Skip to main content
Top
Published in: BMC Infectious Diseases 1/2015

Open Access 01-12-2015 | Correspondence

Proficiency testing for bacterial whole genome sequencing: an end-user survey of current capabilities, requirements and priorities

Authors: Jacob Moran-Gilad, Vitali Sintchenko, Susanne Karlsmose Pedersen, William J Wolfgang, James Pettengill, Errol Strain, Rene S Hendriksen, on behalf of the Global Microbial Identifier initiative’s Working Group 4 (GMI-WG4)

Published in: BMC Infectious Diseases | Issue 1/2015

Login to get access

Abstract

The advent of next-generation sequencing (NGS) has revolutionised public health microbiology. Given the potential impact of NGS, it is paramount to ensure standardisation of ‘wet’ laboratory and bioinformatic protocols and promote comparability of methods employed by different laboratories and their outputs. Therefore, one of the ambitious goals of the Global Microbial Identifier (GMI) initiative (http://​www.​globalmicrobiali​dentifier.​org/​) has been to establish a mechanism for inter-laboratory NGS proficiency testing (PT). This report presents findings from the survey recently conducted by Working Group 4 among GMI members in order to ascertain NGS end-use requirements and attitudes towards NGS PT. The survey identified the high professional diversity of laboratories engaged in NGS-based public health projects and the wide range of capabilities within institutions, at a notable range of costs. The priority pathogens reported by respondents reflected the key drivers for NGS use (high burden disease and ‘high profile’ pathogens). The performance of and participation in PT was perceived as important by most respondents. The wide range of sequencing and bioinformatics practices reported by end-users highlights the importance of standardisation and harmonisation of NGS in public health and underpins the use of PT as a means to assuring quality. The findings of this survey will guide the design of the GMI PT program in relation to the spectrum of pathogens included, testing frequency and volume as well as technical requirements. The PT program for external quality assurance will evolve and inform the introduction of NGS into clinical and public health microbiology practice in the post-genomic era.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bertelli C, Greub G. Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clin Microbiol Infect. 2013;19:803–13.CrossRefPubMed Bertelli C, Greub G. Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clin Microbiol Infect. 2013;19:803–13.CrossRefPubMed
2.
go back to reference Long SW, Williams D, Valson C, Cantu CC, Cernoch P, Musser JM, et al. A genomic day in the life of a clinical microbiology laboratory. J Clin Microbiol. 2013;51:1272–7.CrossRefPubMedPubMedCentral Long SW, Williams D, Valson C, Cantu CC, Cernoch P, Musser JM, et al. A genomic day in the life of a clinical microbiology laboratory. J Clin Microbiol. 2013;51:1272–7.CrossRefPubMedPubMedCentral
3.
go back to reference Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nature Rev Genetics. 2012;13:601–12.CrossRef Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nature Rev Genetics. 2012;13:601–12.CrossRef
4.
go back to reference Kupferschmidt K. Epidemiology. Outbreak detectives embrace the genome era. Science. 2011;333:1818–9.CrossRefPubMed Kupferschmidt K. Epidemiology. Outbreak detectives embrace the genome era. Science. 2011;333:1818–9.CrossRefPubMed
5.
go back to reference Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: A retrospective observational study. Lancet Infect Dis. 2013;13:137–46.CrossRefPubMedPubMedCentral Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: A retrospective observational study. Lancet Infect Dis. 2013;13:137–46.CrossRefPubMedPubMedCentral
6.
go back to reference Roetzer A, Diel R, Kohl TA, Rückert C, Nübel U, Blom J, et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: A longitudinal molecular epidemiological study. PLoS Med. 2013;10:e1001387.CrossRefPubMedPubMedCentral Roetzer A, Diel R, Kohl TA, Rückert C, Nübel U, Blom J, et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: A longitudinal molecular epidemiological study. PLoS Med. 2013;10:e1001387.CrossRefPubMedPubMedCentral
7.
go back to reference Sherry NL, Porter JL, Seemann T, Watkins A, Stinear TP, Howden BP. Outbreak investigation using high-throughput genome sequencing within a diagnostic microbiology laboratory. J Clin Microbiol. 2013;51:1396–401.CrossRefPubMedPubMedCentral Sherry NL, Porter JL, Seemann T, Watkins A, Stinear TP, Howden BP. Outbreak investigation using high-throughput genome sequencing within a diagnostic microbiology laboratory. J Clin Microbiol. 2013;51:1396–401.CrossRefPubMedPubMedCentral
8.
go back to reference Maiden M, van Rensburg MJ J, Bray JE, Earle SG, Ford SA, Jolley KA, et al. MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol. 2013;11:728–36.CrossRefPubMedPubMedCentral Maiden M, van Rensburg MJ J, Bray JE, Earle SG, Ford SA, Jolley KA, et al. MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol. 2013;11:728–36.CrossRefPubMedPubMedCentral
10.
go back to reference Köser CU, Ellington MJ, Cartwright EJ, Gillespie SH, Brown NM, Farrington M, et al. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathogens. 2012;8:e1002824.CrossRefPubMedPubMedCentral Köser CU, Ellington MJ, Cartwright EJ, Gillespie SH, Brown NM, Farrington M, et al. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathogens. 2012;8:e1002824.CrossRefPubMedPubMedCentral
11.
go back to reference Dunne Jr WM, Westblade LF, Ford B. Next-generation and whole-genome sequencing in the diagnostic clinical microbiology laboratory. Eur J Clin Microbiol Infect Dis. 2012;31:1719–26.CrossRefPubMed Dunne Jr WM, Westblade LF, Ford B. Next-generation and whole-genome sequencing in the diagnostic clinical microbiology laboratory. Eur J Clin Microbiol Infect Dis. 2012;31:1719–26.CrossRefPubMed
12.
go back to reference Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. New Engl J Med. 2011;364:730–9.CrossRefPubMed Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. New Engl J Med. 2011;364:730–9.CrossRefPubMed
13.
go back to reference Gilmour MW, Graham M, Reimer A, Van Domselaar G. Public health genomics and the new molecular epidemiology of bacterial pathogens. Public Health Genomics. 2013;16:25–30.CrossRefPubMed Gilmour MW, Graham M, Reimer A, Van Domselaar G. Public health genomics and the new molecular epidemiology of bacterial pathogens. Public Health Genomics. 2013;16:25–30.CrossRefPubMed
14.
go back to reference Aarestrup FM, Brown EW, Detter C, Gerner-Smidt P, Gilmour MW, Harmsen D, et al. Integrating genome-based informatics to modernize global disease monitoring, information sharing, and response. Emerg Infect Dis. 2012;18:e1.CrossRefPubMedPubMedCentral Aarestrup FM, Brown EW, Detter C, Gerner-Smidt P, Gilmour MW, Harmsen D, et al. Integrating genome-based informatics to modernize global disease monitoring, information sharing, and response. Emerg Infect Dis. 2012;18:e1.CrossRefPubMedPubMedCentral
16.
go back to reference Gargis AS, Kalman L, Berry MW, Bick DP, Dimmock DP, Hambuch T, et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol. 2012;30:1033–6.CrossRefPubMed Gargis AS, Kalman L, Berry MW, Bick DP, Dimmock DP, Hambuch T, et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol. 2012;30:1033–6.CrossRefPubMed
17.
go back to reference Underwood AP, Dallman T, Thomson NR, Williams M, Harker K, Perry N, et al. Public health value of next-generation DNA sequencing of enterohaemorrhagic Escherichia coli isolates from an outbreak. J Clin Microbiol. 2013;51:232–7.CrossRefPubMedPubMedCentral Underwood AP, Dallman T, Thomson NR, Williams M, Harker K, Perry N, et al. Public health value of next-generation DNA sequencing of enterohaemorrhagic Escherichia coli isolates from an outbreak. J Clin Microbiol. 2013;51:232–7.CrossRefPubMedPubMedCentral
18.
go back to reference Leekitcharoenphon P, Nielsen EM, Kaas RS, Lund O, Aarestrup FM. Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. PLoS One. 2014;2:e87991.CrossRef Leekitcharoenphon P, Nielsen EM, Kaas RS, Lund O, Aarestrup FM. Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. PLoS One. 2014;2:e87991.CrossRef
19.
go back to reference Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. 2014;52:1501–10.CrossRefPubMedPubMedCentral Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. 2014;52:1501–10.CrossRefPubMedPubMedCentral
20.
go back to reference Gullapalli RR, Desai KV, Santana-Santos L, Kant JA, Becich MJ. Next generation sequencing in clinical medicine: Challenges and lessons for pathology and biomedical informatics. J Pathol Inform. 2012;3:40.CrossRefPubMedPubMedCentral Gullapalli RR, Desai KV, Santana-Santos L, Kant JA, Becich MJ. Next generation sequencing in clinical medicine: Challenges and lessons for pathology and biomedical informatics. J Pathol Inform. 2012;3:40.CrossRefPubMedPubMedCentral
21.
go back to reference Wyres KL, Conway CC, Garg S, Queiroz C, Reumann M, Holt K, et al. WGS Analysis and interpretation in clinical and public health microbiology laboratories: what are the requirements and how do existing tools compare? Pathogens. 2014;3:437–58.CrossRefPubMedPubMedCentral Wyres KL, Conway CC, Garg S, Queiroz C, Reumann M, Holt K, et al. WGS Analysis and interpretation in clinical and public health microbiology laboratories: what are the requirements and how do existing tools compare? Pathogens. 2014;3:437–58.CrossRefPubMedPubMedCentral
Metadata
Title
Proficiency testing for bacterial whole genome sequencing: an end-user survey of current capabilities, requirements and priorities
Authors
Jacob Moran-Gilad
Vitali Sintchenko
Susanne Karlsmose Pedersen
William J Wolfgang
James Pettengill
Errol Strain
Rene S Hendriksen
on behalf of the Global Microbial Identifier initiative’s Working Group 4 (GMI-WG4)
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2015
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-015-0902-3

Other articles of this Issue 1/2015

BMC Infectious Diseases 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine