Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2021

Open Access 01-12-2021 | Propranolol | Research article

Opposing responses of the rat pulmonary artery and vein to phenylephrine and other agents in vitro

Authors: Li-mei Liao, Li Zhou, Chen-ran Wang, Jian-ying Hu, Yao-jun Lu, Shaoqiang Huang

Published in: BMC Pulmonary Medicine | Issue 1/2021

Login to get access

Abstract

Background

Different from current cognition, our study demonstrated that adrenergic receptors agonist phenylephrine significantly relaxed isolated pulmonary artery but constricted pulmonary veins. Through comparing differences in the effects of commonly used vasoactive drugs on pulmonary artery and veins, the study aimed to improve efficiency and accuracy of isolated pulmonary vascular experiments, and to provide experimental basis for clinical drug use.

Methods

The contractile responses of pulmonary arteries and veins from twelve-week-old Male Sprague-Dawley rats to phenylephrine, arginine vasopressin (AVP), U46619, endothelin-1, and potassium chloride (KCl) were recorded, as well as the relaxation in response to phenylephrine, AVP, acetylcholine. To further explore the mechanism, some vessels was also pre-incubated with adrenergic receptors antagonists propranolol, prazosin and nitric oxide synthesis inhibitor N[gamma]-nitro-L-arginine methyl ester (L-NAME) before addition of the experimental drugs.

Results

Phenylephrine constricted pulmonary veins directly, but constricted pulmonary artery only after incubation with propranolol or/and L-NAME. The pulmonary artery exhibited significant relaxation to AVP with or without L-NAME incubation. AVP more clearly constricted the veins after incubation with L-NAME. Changes in vascular tension also varied from pulmonary artery to veins for KCl stimulation. Different from phenomena presented in veins, acetylcholine did not relax pulmonary artery preconstricted by KCl, U46619, and endothelin-1.

Conclusions

According to the results, phenylephrine, KCl, AVP, and acetylcholine could be used to distinguish pulmonary arteries and pulmonary veins in vitro. This also suggested that the pulmonary arteries and pulmonary veins have great differences in physiology and drug reactivity.
Literature
1.
go back to reference Sheridan BC, McIntyre RJ, Meldrum DR, Fullerton DA. L-arginine attenuates endothelial dysfunction in endotoxin-induced lung injury. Surgery. 1999;125(1):33–40.CrossRef Sheridan BC, McIntyre RJ, Meldrum DR, Fullerton DA. L-arginine attenuates endothelial dysfunction in endotoxin-induced lung injury. Surgery. 1999;125(1):33–40.CrossRef
2.
go back to reference McIntyre RJ, Sheridan B, Agrafojo J, Fullerton DA. Endotoxin differentially impairs cyclic guanosine monophosphate-mediated relaxation in the pulmonary and systemic circulations. Crit Care Med. 1997;25(2):318–23.CrossRef McIntyre RJ, Sheridan B, Agrafojo J, Fullerton DA. Endotoxin differentially impairs cyclic guanosine monophosphate-mediated relaxation in the pulmonary and systemic circulations. Crit Care Med. 1997;25(2):318–23.CrossRef
3.
go back to reference Karpinska O, Baranowska-Kuczko M, Kloza M, Ambroz EE, Kozlowski T, Kasacka I, Malinowska B, Kozlowska H. Activation of CB1 receptors by 2-arachidonoylglycerol attenuates vasoconstriction induced by U46619 and angiotensin II in human and rat pulmonary arteries. Am J Physiol Regul Integr Comp Physiol. 2017;312(6):R883–93.CrossRef Karpinska O, Baranowska-Kuczko M, Kloza M, Ambroz EE, Kozlowski T, Kasacka I, Malinowska B, Kozlowska H. Activation of CB1 receptors by 2-arachidonoylglycerol attenuates vasoconstriction induced by U46619 and angiotensin II in human and rat pulmonary arteries. Am J Physiol Regul Integr Comp Physiol. 2017;312(6):R883–93.CrossRef
4.
go back to reference Absi M, Eid BG, Ashton N, Hart G, Gurney AM. Simvastatin causes pulmonary artery relaxation by blocking smooth muscle ROCK and calcium channels: evidence for an endothelium-independent mechanism. PLoS ONE. 2019;14(8):e220473.CrossRef Absi M, Eid BG, Ashton N, Hart G, Gurney AM. Simvastatin causes pulmonary artery relaxation by blocking smooth muscle ROCK and calcium channels: evidence for an endothelium-independent mechanism. PLoS ONE. 2019;14(8):e220473.CrossRef
5.
go back to reference Lopez-Valverde V, Andersen CU, Laursen BE, Mulvany MJ, Simonsen U. Glibenclamide reveals role for endothelin in hypoxia-induced vasoconstriction in rat intrapulmonary arteries. J Cardiovasc Pharmacol. 2005;46(4):422–9.CrossRef Lopez-Valverde V, Andersen CU, Laursen BE, Mulvany MJ, Simonsen U. Glibenclamide reveals role for endothelin in hypoxia-induced vasoconstriction in rat intrapulmonary arteries. J Cardiovasc Pharmacol. 2005;46(4):422–9.CrossRef
6.
go back to reference Menendez C, Martinez-Caro L, Moreno L, Nin N, Moral-Sanz J, Morales D, Cogolludo A, Esteban A, Lorente JA, Perez-Vizcaino F. Pulmonary vascular dysfunction induced by high tidal volume mechanical ventilation. Crit Care Med. 2013;41(8):e149-55.CrossRef Menendez C, Martinez-Caro L, Moreno L, Nin N, Moral-Sanz J, Morales D, Cogolludo A, Esteban A, Lorente JA, Perez-Vizcaino F. Pulmonary vascular dysfunction induced by high tidal volume mechanical ventilation. Crit Care Med. 2013;41(8):e149-55.CrossRef
7.
go back to reference Lal H, Williams KI, Woodward B. Chronic hypoxia differentially alters the responses of pulmonary arteries and veins to endothelin-1 and other agents. Eur J Pharmacol. 1999;371(1):11–21.CrossRef Lal H, Williams KI, Woodward B. Chronic hypoxia differentially alters the responses of pulmonary arteries and veins to endothelin-1 and other agents. Eur J Pharmacol. 1999;371(1):11–21.CrossRef
8.
go back to reference Chen X, Meroueh M, Mazur G, Rouse E, Hundal KS, Stamatkin CW, Obukhov AG. Phenylephrine, a common cold remedy active ingredient, suppresses uterine contractions through cAMP signalling. Sci Rep. 2018;8(1):11666.CrossRef Chen X, Meroueh M, Mazur G, Rouse E, Hundal KS, Stamatkin CW, Obukhov AG. Phenylephrine, a common cold remedy active ingredient, suppresses uterine contractions through cAMP signalling. Sci Rep. 2018;8(1):11666.CrossRef
9.
go back to reference Zhang W, Shibamoto T, Kuda Y, Ohmukai C, Kurata Y. Pulmonary vasoconstrictive and bronchoconstrictive responses to anaphylaxis are weakened via beta2-adrenoceptor activation by endogenous epinephrine in anesthetized rats. Anesthesiology. 2011;114(3):614–23.CrossRef Zhang W, Shibamoto T, Kuda Y, Ohmukai C, Kurata Y. Pulmonary vasoconstrictive and bronchoconstrictive responses to anaphylaxis are weakened via beta2-adrenoceptor activation by endogenous epinephrine in anesthetized rats. Anesthesiology. 2011;114(3):614–23.CrossRef
10.
go back to reference Currigan DA, Hughes RJA, Wright CE, Angus JA, Soeding PF. Vasoconstrictor Responses to Vasopressor Agents in Human Pulmonary and Radial Arteries: An In Vitro Study. Anesthesiology. 2014;121(5):930–936. Currigan DA, Hughes RJA, Wright CE, Angus JA, Soeding PF. Vasoconstrictor Responses to Vasopressor Agents in Human Pulmonary and Radial Arteries: An In Vitro Study. Anesthesiology. 2014;121(5):930–936.
11.
go back to reference Sohn JT, Ding X, McCune DF, Perez DM, Murray PA. Fentanyl attenuates alpha1B-adrenoceptor-mediated pulmonary artery contraction. Anesthesiology. 2005;103(2):327–34.CrossRef Sohn JT, Ding X, McCune DF, Perez DM, Murray PA. Fentanyl attenuates alpha1B-adrenoceptor-mediated pulmonary artery contraction. Anesthesiology. 2005;103(2):327–34.CrossRef
12.
go back to reference Kane DW, Tesauro T, Koizumi T, Gupta R, Newman JH. Exercise-induced pulmonary vasoconstriction during combined blockade of nitric oxide synthase and beta adrenergic receptors. J Clin Invest. 1994;93(2):677–83.CrossRef Kane DW, Tesauro T, Koizumi T, Gupta R, Newman JH. Exercise-induced pulmonary vasoconstriction during combined blockade of nitric oxide synthase and beta adrenergic receptors. J Clin Invest. 1994;93(2):677–83.CrossRef
13.
go back to reference Tritapepe L, Voci P, Cogliati AA, Pasotti E, Papalia U, Menichetti A. Successful weaning from cardiopulmonary bypass with central venous prostaglandin E1 and left atrial norepinephrine infusion in patients with acute pulmonary hypertension. Crit Care Med. 1999;27(10):2180–3.CrossRef Tritapepe L, Voci P, Cogliati AA, Pasotti E, Papalia U, Menichetti A. Successful weaning from cardiopulmonary bypass with central venous prostaglandin E1 and left atrial norepinephrine infusion in patients with acute pulmonary hypertension. Crit Care Med. 1999;27(10):2180–3.CrossRef
14.
go back to reference Kwak YL, Lee CS, Park YH, Hong YW. The effect of phenylephrine and norepinephrine in patients with chronic pulmonary hypertension*. Anaesthesia. 2002;57(1):9–14.CrossRef Kwak YL, Lee CS, Park YH, Hong YW. The effect of phenylephrine and norepinephrine in patients with chronic pulmonary hypertension*. Anaesthesia. 2002;57(1):9–14.CrossRef
15.
go back to reference Mather S, Dora KA, Sandow SL, Winter P, Garland CJ. Rapid endothelial cell-selective loading of connexin 40 antibody blocks endothelium-derived hyperpolarizing factor dilation in rat small mesenteric arteries. Circ Res. 2005;97(4):399–407.CrossRef Mather S, Dora KA, Sandow SL, Winter P, Garland CJ. Rapid endothelial cell-selective loading of connexin 40 antibody blocks endothelium-derived hyperpolarizing factor dilation in rat small mesenteric arteries. Circ Res. 2005;97(4):399–407.CrossRef
16.
go back to reference Garland CJ, Hiley CR, Dora KA. EDHF: spreading the influence of the endothelium. Br J Pharmacol. 2011;164(3):839–52.CrossRef Garland CJ, Hiley CR, Dora KA. EDHF: spreading the influence of the endothelium. Br J Pharmacol. 2011;164(3):839–52.CrossRef
17.
go back to reference Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH. EDHF: bringing the concepts together. Trends Pharmacol Sci. 2002;23(8):374–80.CrossRef Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH. EDHF: bringing the concepts together. Trends Pharmacol Sci. 2002;23(8):374–80.CrossRef
18.
go back to reference Addison MP, Singh TU, Parida S, Choudhury S, Kasa JK, Sukumaran SV, Darzi SA, Kandasamy K, Singh V, Kumar D, et al. NO synthase inhibition attenuates EDHF-mediated relaxation induced by TRPV4 channel agonist GSK1016790A in the rat pulmonary artery: role of TxA 2. Pharmacol Rep. 2016;68(3). Addison MP, Singh TU, Parida S, Choudhury S, Kasa JK, Sukumaran SV, Darzi SA, Kandasamy K, Singh V, Kumar D, et al. NO synthase inhibition attenuates EDHF-mediated relaxation induced by TRPV4 channel agonist GSK1016790A in the rat pulmonary artery: role of TxA 2. Pharmacol Rep. 2016;68(3).
19.
go back to reference Uttam VSS, Subhashree ST, E P, Ramasamy NRC, Kannan T, Vishakha K, Kumar S. MS: TRPV4 channel activation leads to endothelium-dependent relaxation mediated by nitric oxide and endothelium-derived hyperpolarizing factor in rat pulmonary artery. Pharmacol Res. 2013:78. Uttam VSS, Subhashree ST, E P, Ramasamy NRC, Kannan T, Vishakha K, Kumar S. MS: TRPV4 channel activation leads to endothelium-dependent relaxation mediated by nitric oxide and endothelium-derived hyperpolarizing factor in rat pulmonary artery. Pharmacol Res. 2013:78.
20.
go back to reference Melnyk MI, Ivanova IV, Dryn DO, Prylutskyy YI, Hurmach VV, Platonov M, Al KL, Ritter U, Soloviev AI, Zholos AV. C60 fullerenes selectively inhibit BKCa but not Kv channels in pulmonary artery smooth muscle cells. Nanomedicine UK. 2019;19:1–11.CrossRef Melnyk MI, Ivanova IV, Dryn DO, Prylutskyy YI, Hurmach VV, Platonov M, Al KL, Ritter U, Soloviev AI, Zholos AV. C60 fullerenes selectively inhibit BKCa but not Kv channels in pulmonary artery smooth muscle cells. Nanomedicine UK. 2019;19:1–11.CrossRef
21.
go back to reference Sugawara Y, Mizuno Y, Oku S, Goto T. Effects of vasopressin during a pulmonary hypertensive crisis induced by acute hypoxia in a rat model of pulmonary hypertension. Br J Anaesth. 2019;122(4):437–47.CrossRef Sugawara Y, Mizuno Y, Oku S, Goto T. Effects of vasopressin during a pulmonary hypertensive crisis induced by acute hypoxia in a rat model of pulmonary hypertension. Br J Anaesth. 2019;122(4):437–47.CrossRef
22.
go back to reference Russ RD, Walker BR. Role of nitric oxide in vasopressinergic pulmonary vasodilatation. Am J Physiol. 1992;262(3 Pt 2):H743–7.PubMed Russ RD, Walker BR. Role of nitric oxide in vasopressinergic pulmonary vasodilatation. Am J Physiol. 1992;262(3 Pt 2):H743–7.PubMed
23.
go back to reference Evora PR, Pearson PJ, Schaff HV. Arginine vasopressin induces endothelium-dependent vasodilatation of the pulmonary artery. V1-receptor-mediated production of nitric oxide. Chest. 1993;103(4):1241–5.CrossRef Evora PR, Pearson PJ, Schaff HV. Arginine vasopressin induces endothelium-dependent vasodilatation of the pulmonary artery. V1-receptor-mediated production of nitric oxide. Chest. 1993;103(4):1241–5.CrossRef
24.
go back to reference Russ RD, Resta TC, Walker BR. Pulmonary vasodilatory response to neurohypophyseal peptides in the rat. J Appl Physiol (1985). 1992;73(2):473–8.CrossRef Russ RD, Resta TC, Walker BR. Pulmonary vasodilatory response to neurohypophyseal peptides in the rat. J Appl Physiol (1985). 1992;73(2):473–8.CrossRef
25.
go back to reference Yang Y, Murphy TV, Ella SR, Grayson TH, Haddock R, Hwang YT, Braun AP, Peichun G, Korthuis RJ, Davis MJ, et al. Heterogeneity in function of small artery smooth muscle BKCa: involvement of the beta1-subunit. J Physiol. 2009;587(Pt 12):3025–3044. Yang Y, Murphy TV, Ella SR, Grayson TH, Haddock R, Hwang YT, Braun AP, Peichun G, Korthuis RJ, Davis MJ, et al. Heterogeneity in function of small artery smooth muscle BKCa: involvement of the beta1-subunit.  J Physiol. 2009;587(Pt 12):3025–3044.
26.
go back to reference He-Yun W, Xia-Shi L, Hai-Xia L, Yong-Mei C. Progress in the studies of large-conductance calcium-activated potassium channel openers. Chin Bull Life Sci. 2012;24(10):1141–50. He-Yun W, Xia-Shi L, Hai-Xia L, Yong-Mei C. Progress in the studies of large-conductance calcium-activated potassium channel openers. Chin Bull Life Sci. 2012;24(10):1141–50.
27.
go back to reference Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW. Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature. 2000;407(6806):870–6.CrossRef Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW. Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature. 2000;407(6806):870–6.CrossRef
28.
go back to reference Hayabuchi Y. The action of smooth muscle cell potassium channels in the pathology of pulmonary arterial hypertension. Pediatr Cardiol. 2017;38(1):1–14.CrossRef Hayabuchi Y. The action of smooth muscle cell potassium channels in the pathology of pulmonary arterial hypertension. Pediatr Cardiol. 2017;38(1):1–14.CrossRef
29.
go back to reference Loredana H, Lăcrămioara SI, Cristina O, Simona TE, Veronica L. The importance of EDHF in endothelium-dependent relaxation increases distally in mesenteric arteries depending upon the contracting agent. Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi. 2011;115(1). Loredana H, Lăcrămioara SI, Cristina O, Simona TE, Veronica L. The importance of EDHF in endothelium-dependent relaxation increases distally in mesenteric arteries depending upon the contracting agent. Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi. 2011;115(1).
30.
go back to reference Mirbahar KB, Eyre P. Autonomic and autacoid activity in antigen-sensitized and control ovine pulmonary vein and artery. J Vet Pharmacol Ther. 1982;5(2):137–44.CrossRef Mirbahar KB, Eyre P. Autonomic and autacoid activity in antigen-sensitized and control ovine pulmonary vein and artery. J Vet Pharmacol Ther. 1982;5(2):137–44.CrossRef
31.
go back to reference Gold ME, Wood KS, Byrns RE, Fukuto J, Ignarro LJ. NG-methyl-L-arginine causes endothelium-dependent contraction and inhibition of cyclic GMP formation in artery and vein. Proc Natl Acad Sci U S A. 1990;87(12):4430–4.CrossRef Gold ME, Wood KS, Byrns RE, Fukuto J, Ignarro LJ. NG-methyl-L-arginine causes endothelium-dependent contraction and inhibition of cyclic GMP formation in artery and vein. Proc Natl Acad Sci U S A. 1990;87(12):4430–4.CrossRef
Metadata
Title
Opposing responses of the rat pulmonary artery and vein to phenylephrine and other agents in vitro
Authors
Li-mei Liao
Li Zhou
Chen-ran Wang
Jian-ying Hu
Yao-jun Lu
Shaoqiang Huang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2021
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-021-01558-8

Other articles of this Issue 1/2021

BMC Pulmonary Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.