Skip to main content
Top
Published in: Angiogenesis 1/2013

01-01-2013 | Original Paper

Prodrug of green tea epigallocatechin-3-gallate (Pro-EGCG) as a potent anti-angiogenesis agent for endometriosis in mice

Authors: Chi Chiu Wang, Hui Xu, Gene Chi Wai Man, Tao Zhang, Kai On Chu, Ching Yan Chu, Jimmy Tin Yan Cheng, Gang Li, Yi Xin He, Ling Qin, Tat San Lau, Joseph Kwong, Tak Hang Chan

Published in: Angiogenesis | Issue 1/2013

Login to get access

Abstract

Green tea epigallocatechin-3-gallate (EGCG) can inhibit angiogenesis and development of an experimental endometriosis model in mice, but it suffers from poor bioavailability. A prodrug of EGCG (pro-EGCG, EGCG octaacetate) is utilized to enhance the stability and bioavailability of EGCG in vivo. In this study, the potential of pro-EGCG as a potent anti-angiogenesis agent for endometriosis in mice was investigated. Homologous endometrium was subcutaneously transplanted into mice to receive either saline, vitamin E, EGCG or pro-EGCG treatment for 4 weeks. The growth of the endometrial implants were monitored by IVIS® non-invasive in vivo imaging during the interventions. Angiogenesis of the endometriotic lesions was determined by Cellvizio® in vivo imaging and SCANCO® Microfil microtomography. The bioavailability, anti-oxidation and anti-angiogenesis capacities of the treatments were measured in plasma and lesions. The implants with adjacent outer subcutaneous and inner abdominal muscle layers were collected for histological, microvessel and apoptosis examinations. The result showed that EGCG and pro-EGCG significantly decreased the growth of endometrial implants from the 2nd week to the 4th week of intervention. EGCG and pro-EGCG significantly reduced the lesion size and weight, inhibited functional and structural microvessels in the lesions, and enhanced lesion apoptosis at the end of interventions. The inhibition by pro-EGCG in all the angiogenesis parameters was significantly greater than that by EGCG, and pro-EGCG also had better bioavailability and greater anti-oxidation and anti-angiogenesis capacities than EGCG. Ovarian follicles and uterine endometrial glands were not affected by either EGCG or pro-EGCG. Vitamin E had no effect on endometriosis. In conclusion, pro-EGCG significantly inhibited the development, growth and angiogenesis of experimental endometriosis in mice with high efficacy, bioavailability, anti-oxidation and anti-angiogenesis capacities. Pro-EGCG could be a potent anti-angiogenesis agent for endometriosis.
Literature
1.
3.
go back to reference Taylor RN, Lebovic DI, Mueller MD (2002) Angiogenic factors in endometriosis. Ann N Y Acad Sci 955:89–100PubMedCrossRef Taylor RN, Lebovic DI, Mueller MD (2002) Angiogenic factors in endometriosis. Ann N Y Acad Sci 955:89–100PubMedCrossRef
4.
go back to reference Groothuis PG, Nap AW, Winterhager E, Grümmer R (2005) Vascular development in endometriosis. Angiogenesis 8:147–156PubMedCrossRef Groothuis PG, Nap AW, Winterhager E, Grümmer R (2005) Vascular development in endometriosis. Angiogenesis 8:147–156PubMedCrossRef
5.
go back to reference Nisolle M, Casanas-Roux F, Anaf V, Mine JM, Donnez J (1993) Morphometric study of the stromal vascularization in peritoneal endometriosis. Fertil Steril 59:681–684PubMed Nisolle M, Casanas-Roux F, Anaf V, Mine JM, Donnez J (1993) Morphometric study of the stromal vascularization in peritoneal endometriosis. Fertil Steril 59:681–684PubMed
6.
go back to reference Becker CM, Rohwer N, Funakoshi T, Cramer T, Bernhardt W, Birsner A, Folkman J, D’Amato RJ (2008) 2-Methoxyestradiol inhibits hypoxia-inducible factor-1α and suppresses growth of lesions in a mouse model of endometriosis. Am J Pathol 172:534–544PubMedCrossRef Becker CM, Rohwer N, Funakoshi T, Cramer T, Bernhardt W, Birsner A, Folkman J, D’Amato RJ (2008) 2-Methoxyestradiol inhibits hypoxia-inducible factor-1α and suppresses growth of lesions in a mouse model of endometriosis. Am J Pathol 172:534–544PubMedCrossRef
7.
go back to reference Xu H, Lui WT, Chu CY, Ng PS, Wang CC, Rogers MS (2009) Anti-angiogenic effects of green tea catechin on an experimental endometriosis mouse model. Hum Reprod 24:608–618PubMedCrossRef Xu H, Lui WT, Chu CY, Ng PS, Wang CC, Rogers MS (2009) Anti-angiogenic effects of green tea catechin on an experimental endometriosis mouse model. Hum Reprod 24:608–618PubMedCrossRef
8.
go back to reference Hull ML, Charnock-Jones DS, Chan CL, Bruner-Tran KL, Osteen KG, Tom BD, Fan TP, Smith SK (2003) Antiangiogenic agents are effective inhibitors of endometriosis. J Clin Endocrinol Metab 88:2889–2899PubMedCrossRef Hull ML, Charnock-Jones DS, Chan CL, Bruner-Tran KL, Osteen KG, Tom BD, Fan TP, Smith SK (2003) Antiangiogenic agents are effective inhibitors of endometriosis. J Clin Endocrinol Metab 88:2889–2899PubMedCrossRef
9.
go back to reference Heiss ML, Heiss RJ (ed) The story of tea, Ten Speed Press, Berkeley, 2007 Heiss ML, Heiss RJ (ed) The story of tea, Ten Speed Press, Berkeley, 2007
10.
go back to reference Yamamoto T (ed) Chemistry and applications of green tea, CRC Press, Boca Raton, 1997 Yamamoto T (ed) Chemistry and applications of green tea, CRC Press, Boca Raton, 1997
11.
go back to reference Nagle DG, Ferreira D, Zhou YD (2006) Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry 67:1849–1855PubMedCrossRef Nagle DG, Ferreira D, Zhou YD (2006) Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry 67:1849–1855PubMedCrossRef
13.
go back to reference Xu H, Becker CM, Lui WT, Chu CY, Davis TN, Kung AL, Birsner AE, D’Amato RJ, Wai Man GC, Wang CC (2011) Green tea epigallocatechin-3-gallate inhibits angiogenesis and suppresses vascular endothelial growth factor C/vascular endothelial growth factor receptor 2 expression and signaling in experimental endometriosis in vivo. Fertil Steril 96:1021–1028PubMedCrossRef Xu H, Becker CM, Lui WT, Chu CY, Davis TN, Kung AL, Birsner AE, D’Amato RJ, Wai Man GC, Wang CC (2011) Green tea epigallocatechin-3-gallate inhibits angiogenesis and suppresses vascular endothelial growth factor C/vascular endothelial growth factor receptor 2 expression and signaling in experimental endometriosis in vivo. Fertil Steril 96:1021–1028PubMedCrossRef
14.
go back to reference Chen Z, Zhu QY, Tsang D, Huang Y (2001) Degradation of green tea catechins in tea drinks. J Agric Food Chem 49:477–482PubMedCrossRef Chen Z, Zhu QY, Tsang D, Huang Y (2001) Degradation of green tea catechins in tea drinks. J Agric Food Chem 49:477–482PubMedCrossRef
15.
go back to reference Lam WH, Kazi A, Kuhn DJ, Chow LM, Chan AS, Dou QP, Chan TH (2004) A potential prodrug for a green tea polyphenol proteasome inhibitor: evaluation of the peracetate ester of (-)-epigallocatechin gallate [(-)-EGCG]. Bioorg Med Chem 12:5587–5593PubMedCrossRef Lam WH, Kazi A, Kuhn DJ, Chow LM, Chan AS, Dou QP, Chan TH (2004) A potential prodrug for a green tea polyphenol proteasome inhibitor: evaluation of the peracetate ester of (-)-epigallocatechin gallate [(-)-EGCG]. Bioorg Med Chem 12:5587–5593PubMedCrossRef
16.
go back to reference Nap AW, Griffioen AW, Dunselman GAJ, Bouma-Ter Steege JCA, Tijssen VJL, Evers JLH, Groothuis PG (2004) Antiangiogenesis therapy for endometriosis. J Clin Endocrinol Metab 89:1089–1095PubMedCrossRef Nap AW, Griffioen AW, Dunselman GAJ, Bouma-Ter Steege JCA, Tijssen VJL, Evers JLH, Groothuis PG (2004) Antiangiogenesis therapy for endometriosis. J Clin Endocrinol Metab 89:1089–1095PubMedCrossRef
17.
go back to reference Bruner-Tran KL, Osteen KG, Duleba AJ (2009) Simvastatin protects against the development of endometriosis in a nude mouse model. J Clin Endocrinol Metab 94:2489–2494PubMedCrossRef Bruner-Tran KL, Osteen KG, Duleba AJ (2009) Simvastatin protects against the development of endometriosis in a nude mouse model. J Clin Endocrinol Metab 94:2489–2494PubMedCrossRef
18.
go back to reference Sang S, Lambert JD, Hong J, Tian S, Lee MJ, Stark RE, Ho CT, Yang CS (2005) Synthesis and structure identification of thiol conjugates of (-)-epigallocatechin gallate and their urinary levels in mice. Chem Res Toxicol 18:1762–1769PubMedCrossRef Sang S, Lambert JD, Hong J, Tian S, Lee MJ, Stark RE, Ho CT, Yang CS (2005) Synthesis and structure identification of thiol conjugates of (-)-epigallocatechin gallate and their urinary levels in mice. Chem Res Toxicol 18:1762–1769PubMedCrossRef
19.
go back to reference Villayandre BM, Paniagua MA, Fernandez-Lopez A, Chinchetrua MA, Calvo P (2004) Effect of vitamin E treatment on N-methyl-d-aspartate receptor at different ages in the rat brain. Brain Res 1028:148–155CrossRef Villayandre BM, Paniagua MA, Fernandez-Lopez A, Chinchetrua MA, Calvo P (2004) Effect of vitamin E treatment on N-methyl-d-aspartate receptor at different ages in the rat brain. Brain Res 1028:148–155CrossRef
20.
go back to reference Song C, Xiang J, Tang J, Hirst DG, Zhou J, Chan KM, Li G (2011) Thymidine kinase gene modified bone marrow mesenchymal stem cells as vehicles for antitumor therapy. Hum Gene Ther 22:439–449PubMedCrossRef Song C, Xiang J, Tang J, Hirst DG, Zhou J, Chan KM, Li G (2011) Thymidine kinase gene modified bone marrow mesenchymal stem cells as vehicles for antitumor therapy. Hum Gene Ther 22:439–449PubMedCrossRef
21.
go back to reference Sun MH, Leung KS, Zheng YP, Huang YP, Wang LK, Qin L, Leung AH, Chow SK, Cheung WH (2012) Three-dimensional high frequency power Doppler ultrasonography for the assessment of microvasculature during fracture healing in a rat model. J Orthop Res 30:137–143PubMedCrossRef Sun MH, Leung KS, Zheng YP, Huang YP, Wang LK, Qin L, Leung AH, Chow SK, Cheung WH (2012) Three-dimensional high frequency power Doppler ultrasonography for the assessment of microvasculature during fracture healing in a rat model. J Orthop Res 30:137–143PubMedCrossRef
22.
go back to reference Chu KO, Wang CC, Chu CY, Rogers MS, Choy KW, Pang CP (2004) Method for determination of catechins and catechin gallates in tissues by HPLC with coulometric array detection and selective solid-phase extraction. J Chromat B 810:187–195 Chu KO, Wang CC, Chu CY, Rogers MS, Choy KW, Pang CP (2004) Method for determination of catechins and catechin gallates in tissues by HPLC with coulometric array detection and selective solid-phase extraction. J Chromat B 810:187–195
23.
go back to reference Chu KO, Wang CC, Rogers MS, Choy KW, Pang CP (2004) Determination of catechins and catechin gallates in biological fluids by liquid chromatography with coulometric array detection and solid-phase extraction. Anal Chim Acta 510:69–76CrossRef Chu KO, Wang CC, Rogers MS, Choy KW, Pang CP (2004) Determination of catechins and catechin gallates in biological fluids by liquid chromatography with coulometric array detection and solid-phase extraction. Anal Chim Acta 510:69–76CrossRef
24.
go back to reference Wang CC, Chu CY, Chu KO, Choy KW, Rogers MS, Khaw KS, Pang CP (2004) Trolox-equivalent antioxidant capacity (TEAC) assay versus oxygen radical absorbance capacity (ORAC) assay in plasma. Clin Chem 50:952–954PubMedCrossRef Wang CC, Chu CY, Chu KO, Choy KW, Rogers MS, Khaw KS, Pang CP (2004) Trolox-equivalent antioxidant capacity (TEAC) assay versus oxygen radical absorbance capacity (ORAC) assay in plasma. Clin Chem 50:952–954PubMedCrossRef
25.
go back to reference Graham HN (1992) Green tea composition, consumption and polyphenol chemistry. Preventive Med 21:334–350CrossRef Graham HN (1992) Green tea composition, consumption and polyphenol chemistry. Preventive Med 21:334–350CrossRef
26.
go back to reference Lea CH, Swoboda PAT (1957) The antioxidant action of some polyphenolic constituents of tea. Chem Ind 1073–1074 Lea CH, Swoboda PAT (1957) The antioxidant action of some polyphenolic constituents of tea. Chem Ind 1073–1074
27.
go back to reference Zhu QY, Zhang A, Tsang D, Huang Y, Chen ZY (1997) Stability of green tea catechins. J Agric Food Chem 45:4624–4628CrossRef Zhu QY, Zhang A, Tsang D, Huang Y, Chen ZY (1997) Stability of green tea catechins. J Agric Food Chem 45:4624–4628CrossRef
28.
go back to reference Lambert JD, Sang S, Hong J, Kwon SJ, Lee MJ, Ho CT, Yang CS (2006) Peracetylation as a means of enhancing in vitro bioactivity and bioavailability of epigallocatechin-3-gallate. Drug Metab Dispos 34:2111–2116PubMedCrossRef Lambert JD, Sang S, Hong J, Kwon SJ, Lee MJ, Ho CT, Yang CS (2006) Peracetylation as a means of enhancing in vitro bioactivity and bioavailability of epigallocatechin-3-gallate. Drug Metab Dispos 34:2111–2116PubMedCrossRef
29.
go back to reference Fassina G, Vene R, Morini M, Minghelli S, Benelli R, Noonan DM, Albini A (2004) Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clin Cancer Res 10:4865–4873PubMedCrossRef Fassina G, Vene R, Morini M, Minghelli S, Benelli R, Noonan DM, Albini A (2004) Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clin Cancer Res 10:4865–4873PubMedCrossRef
30.
go back to reference Liao J, Yang GY, Park ES, Meng X, Sun Y, Jia D, Seril DN, Yang CS (2004) Inhibition of lung carcinogenesis and effects on angiogenesis and apoptosis in A/J mice by oral administration of green tea. Nutr Cancer 48:44–53PubMedCrossRef Liao J, Yang GY, Park ES, Meng X, Sun Y, Jia D, Seril DN, Yang CS (2004) Inhibition of lung carcinogenesis and effects on angiogenesis and apoptosis in A/J mice by oral administration of green tea. Nutr Cancer 48:44–53PubMedCrossRef
31.
go back to reference Lamy S, Gingras D, Beliveau R (2002) Green teas catechins inhibit vascular endothelial growth factor receptor phosphorylation. Cancer Res 62:381–385PubMed Lamy S, Gingras D, Beliveau R (2002) Green teas catechins inhibit vascular endothelial growth factor receptor phosphorylation. Cancer Res 62:381–385PubMed
32.
go back to reference Kojima-Yuasa A, Hua JJ, Kennedy DO, Matsui-Yuasa I (2003) Green tea extract inhibits angiogenesis of human umbilical vein endothelial cells through reduction of expression of VEGF receptors. Life Sci 73:1299–1313PubMedCrossRef Kojima-Yuasa A, Hua JJ, Kennedy DO, Matsui-Yuasa I (2003) Green tea extract inhibits angiogenesis of human umbilical vein endothelial cells through reduction of expression of VEGF receptors. Life Sci 73:1299–1313PubMedCrossRef
33.
go back to reference Kondo T, Ohta T, Igura K, Hara Y, Kaji K (2002) Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding. Cancer Lett 180:139–144PubMedCrossRef Kondo T, Ohta T, Igura K, Hara Y, Kaji K (2002) Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding. Cancer Lett 180:139–144PubMedCrossRef
34.
go back to reference Jung YD, Kim MS, Shin BA, Chay KO, Ahn BW, Liu W, Bucana CD, Gallick GE, Ellis LM (2001) EGCG, a major component of green tea, inhibits tumor growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer 84:844–850PubMedCrossRef Jung YD, Kim MS, Shin BA, Chay KO, Ahn BW, Liu W, Bucana CD, Gallick GE, Ellis LM (2001) EGCG, a major component of green tea, inhibits tumor growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer 84:844–850PubMedCrossRef
35.
go back to reference Sartippour MR, Shao ZM, Heber D, Beatty P, Zhang L, Liu C, Ellis L, Liu W, Go VL, Brooks MN (2002) Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J Nutr 132:2307–2311PubMed Sartippour MR, Shao ZM, Heber D, Beatty P, Zhang L, Liu C, Ellis L, Liu W, Go VL, Brooks MN (2002) Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J Nutr 132:2307–2311PubMed
36.
go back to reference Lee SC, Chan WK, Lee TW, Lam WH, Wang X, Chan TH, Wong YC (2008) Effect of a prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate on the growth of androgen-independent prostate cancer in vivo. Nutr Cancer 60:483–491PubMedCrossRef Lee SC, Chan WK, Lee TW, Lam WH, Wang X, Chan TH, Wong YC (2008) Effect of a prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate on the growth of androgen-independent prostate cancer in vivo. Nutr Cancer 60:483–491PubMedCrossRef
37.
go back to reference Kuhn D, Lam WH, Kazi A, Daniel KG, Song S, Chow LM, Chan TH, Dou QP (2005) Synthetic peracetate tea polyphenols as potent proteasome inhibitors and apoptosis inducers in human cancer cells. Front Biosci 10:1010–1023PubMedCrossRef Kuhn D, Lam WH, Kazi A, Daniel KG, Song S, Chow LM, Chan TH, Dou QP (2005) Synthetic peracetate tea polyphenols as potent proteasome inhibitors and apoptosis inducers in human cancer cells. Front Biosci 10:1010–1023PubMedCrossRef
38.
go back to reference Becker CM, Wright RD, Satchi-Fainaro R, Funakoshi T, Folkman J, Kung AL, D’Amato RJ (2006) A novel noninvasive model of endometriosis for monitoring the efficacy of antiangiogenesi therapy. Am J Pathol 168:2074–2084PubMedCrossRef Becker CM, Wright RD, Satchi-Fainaro R, Funakoshi T, Folkman J, Kung AL, D’Amato RJ (2006) A novel noninvasive model of endometriosis for monitoring the efficacy of antiangiogenesi therapy. Am J Pathol 168:2074–2084PubMedCrossRef
39.
40.
go back to reference Xu H, Wang CC (2010) Angiogenesis and anti-angiogenesis therapy of endometriosis. In: Mitchell LA (ed) Endometriosis: symptoms, diagnosis and treatments, Chapter 1. Nova Science, New York, pp 1–40 Xu H, Wang CC (2010) Angiogenesis and anti-angiogenesis therapy of endometriosis. In: Mitchell LA (ed) Endometriosis: symptoms, diagnosis and treatments, Chapter 1. Nova Science, New York, pp 1–40
41.
go back to reference Dabrosin C, Gyorffy S, Margetts P, Ross C, Gauldie J (2002) Therapeutic effect of angiostatin gene transfer in a murine model of endometriosis. Am J Pathol 161:909–918PubMedCrossRef Dabrosin C, Gyorffy S, Margetts P, Ross C, Gauldie J (2002) Therapeutic effect of angiostatin gene transfer in a murine model of endometriosis. Am J Pathol 161:909–918PubMedCrossRef
42.
go back to reference Yagyu T, Kobayashi H, Matsuzaki H, Wakahara K, Kondo T, Kurita N, Sekino H, Inagaki K, Suzuki M, Kanayama N, Terao T (2005) Thalidomide inhibits tumor necrosis factor-alpha-induced interleukin-8 expression in endometriotic stromal cells, possibly through suppression of nuclear factor-kappaB activation. J Clin Endocrinol Metab 90:3017–3021PubMedCrossRef Yagyu T, Kobayashi H, Matsuzaki H, Wakahara K, Kondo T, Kurita N, Sekino H, Inagaki K, Suzuki M, Kanayama N, Terao T (2005) Thalidomide inhibits tumor necrosis factor-alpha-induced interleukin-8 expression in endometriotic stromal cells, possibly through suppression of nuclear factor-kappaB activation. J Clin Endocrinol Metab 90:3017–3021PubMedCrossRef
43.
go back to reference Scarpellini F, Sbracia M, Lecchini S, Scarpellini L (2002) Anti-angiogenesis treatment with thalidomide in endometriosis: a pilot study. Fertil Steril 78:S87CrossRef Scarpellini F, Sbracia M, Lecchini S, Scarpellini L (2002) Anti-angiogenesis treatment with thalidomide in endometriosis: a pilot study. Fertil Steril 78:S87CrossRef
44.
45.
go back to reference Klauber N, Rohan RM, Flynn E, D’Amato RJ (1997) Critical components of the female reproductive pathway are suppressed by the angiogenesis inhibitor AGM-1470. Nat Med 3:443–446PubMedCrossRef Klauber N, Rohan RM, Flynn E, D’Amato RJ (1997) Critical components of the female reproductive pathway are suppressed by the angiogenesis inhibitor AGM-1470. Nat Med 3:443–446PubMedCrossRef
46.
go back to reference Becker CM, Sampson DA, Rupnick MA, Rohan RM, Efstathiou JA, Short SM, Taylor GA, Folkman J, D’Amato RJ (2005) Endostatin inhibits the growth of endometriotic lesions but does not affect fertility. Fertil Steril 84(Suppl 2):1144–1155PubMedCrossRef Becker CM, Sampson DA, Rupnick MA, Rohan RM, Efstathiou JA, Short SM, Taylor GA, Folkman J, D’Amato RJ (2005) Endostatin inhibits the growth of endometriotic lesions but does not affect fertility. Fertil Steril 84(Suppl 2):1144–1155PubMedCrossRef
47.
go back to reference Kazi A, Wang Z, Kumar N, Falsetti SC, Chan TH, Dou QP (2004) Structure-activity relationships of synthetic analogs of (-)-epigallocatechin-3-gallate as proteasome inhibitors. Anticancer Res 24:943–954PubMed Kazi A, Wang Z, Kumar N, Falsetti SC, Chan TH, Dou QP (2004) Structure-activity relationships of synthetic analogs of (-)-epigallocatechin-3-gallate as proteasome inhibitors. Anticancer Res 24:943–954PubMed
48.
go back to reference Cao YH, Cao RH, Bråkenhielm E (2002) Antiangiogenic mechanisms of diet-derived polyphenols. J Nutr Biochem 13:380–390PubMedCrossRef Cao YH, Cao RH, Bråkenhielm E (2002) Antiangiogenic mechanisms of diet-derived polyphenols. J Nutr Biochem 13:380–390PubMedCrossRef
Metadata
Title
Prodrug of green tea epigallocatechin-3-gallate (Pro-EGCG) as a potent anti-angiogenesis agent for endometriosis in mice
Authors
Chi Chiu Wang
Hui Xu
Gene Chi Wai Man
Tao Zhang
Kai On Chu
Ching Yan Chu
Jimmy Tin Yan Cheng
Gang Li
Yi Xin He
Ling Qin
Tat San Lau
Joseph Kwong
Tak Hang Chan
Publication date
01-01-2013
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 1/2013
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-012-9299-4

Other articles of this Issue 1/2013

Angiogenesis 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.