Skip to main content
Top
Published in: BMC Urology 1/2022

Open Access 01-12-2022 | Prostate Cancer | Research

Adjusting the duration of androgen deprivation therapy (ADT) based on nadir PSA for high risk localized prostate cancer patients treated with definitive external beam radiation therapy and ADT

Authors: Zeina Ayoub, Jamal Khader, Muhammad Bulbul, Raja B. Khauli, Therese Y. Andraos, Ali Shamseddine, Deborah Mukherji, Fady B. Geara

Published in: BMC Urology | Issue 1/2022

Login to get access

Abstract

Background

A nadir Prostate-Specific Antigen (nPSA) of 0.06 ng/mL has been shown to be a strong independent predictor of biochemical recurrence-free survival (bRFS) in patients with intermediate or high-risk (HR) prostate cancer treated with definitive external beam radiation therapy (RT) and androgen deprivation therapy (ADT). We aimed to examine the association between the duration of ADT and bRFS in HR localized prostate cancer, based on nPSA.

Methods

Between 1998 and 2015, 204 patients with HR localized prostate cancer were identified. Of them, 157 patients (77.0%) reached the desired nPSA of < 0.06 ng/mL (favorable group), while 47 (23.0%) did not (unfavorable group). Duration of ADT varied among patients depending on physician preference, patient tolerance, and/or compliance. Survival outcomes were calculated using Kaplan–Meier methods and predictors of outcomes using multi-variable cox regression model.

Results

In the favorable group, ADT for at least 12 months lead to superior bRFS compared to ≤ 9 months of ADT (P = 0.036). However, no significant difference was seen when examining the value of receiving ADT beyond 12, 18, or 24 months, respectively. On univariate analysis for bRFS, the use of ADT for at least 12 months was significant (P = 0.012) as well as time to nadir PSA (tnPSA), (≤ 6 vs > 6 months); (P = 0.043). The presenting T stage was borderline significant (HR 3.074; 95% CI 0.972–9.719; P = 0.056), while PSA at presentation, Gleason Score and age were not. On multivariate analysis, the use of ADT for 12 months (P = 0.012) and tnPSA (P = 0.037) remained significant. In the unfavorable group, receiving ADT beyond 9 and 12 months was associated with improved bRFS (P = 0.044 and 0.019, respectively). However, beyond 18 months, there was no significant difference.

Conclusion

In HR localized prostate cancer patients treated with definitive RT and ADT, the total duration of ADT may be adjusted according to treatment response using nPSA. In patients reaching a nPSA below 0.06 ng/mL, a total of 12 months of ADT may be sufficient, while in those not reaching a nPSA below 0.06 ng/mL, a total duration of 18 months is required.
Literature
1.
go back to reference Bolla M, Van Tienhoven G, Warde P, Dubois JB, Mirimanoff RO, Storme G, et al. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol. 2010;11(11):1066–73.CrossRef Bolla M, Van Tienhoven G, Warde P, Dubois JB, Mirimanoff RO, Storme G, et al. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol. 2010;11(11):1066–73.CrossRef
2.
go back to reference Bria E, Cuppone F, Giannarelli D, Milella M, Ruggeri EM, Sperduti I, et al. Does hormone treatment added to radiotherapy improve outcome in locally advanced prostate cancer? Meta-analysis of randomized trials. Cancer. 2009;115(15):3446–56.CrossRef Bria E, Cuppone F, Giannarelli D, Milella M, Ruggeri EM, Sperduti I, et al. Does hormone treatment added to radiotherapy improve outcome in locally advanced prostate cancer? Meta-analysis of randomized trials. Cancer. 2009;115(15):3446–56.CrossRef
3.
go back to reference Pilepich MV, Winter K, Lawton CA, Krisch RE, Wolkov HB, Movsas B, et al. Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma–long-term results of phase III RTOG 85–31. Int J Radiat Oncol Biol Phys. 2005;61(5):1285–90.CrossRef Pilepich MV, Winter K, Lawton CA, Krisch RE, Wolkov HB, Movsas B, et al. Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma–long-term results of phase III RTOG 85–31. Int J Radiat Oncol Biol Phys. 2005;61(5):1285–90.CrossRef
4.
go back to reference Bolla M, de Reijke TM, Van Tienhoven G, Van den Bergh AC, Oddens J, Poortmans PM, et al. Duration of androgen suppression in the treatment of prostate cancer. N Engl J Med. 2009;360(24):2516–27.CrossRef Bolla M, de Reijke TM, Van Tienhoven G, Van den Bergh AC, Oddens J, Poortmans PM, et al. Duration of androgen suppression in the treatment of prostate cancer. N Engl J Med. 2009;360(24):2516–27.CrossRef
5.
go back to reference Denham JW, Joseph D, Lamb DS, Spry NA, Duchesne G, Matthews J, et al. Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): 10-year results from a randomised, phase 3, factorial trial. Lancet Oncol. 2019;20(2):267–81.CrossRef Denham JW, Joseph D, Lamb DS, Spry NA, Duchesne G, Matthews J, et al. Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): 10-year results from a randomised, phase 3, factorial trial. Lancet Oncol. 2019;20(2):267–81.CrossRef
6.
go back to reference Horwitz EM, Bae K, Hanks GE, Porter A, Grignon DJ, Brereton HD, et al. Ten-year follow-up of radiation therapy oncology group protocol 92–02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2008;26(15):2497–504.CrossRef Horwitz EM, Bae K, Hanks GE, Porter A, Grignon DJ, Brereton HD, et al. Ten-year follow-up of radiation therapy oncology group protocol 92–02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2008;26(15):2497–504.CrossRef
7.
go back to reference Nabid A, Carrier N, Martin AG, Bahary JP, Lemaire C, Vass S, et al. Duration of androgen deprivation therapy in high-risk prostate cancer: a randomized phase III trial. Eur Urol. 2018;74(4):432–41.CrossRef Nabid A, Carrier N, Martin AG, Bahary JP, Lemaire C, Vass S, et al. Duration of androgen deprivation therapy in high-risk prostate cancer: a randomized phase III trial. Eur Urol. 2018;74(4):432–41.CrossRef
8.
go back to reference Souhami L, Bae K, Pilepich M, Sandler H. Impact of the duration of adjuvant hormonal therapy in patients with locally advanced prostate cancer treated with radiotherapy: a secondary analysis of RTOG 85–31. J Clin Oncol: Off J Am Soc Clin Oncol. 2009;27(13):2137–43.CrossRef Souhami L, Bae K, Pilepich M, Sandler H. Impact of the duration of adjuvant hormonal therapy in patients with locally advanced prostate cancer treated with radiotherapy: a secondary analysis of RTOG 85–31. J Clin Oncol: Off J Am Soc Clin Oncol. 2009;27(13):2137–43.CrossRef
9.
go back to reference Zapatero A, Guerrero A, Maldonado X, Alvarez A, Gonzalez San Segundo C, Cabeza Rodriguez MA, et al. High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): a randomised, controlled, phase 3 trial. Lancet Oncol. 2015;16(3):320–7.CrossRef Zapatero A, Guerrero A, Maldonado X, Alvarez A, Gonzalez San Segundo C, Cabeza Rodriguez MA, et al. High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): a randomised, controlled, phase 3 trial. Lancet Oncol. 2015;16(3):320–7.CrossRef
10.
go back to reference Kishan AU, Wang X, Seiferheld W, Collette L, Sandler KA, Sandler HM, et al. Association of Gleason grade with androgen deprivation therapy duration and survival outcomes: a systematic review and patient-level meta-analysis. JAMA Oncol. 2019;5(1):91–6.CrossRef Kishan AU, Wang X, Seiferheld W, Collette L, Sandler KA, Sandler HM, et al. Association of Gleason grade with androgen deprivation therapy duration and survival outcomes: a systematic review and patient-level meta-analysis. JAMA Oncol. 2019;5(1):91–6.CrossRef
11.
go back to reference Ahmadi H, Daneshmand S. Androgen deprivation therapy: evidence-based management of side effects. BJU Int. 2013;111(4):543–8.CrossRef Ahmadi H, Daneshmand S. Androgen deprivation therapy: evidence-based management of side effects. BJU Int. 2013;111(4):543–8.CrossRef
12.
go back to reference Keating NL, O’Malley AJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2006;24(27):4448–56.CrossRef Keating NL, O’Malley AJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2006;24(27):4448–56.CrossRef
13.
go back to reference Lapi F, Azoulay L, Niazi MT, Yin H, Benayoun S, Suissa S. Androgen deprivation therapy and risk of acute kidney injury in patients with prostate cancer. JAMA. 2013;310(3):289–96.CrossRef Lapi F, Azoulay L, Niazi MT, Yin H, Benayoun S, Suissa S. Androgen deprivation therapy and risk of acute kidney injury in patients with prostate cancer. JAMA. 2013;310(3):289–96.CrossRef
14.
go back to reference Shahinian VB, Kuo YF, Freeman JL, Goodwin JS. Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med. 2005;352(2):154–64.CrossRef Shahinian VB, Kuo YF, Freeman JL, Goodwin JS. Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med. 2005;352(2):154–64.CrossRef
15.
go back to reference Gaztanaga M, Crook J. Androgen deprivation therapy: minimizing exposure and mitigating side effects. J Natl Comprehene Cancer Network. 2012;10(9):1088–95; quiz , 96. Gaztanaga M, Crook J. Androgen deprivation therapy: minimizing exposure and mitigating side effects. J Natl Comprehene Cancer Network. 2012;10(9):1088–95; quiz , 96.
16.
go back to reference Geara FB, Bulbul M, Khauli RB, Andraos TY, Abboud M, Al Mousa A, et al. Nadir PSA is a strong predictor of treatment outcome in intermediate and high risk localized prostate cancer patients treated by definitive external beam radiotherapy and androgen deprivation. Radiat Oncol. 2017;12(1):149.CrossRef Geara FB, Bulbul M, Khauli RB, Andraos TY, Abboud M, Al Mousa A, et al. Nadir PSA is a strong predictor of treatment outcome in intermediate and high risk localized prostate cancer patients treated by definitive external beam radiotherapy and androgen deprivation. Radiat Oncol. 2017;12(1):149.CrossRef
18.
go back to reference Roach M 3rd, Hanks G, Thames H Jr, Schellhammer P, Shipley WU, Sokol GH, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys. 2006;65(4):965–74.CrossRef Roach M 3rd, Hanks G, Thames H Jr, Schellhammer P, Shipley WU, Sokol GH, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys. 2006;65(4):965–74.CrossRef
19.
go back to reference Jones CU, Hunt D, McGowan DG, Amin MB, Chetner MP, Bruner DW, et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N Engl J Med. 2011;365(2):107–18.CrossRef Jones CU, Hunt D, McGowan DG, Amin MB, Chetner MP, Bruner DW, et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N Engl J Med. 2011;365(2):107–18.CrossRef
20.
go back to reference Alcantara P, Hanlon A, Buyyounouski MK, Horwitz EM, Pollack A. Prostate-specific antigen nadir within 12 months of prostate cancer radiotherapy predicts metastasis and death. Cancer. 2007;109(1):41–7.CrossRef Alcantara P, Hanlon A, Buyyounouski MK, Horwitz EM, Pollack A. Prostate-specific antigen nadir within 12 months of prostate cancer radiotherapy predicts metastasis and death. Cancer. 2007;109(1):41–7.CrossRef
21.
go back to reference D’Amico AV, Chen MH, de Castro M, Loffredo M, Lamb DS, Steigler A, et al. Surrogate endpoints for prostate cancer-specific mortality after radiotherapy and androgen suppression therapy in men with localised or locally advanced prostate cancer: an analysis of two randomised trials. Lancet Oncol. 2012;13(2):189–95.CrossRef D’Amico AV, Chen MH, de Castro M, Loffredo M, Lamb DS, Steigler A, et al. Surrogate endpoints for prostate cancer-specific mortality after radiotherapy and androgen suppression therapy in men with localised or locally advanced prostate cancer: an analysis of two randomised trials. Lancet Oncol. 2012;13(2):189–95.CrossRef
22.
go back to reference Patel MA, Kollmeier M, McBride S, Gorovets D, Varghese M, Chan L, et al. Early biochemical predictors of survival in intermediate and high-risk prostate cancer treated with radiation and androgen deprivation therapy. Radiother Oncol: J Eur Soc Therap Radiol Oncol. 2019;140:34–40.CrossRef Patel MA, Kollmeier M, McBride S, Gorovets D, Varghese M, Chan L, et al. Early biochemical predictors of survival in intermediate and high-risk prostate cancer treated with radiation and androgen deprivation therapy. Radiother Oncol: J Eur Soc Therap Radiol Oncol. 2019;140:34–40.CrossRef
23.
go back to reference Ray ME, Thames HD, Levy LB, Horwitz EM, Kupelian PA, Martinez AA, et al. PSA nadir predicts biochemical and distant failures after external beam radiotherapy for prostate cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys. 2006;64(4):1140–50.CrossRef Ray ME, Thames HD, Levy LB, Horwitz EM, Kupelian PA, Martinez AA, et al. PSA nadir predicts biochemical and distant failures after external beam radiotherapy for prostate cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys. 2006;64(4):1140–50.CrossRef
24.
go back to reference Son CH, Hamstra DA, Feng FY, Liauw SL. High-risk prostate cancer treated with dose-escalated RT: an analysis of hormonal therapy use and duration, and prognostic implications of PSA Nadir </=0.2 to select men for short-term hormonal therapy. Am J Clin Oncol. 2017;40(4):348–52. Son CH, Hamstra DA, Feng FY, Liauw SL. High-risk prostate cancer treated with dose-escalated RT: an analysis of hormonal therapy use and duration, and prognostic implications of PSA Nadir </=0.2 to select men for short-term hormonal therapy. Am J Clin Oncol. 2017;40(4):348–52.
25.
go back to reference Tseng YD, Chen MH, Beard CJ, Martin NE, Orio PF, Loffredo M, et al. Posttreatment prostate specific antigen nadir predicts prostate cancer specific and all cause mortality. J Urol. 2012;187(6):2068–73.CrossRef Tseng YD, Chen MH, Beard CJ, Martin NE, Orio PF, Loffredo M, et al. Posttreatment prostate specific antigen nadir predicts prostate cancer specific and all cause mortality. J Urol. 2012;187(6):2068–73.CrossRef
26.
go back to reference Zelefsky MJ, Shi W, Yamada Y, Kollmeier MA, Cox B, Park J, et al. Postradiotherapy 2-year prostate-specific antigen nadir as a predictor of long-term prostate cancer mortality. Int J Radiat Oncol Biol Phys. 2009;75(5):1350–6.CrossRef Zelefsky MJ, Shi W, Yamada Y, Kollmeier MA, Cox B, Park J, et al. Postradiotherapy 2-year prostate-specific antigen nadir as a predictor of long-term prostate cancer mortality. Int J Radiat Oncol Biol Phys. 2009;75(5):1350–6.CrossRef
27.
go back to reference Critz FA, Levinson AK, Williams WH, Holladay DA, Holladay CT. The PSA nadir that indicates potential cure after radiotherapy for prostate cancer. Urology. 1997;49(3):322–6.CrossRef Critz FA, Levinson AK, Williams WH, Holladay DA, Holladay CT. The PSA nadir that indicates potential cure after radiotherapy for prostate cancer. Urology. 1997;49(3):322–6.CrossRef
28.
go back to reference Malik R, Jani AB, Liauw SL. Prostate-specific antigen halving time while on neoadjuvant androgen deprivation therapy is associated with biochemical control in men treated with radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2011;79(4):1022–8.CrossRef Malik R, Jani AB, Liauw SL. Prostate-specific antigen halving time while on neoadjuvant androgen deprivation therapy is associated with biochemical control in men treated with radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2011;79(4):1022–8.CrossRef
29.
go back to reference Foo M, Lavieri M, Pickles T. Impact of neoadjuvant prostate-specific antigen kinetics on biochemical failure and prostate cancer mortality: results from a prospective patient database. Int J Radiat Oncol Biol Phys. 2013;85(2):385–92.CrossRef Foo M, Lavieri M, Pickles T. Impact of neoadjuvant prostate-specific antigen kinetics on biochemical failure and prostate cancer mortality: results from a prospective patient database. Int J Radiat Oncol Biol Phys. 2013;85(2):385–92.CrossRef
30.
go back to reference Pike LRG, Wu J, Chen MH, Loffredo M, Renshaw AA, Pfail J, et al. Time to prostate-specific antigen nadir and the risk of death from prostate cancer following radiation and androgen deprivation therapy. Urology. 2019;126:145–51.CrossRef Pike LRG, Wu J, Chen MH, Loffredo M, Renshaw AA, Pfail J, et al. Time to prostate-specific antigen nadir and the risk of death from prostate cancer following radiation and androgen deprivation therapy. Urology. 2019;126:145–51.CrossRef
Metadata
Title
Adjusting the duration of androgen deprivation therapy (ADT) based on nadir PSA for high risk localized prostate cancer patients treated with definitive external beam radiation therapy and ADT
Authors
Zeina Ayoub
Jamal Khader
Muhammad Bulbul
Raja B. Khauli
Therese Y. Andraos
Ali Shamseddine
Deborah Mukherji
Fady B. Geara
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2022
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-022-01145-x

Other articles of this Issue 1/2022

BMC Urology 1/2022 Go to the issue