziarati
Seyyed Saeid Cheshmi
Mahdi Sadeghi
Parham Geramifar
Habibeh Vosoughi
Mahmood Kazemi Jahromi
Saeed Reza Kheradpisheh
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cancer Imaging / Issue 1/2024
Electronic ISSN: 1470-7330
DOI
https://doi.org/10.1186/s40644-024-00675-x

Other articles of this Issue 1/2024

Cancer Imaging 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine