Skip to main content
Top
Published in: Radiation Oncology 1/2022

Open Access 01-12-2022 | Prostate Cancer | Research

Direct comparison of low-dose-rate brachytherapy versus radical prostatectomy using the surgical definition of biochemical recurrence for patients with intermediate-risk prostate cancer

Authors: Hideyasu Tsumura, Nobumichi Tanaka, Tomohiko Oguchi, Takuya Owari, Yasushi Nakai, Isao Asakawa, Kazuyoshi Iijima, Haruaki Kato, Iwao Hashida, Ken-ichi Tabata, Takefumi Satoh, Hiromichi Ishiyama

Published in: Radiation Oncology | Issue 1/2022

Login to get access

Abstract

Background

We compared the oncological outcomes of patients who received seed brachytherapy (SEED-BT) with those who received radical prostatectomy (RP) for intermediate-risk prostate cancer.

Methods

Candidates were patients treated with either SEED-BT (n = 933) or RP (n = 334). One-to-one propensity score matching was performed to adjust the patients’ backgrounds. We compared the biochemical recurrence (BCR)-free rate using the Phoenix definition (prostate-specific antigen [PSA] nadir plus 2 ng/mL) for SEED-BT and the surgical definition (PSA cut-off value of 0.2 ng/mL) for RP. We also directly compared the BCR-free rates using the same PSA cut-off value of 0.2 ng/mL for both SEED-BT and RP.

Results

In the propensity score-matched analysis with 214 pairs, the median follow-up treatment was 96 months (range 1–158 months). Fifty-three patients (24.7%) were treated with combined SEED-BT and external-beam radiotherapy. Forty-three patients (20.0%) received salvage radiotherapy after RP. Comparing the BCR-free rate using the above definitions for SEED-BT and RP showed that SEED-BT yielded a significantly better 8-year BCR-free rate than did RP (87.4% vs. 74.3%, hazard ratio [HR] 0.420, 95% confidence interval [CI] 0.273–0.647). Comparing the 8-year BCR-free rate using the surgical definition for both treatments showed no significant difference between the two treatments (76.7% vs. 74.3%, HR 0.913, 95% CI 0.621–1.341). SEED-BT had a significantly better 8-year salvage hormonal therapy-free rate than did RP (92.0% vs. 85.6%, HR 0.528, 95% CI 0.296–0.942, P = 0.030). The 8-year metastasis-free survival rates (98.5% vs. 99.0%, HR 1.382, 95% CI 0.313–6.083, P = 0.668) and overall survival rates (91.9% vs. 94.6%, HR 1.353, 95% CI 0.690–2.650) did not significantly differ between the treatments.

Conclusions

The BCR-free rates did not significantly differ between patients treated with SEED-BT and those treated with RP for intermediate-risk prostate cancer even when they were directly compared using the surgical definition for BCR. SEED-BT and RP can be adequately compared for oncological outcomes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Preisser F, Cooperberg MR, Crook J, Feng F, Graefen M, Karakiewicz PI, et al. Intermediate-risk prostate cancer: stratification and management. Eur Urol Oncol. 2020;3(3):270–80.CrossRef Preisser F, Cooperberg MR, Crook J, Feng F, Graefen M, Karakiewicz PI, et al. Intermediate-risk prostate cancer: stratification and management. Eur Urol Oncol. 2020;3(3):270–80.CrossRef
2.
go back to reference Grimm P, Billiet I, Bostwick D, Dicker AP, Frank S, Immerzeel J, et al. Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy: results from the Prostate Cancer Results Study Group. BJU Int. 2012;109:22–9.CrossRef Grimm P, Billiet I, Bostwick D, Dicker AP, Frank S, Immerzeel J, et al. Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy: results from the Prostate Cancer Results Study Group. BJU Int. 2012;109:22–9.CrossRef
3.
go back to reference Rodda S, Tyldesley S, Morris WJ, Keyes M, Halperin R, Pai H, et al. ASCENDE-RT: an analysis of treatment-related morbidity for a randomized trial comparing a low-dose-rate brachytherapy boost with a dose-escalated external beam boost for high- and intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2017;98(2):286–95.CrossRef Rodda S, Tyldesley S, Morris WJ, Keyes M, Halperin R, Pai H, et al. ASCENDE-RT: an analysis of treatment-related morbidity for a randomized trial comparing a low-dose-rate brachytherapy boost with a dose-escalated external beam boost for high- and intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2017;98(2):286–95.CrossRef
4.
go back to reference Wilt TJ, Jones KM, Barry MJ, Andriole GL, Culkin D, Wheeler T, et al. Follow-up of prostatectomy versus observation for early prostate cancer. N Engl J Med. 2017;377(2):132–42.CrossRef Wilt TJ, Jones KM, Barry MJ, Andriole GL, Culkin D, Wheeler T, et al. Follow-up of prostatectomy versus observation for early prostate cancer. N Engl J Med. 2017;377(2):132–42.CrossRef
5.
go back to reference Bill-Axelson A, Holmberg L, Garmo H, Taari K, Busch C, Nordling S, et al. Radical prostatectomy or watchful waiting in prostate cancer - 29-year follow-up. N Engl J Med. 2018;379(24):2319–29.CrossRef Bill-Axelson A, Holmberg L, Garmo H, Taari K, Busch C, Nordling S, et al. Radical prostatectomy or watchful waiting in prostate cancer - 29-year follow-up. N Engl J Med. 2018;379(24):2319–29.CrossRef
6.
go back to reference Wallace K, Fleshner N, Jewett M, Basiuk J, Crook J. Impact of a multi-disciplinary patient education session on accrual to a difficult clinical trial: the Toronto experience with the surgical prostatectomy versus interstitial radiation intervention trial. J Clin Oncol. 2006;24(25):4158–62.CrossRef Wallace K, Fleshner N, Jewett M, Basiuk J, Crook J. Impact of a multi-disciplinary patient education session on accrual to a difficult clinical trial: the Toronto experience with the surgical prostatectomy versus interstitial radiation intervention trial. J Clin Oncol. 2006;24(25):4158–62.CrossRef
7.
go back to reference Eccles BK, Cross W, Rosario DJ, Doble A, Parker C, Logue J, et al. SABRE 1 (surgery against brachytherapy—a randomised evaluation): feasibility randomised controlled trial (RCT) of brachytherapy vs radical prostatectomy in low-intermediate risk clinically localised prostate cancer. BJU Int. 2013;112(3):330–7.CrossRef Eccles BK, Cross W, Rosario DJ, Doble A, Parker C, Logue J, et al. SABRE 1 (surgery against brachytherapy—a randomised evaluation): feasibility randomised controlled trial (RCT) of brachytherapy vs radical prostatectomy in low-intermediate risk clinically localised prostate cancer. BJU Int. 2013;112(3):330–7.CrossRef
8.
go back to reference Taussky D, Ouellet V, Delouya G, Saad F. A comparative study of radical prostatectomy and permanent seed brachytherapy for low- and intermediate-risk prostate cancer. Can Urol Assoc J. 2016;10(7–8):246–50.CrossRef Taussky D, Ouellet V, Delouya G, Saad F. A comparative study of radical prostatectomy and permanent seed brachytherapy for low- and intermediate-risk prostate cancer. Can Urol Assoc J. 2016;10(7–8):246–50.CrossRef
9.
go back to reference Goy BW, Burchette R, Soper MS, Chang T, Cosmatos HA. Ten-year treatment outcomes of radical prostatectomy vs external beam radiation therapy vs brachytherapy for 1503 patients with intermediate-risk prostate cancer. Urology. 2019;136:180–9.CrossRef Goy BW, Burchette R, Soper MS, Chang T, Cosmatos HA. Ten-year treatment outcomes of radical prostatectomy vs external beam radiation therapy vs brachytherapy for 1503 patients with intermediate-risk prostate cancer. Urology. 2019;136:180–9.CrossRef
10.
go back to reference Roach M 3rd, Hanks G, Thames H Jr, Schellhammer P, Shipley WU, Sokol GH, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys. 2006;65(4):965–74.CrossRef Roach M 3rd, Hanks G, Thames H Jr, Schellhammer P, Shipley WU, Sokol GH, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys. 2006;65(4):965–74.CrossRef
11.
go back to reference Cookson MS, Aus G, Burnett AL, Canby-Hagino ED, D’Amico AV, Dmochowski RR, et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J Urol. 2007;177(2):540–5.CrossRef Cookson MS, Aus G, Burnett AL, Canby-Hagino ED, D’Amico AV, Dmochowski RR, et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J Urol. 2007;177(2):540–5.CrossRef
12.
go back to reference Gettman MT, Blute ML. Radical prostatectomy: does surgical technique influence margin control? Urol Oncol. 2010;28(2):219–25.CrossRef Gettman MT, Blute ML. Radical prostatectomy: does surgical technique influence margin control? Urol Oncol. 2010;28(2):219–25.CrossRef
13.
go back to reference Tsumura H, Satoh T, Ishiyama H, Tabata K, Kotani S, Minamida S, et al. Comparison of prophylactic naftopidil, tamsulosin, and silodosin for 125I brachytherapy-induced lower urinary tract symptoms in patients with prostate cancer: randomized controlled trial. Int J Radiat Oncol Biol Phys. 2011;81(4):e385–92.CrossRef Tsumura H, Satoh T, Ishiyama H, Tabata K, Kotani S, Minamida S, et al. Comparison of prophylactic naftopidil, tamsulosin, and silodosin for 125I brachytherapy-induced lower urinary tract symptoms in patients with prostate cancer: randomized controlled trial. Int J Radiat Oncol Biol Phys. 2011;81(4):e385–92.CrossRef
14.
go back to reference Tanaka N, Asakawa I, Katayama E, Hirayama A, Hasegawa M, Konishi N, et al. The biochemical recurrence-free rate in patients who underwent prostate low-dose-rate brachytherapy, using two different definitions. Radiat Oncol. 2014;9:107.CrossRef Tanaka N, Asakawa I, Katayama E, Hirayama A, Hasegawa M, Konishi N, et al. The biochemical recurrence-free rate in patients who underwent prostate low-dose-rate brachytherapy, using two different definitions. Radiat Oncol. 2014;9:107.CrossRef
15.
go back to reference Stock RG, Stone NN, Cesaretti JA, Rosenstein BS. Biologically effective dose values for prostate brachytherapy: effects on PSA failure and posttreatment biopsy results. Int J Radiat Oncol Biol Phys. 2006;64(2):527–33.CrossRef Stock RG, Stone NN, Cesaretti JA, Rosenstein BS. Biologically effective dose values for prostate brachytherapy: effects on PSA failure and posttreatment biopsy results. Int J Radiat Oncol Biol Phys. 2006;64(2):527–33.CrossRef
16.
go back to reference Eyjolfsdottir HS, Baumann I, Agahi N, Fritzell J, Lennartsson C. Prolongation of working life and its effect on mortality and health in older adults: propensity score matching. Soc Sci Med. 2019;226:77–86.CrossRef Eyjolfsdottir HS, Baumann I, Agahi N, Fritzell J, Lennartsson C. Prolongation of working life and its effect on mortality and health in older adults: propensity score matching. Soc Sci Med. 2019;226:77–86.CrossRef
17.
go back to reference Chen C, Huang Y, Liu C, Xu Y, Zheng L, Li J. Effects of an interdisciplinary care team on the management of Alzheimer’s Disease in China. J Gerontol Nurs. 2019;45(5):39–45.CrossRef Chen C, Huang Y, Liu C, Xu Y, Zheng L, Li J. Effects of an interdisciplinary care team on the management of Alzheimer’s Disease in China. J Gerontol Nurs. 2019;45(5):39–45.CrossRef
18.
go back to reference Satoh T, Ishiyama H, Matsumoto K, Tsumura H, Kitano M, Hayakawa K, et al. Prostate-specific antigen “bounce” after permanent 125I-implant brachytherapy in Japanese men: a multi-institutional pooled analysis. BJU Int. 2009;103(8):1064–8.CrossRef Satoh T, Ishiyama H, Matsumoto K, Tsumura H, Kitano M, Hayakawa K, et al. Prostate-specific antigen “bounce” after permanent 125I-implant brachytherapy in Japanese men: a multi-institutional pooled analysis. BJU Int. 2009;103(8):1064–8.CrossRef
19.
go back to reference Critz FA, Benton JB, Shrake P, Merlin ML. 25-Year disease-free survival rate after irradiation for prostate cancer calculated with the prostate specific antigen definition of recurrence used for radical prostatectomy. J Urol. 2013;189(3):878–83.CrossRef Critz FA, Benton JB, Shrake P, Merlin ML. 25-Year disease-free survival rate after irradiation for prostate cancer calculated with the prostate specific antigen definition of recurrence used for radical prostatectomy. J Urol. 2013;189(3):878–83.CrossRef
20.
go back to reference Crook JM, Tang C, Thames H, Blanchard P, Sanders J, Ciezki J, et al. A biochemical definition of cure after brachytherapy for prostate cancer. Radiother Oncol. 2020;149:64–9.CrossRef Crook JM, Tang C, Thames H, Blanchard P, Sanders J, Ciezki J, et al. A biochemical definition of cure after brachytherapy for prostate cancer. Radiother Oncol. 2020;149:64–9.CrossRef
21.
go back to reference Morris WJ, Pickles T, Keyes M. Using a surgical prostate-specific antigen threshold of >0.2 ng/mL to define biochemical failure for intermediate- and high-risk prostate cancer patients treated with definitive radiation therapy in the ASCENDE-RT randomized control trial. Brachytherapy. 2018;17(6):837–44.CrossRef Morris WJ, Pickles T, Keyes M. Using a surgical prostate-specific antigen threshold of >0.2 ng/mL to define biochemical failure for intermediate- and high-risk prostate cancer patients treated with definitive radiation therapy in the ASCENDE-RT randomized control trial. Brachytherapy. 2018;17(6):837–44.CrossRef
22.
go back to reference Vesey SG, McCabe JE, Hounsome L, Fowler S. UK radical prostatectomy outcomes and surgeon case volume: based on an analysis of the British Association of Urological Surgeons Complex Operations Database. BJU Int. 2012;109(3):346–54.CrossRef Vesey SG, McCabe JE, Hounsome L, Fowler S. UK radical prostatectomy outcomes and surgeon case volume: based on an analysis of the British Association of Urological Surgeons Complex Operations Database. BJU Int. 2012;109(3):346–54.CrossRef
23.
go back to reference Sooriakumaran P, Srivastava A, Shariat SF, Stricker PD, Ahlering T, Eden CG, et al. A multinational, multi-institutional study comparing positive surgical margin rates among 22393 open, laparoscopic, and robot-assisted radical prostatectomy patients. Eur Urol. 2014;66(3):450–6.CrossRef Sooriakumaran P, Srivastava A, Shariat SF, Stricker PD, Ahlering T, Eden CG, et al. A multinational, multi-institutional study comparing positive surgical margin rates among 22393 open, laparoscopic, and robot-assisted radical prostatectomy patients. Eur Urol. 2014;66(3):450–6.CrossRef
24.
go back to reference Vassil AD, Murphy ES, Reddy CA, Angermeier KW, Altman A, Chehade N, et al. Five year biochemical recurrence free survival for intermediate risk prostate cancer after radical prostatectomy, external beam radiation therapy or permanent seed implantation. Urology. 2010;76(5):1251–7.CrossRef Vassil AD, Murphy ES, Reddy CA, Angermeier KW, Altman A, Chehade N, et al. Five year biochemical recurrence free survival for intermediate risk prostate cancer after radical prostatectomy, external beam radiation therapy or permanent seed implantation. Urology. 2010;76(5):1251–7.CrossRef
25.
go back to reference Koizumi A, Narita S, Nara T, Takayama K, Kanda S, Numakura K, et al. Incidence and location of positive surgical margin among open, laparoscopic and robot-assisted radical prostatectomy in prostate cancer patients: a single institutional analysis. Jpn J Clin Oncol. 2018;48(8):765–70.CrossRef Koizumi A, Narita S, Nara T, Takayama K, Kanda S, Numakura K, et al. Incidence and location of positive surgical margin among open, laparoscopic and robot-assisted radical prostatectomy in prostate cancer patients: a single institutional analysis. Jpn J Clin Oncol. 2018;48(8):765–70.CrossRef
26.
go back to reference Shoji S, Aron M, de Castro Abreu AL, Leslie S, Ahmadi H, Desai MM, et al. Intraoperative ultrasonography with a surgeon-manipulated microtransducer during robotic radical prostatectomy. Int J Urol. 2014;21(7):736–9.CrossRef Shoji S, Aron M, de Castro Abreu AL, Leslie S, Ahmadi H, Desai MM, et al. Intraoperative ultrasonography with a surgeon-manipulated microtransducer during robotic radical prostatectomy. Int J Urol. 2014;21(7):736–9.CrossRef
27.
go back to reference Prestidge BR, Winter K, Sanda MG, Amin M, Bice J, et al. Initial REport of NRG oncology/RTOG 0232: a phase III study comparing combined external beam radiation and transperineal interstitial permanent brachytherapy with brachytherapy alone for selected patients with intermediate risk prostatic carcinoma identification and validation of intrinsic subtypes of prostate cancer. Int J Radiat Oncol Biol Phys. 2016;96:4.CrossRef Prestidge BR, Winter K, Sanda MG, Amin M, Bice J, et al. Initial REport of NRG oncology/RTOG 0232: a phase III study comparing combined external beam radiation and transperineal interstitial permanent brachytherapy with brachytherapy alone for selected patients with intermediate risk prostatic carcinoma identification and validation of intrinsic subtypes of prostate cancer. Int J Radiat Oncol Biol Phys. 2016;96:4.CrossRef
Metadata
Title
Direct comparison of low-dose-rate brachytherapy versus radical prostatectomy using the surgical definition of biochemical recurrence for patients with intermediate-risk prostate cancer
Authors
Hideyasu Tsumura
Nobumichi Tanaka
Tomohiko Oguchi
Takuya Owari
Yasushi Nakai
Isao Asakawa
Kazuyoshi Iijima
Haruaki Kato
Iwao Hashida
Ken-ichi Tabata
Takefumi Satoh
Hiromichi Ishiyama
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2022
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-022-02046-x

Other articles of this Issue 1/2022

Radiation Oncology 1/2022 Go to the issue