Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Probiotics | Research

Investigation of the anti-inflammatory effects of native potential probiotics as supplementary therapeutic agents in an in-vitro model of inflammation

Authors: Shadi Aghamohammad, Amin Sepehr, Seyedeh Tina Miri, Saeideh Najafi, Mohammad R. Pourshafie, Mahdi Rohani

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

IBD is considered an inflammatory disease with abnormal and exaggerated immune responses. To control the symptoms, different theraputic agents could be used, however, utilizing the agents with the least side effects could be important. Probiotics as beneficial microorganisms are one of the complementory theraputic agents that could be used to modulate inflammatory signaling pathways. In the current study, we aimed to identify the precise molecular effects of potential probiotics on signaling pathways involved in the development of inflammation.

Methods

A quantitative real-time polymerase chain reaction (qPCR) assay was used to analyze the expression of JAK /STAT (JAK1, JAK2, JAK3, TYK2, STAT1, STAT2, STAT3, STAT4, STAT5 and STAT6) and inflammatory genes (NEMO, TIRAP, IRAK, and RIP) after the HT -29 cell line treatment with the sonicated pathogens and potential probiotics. A cytokine assay was also used to evaluate IL -6 and IL -1β production after potential probiotic treatment.

Results

The potential probiotic cocktail downregulated the JAK genes and TIRAP, IRAK4, NEMO, and RIP genes in the NF-kB pathway compared with cells that were treated with sonicated gram negative pathogens. The expression of STAT genes was different after potential probiotic treatment. The production of IL -6 and IL -1β decreased after potential probiotic treatment.

Conclusions

Considering the importance of controlling the symptoms of IBD to improve the life quality of the patients, using probiotic could be crucial. In the current study the studied native potential probiotic cocktails showed anti-inflammatory effects via modulation of JAK /STAT and NF-kB signaling pathways. This observation suggests that our native potential probiotics consumption could be useful in reducing intestinal inflammation.
Literature
1.
go back to reference Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Reviews Gastroenterol Hepatol. 2019;16(9):531–43.CrossRef Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Reviews Gastroenterol Hepatol. 2019;16(9):531–43.CrossRef
2.
go back to reference Alatab S, Sepanlou SG, Ikuta K, Vahedi H, Bisignano C, Safiri S, et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the global burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5(1):17–30.CrossRef Alatab S, Sepanlou SG, Ikuta K, Vahedi H, Bisignano C, Safiri S, et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the global burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5(1):17–30.CrossRef
3.
go back to reference Khaki-Khatibi F, Qujeq D, Kashifard M, Moein S, Maniati M, Vaghari-Tabari M. Calprotectin in inflammatory bowel disease. Clin Chim Acta. 2020;510:556–65.CrossRefPubMedPubMedCentral Khaki-Khatibi F, Qujeq D, Kashifard M, Moein S, Maniati M, Vaghari-Tabari M. Calprotectin in inflammatory bowel disease. Clin Chim Acta. 2020;510:556–65.CrossRefPubMedPubMedCentral
4.
go back to reference Singh S, Kullo IJ, Pardi DS, Loftus EV. Epidemiology, risk factors and management of cardiovascular diseases in IBD. Nat Reviews Gastroenterol Hepatol. 2015;12(1):26–35.CrossRef Singh S, Kullo IJ, Pardi DS, Loftus EV. Epidemiology, risk factors and management of cardiovascular diseases in IBD. Nat Reviews Gastroenterol Hepatol. 2015;12(1):26–35.CrossRef
5.
go back to reference Bernstein CN. Treatment of IBD: where we are and where we are going. Official J Am Coll Gastroenterology| ACG. 2015;110(1):114–26.CrossRef Bernstein CN. Treatment of IBD: where we are and where we are going. Official J Am Coll Gastroenterology| ACG. 2015;110(1):114–26.CrossRef
6.
go back to reference Dejban P, Nikravangolsefid N, Chamanara M, Dehpour A, Rashidian A. The role of medicinal products in the treatment of inflammatory bowel diseases (IBD) through inhibition of TLR4/NF-kappaB pathway. Phytother Res. 2021;35(2):835–45.CrossRefPubMed Dejban P, Nikravangolsefid N, Chamanara M, Dehpour A, Rashidian A. The role of medicinal products in the treatment of inflammatory bowel diseases (IBD) through inhibition of TLR4/NF-kappaB pathway. Phytother Res. 2021;35(2):835–45.CrossRefPubMed
7.
go back to reference Vidya MK, Kumar VG, Sejian V, Bagath M, Krishnan G, Bhatta R. Toll-like receptors: significance, ligands, signaling pathways, and functions in mammals. Int Rev Immunol. 2018;37(1):20–36.CrossRefPubMed Vidya MK, Kumar VG, Sejian V, Bagath M, Krishnan G, Bhatta R. Toll-like receptors: significance, ligands, signaling pathways, and functions in mammals. Int Rev Immunol. 2018;37(1):20–36.CrossRefPubMed
8.
go back to reference Salas A, Hernandez-Rocha C, Duijvestein M, Faubion W, McGovern D, Vermeire S, et al. JAK–STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Reviews Gastroenterol Hepatol. 2020;17(6):323–37.CrossRef Salas A, Hernandez-Rocha C, Duijvestein M, Faubion W, McGovern D, Vermeire S, et al. JAK–STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Reviews Gastroenterol Hepatol. 2020;17(6):323–37.CrossRef
9.
go back to reference Yoshimatsu Y, Yamada A, Furukawa R, Sono K, Osamura A, Nakamura K, et al. Effectiveness of probiotic therapy for the prevention of relapse in patients with inactive ulcerative colitis. World J Gastroenterology: WJG. 2015;21(19):5985.CrossRefPubMedCentral Yoshimatsu Y, Yamada A, Furukawa R, Sono K, Osamura A, Nakamura K, et al. Effectiveness of probiotic therapy for the prevention of relapse in patients with inactive ulcerative colitis. World J Gastroenterology: WJG. 2015;21(19):5985.CrossRefPubMedCentral
10.
go back to reference Bjarnason I, Sission G. A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn’s disease. Inflammopharmacology. 2019;27(3):465–73.CrossRefPubMedPubMedCentral Bjarnason I, Sission G. A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn’s disease. Inflammopharmacology. 2019;27(3):465–73.CrossRefPubMedPubMedCentral
11.
go back to reference Liu M, Ding J, Zhang H, Shen J, Hao Y, Zhang X, et al. Lactobacillus casei LH23 modulates the immune response and ameliorates DSS-induced colitis via suppressing JNK/p-38 signal pathways and enhancing histone H3K9 acetylation. Food Funct. 2020;11(6):5473–85.CrossRefPubMed Liu M, Ding J, Zhang H, Shen J, Hao Y, Zhang X, et al. Lactobacillus casei LH23 modulates the immune response and ameliorates DSS-induced colitis via suppressing JNK/p-38 signal pathways and enhancing histone H3K9 acetylation. Food Funct. 2020;11(6):5473–85.CrossRefPubMed
12.
go back to reference Leccese G, Bibi A, Mazza S, Facciotti F, Caprioli F, Landini P, et al. Probiotic Lactobacillus and Bifidobacterium strains counteract adherent-invasive Escherichia coli (AIEC) virulence and hamper IL-23/Th17 axis in ulcerative colitis, but not in crohn’s disease. Cells. 2020;9(8):1824.CrossRefPubMedPubMedCentral Leccese G, Bibi A, Mazza S, Facciotti F, Caprioli F, Landini P, et al. Probiotic Lactobacillus and Bifidobacterium strains counteract adherent-invasive Escherichia coli (AIEC) virulence and hamper IL-23/Th17 axis in ulcerative colitis, but not in crohn’s disease. Cells. 2020;9(8):1824.CrossRefPubMedPubMedCentral
13.
go back to reference Rohani M, Noohi N, Talebi M, Katouli M, Pourshafie MR. Highly heterogeneous probiotic Lactobacillus species in healthy Iranians with low functional activities. PLoS ONE. 2015;10(12):e0144467.CrossRefPubMedPubMedCentral Rohani M, Noohi N, Talebi M, Katouli M, Pourshafie MR. Highly heterogeneous probiotic Lactobacillus species in healthy Iranians with low functional activities. PLoS ONE. 2015;10(12):e0144467.CrossRefPubMedPubMedCentral
14.
go back to reference Eshaghi M, Bibalan MH, Rohani M, Esghaei M, Douraghi M, Talebi M, et al. Bifidobacterium obtained from mother’s milk and their infant stool; a comparative genotyping and antibacterial analysis. Microb Pathog. 2017;111:94–8.CrossRefPubMed Eshaghi M, Bibalan MH, Rohani M, Esghaei M, Douraghi M, Talebi M, et al. Bifidobacterium obtained from mother’s milk and their infant stool; a comparative genotyping and antibacterial analysis. Microb Pathog. 2017;111:94–8.CrossRefPubMed
15.
go back to reference Aghamohammad S, Sepehr A, Miri ST, Najafi S, Rohani M, Pourshafiea MR. The effects of the probiotic cocktail on modulation of the NF-kB and JAK/STAT signaling pathways involved in the inflammatory response in bowel disease model. BMC Immunol. 2022;23(1):1–10.CrossRef Aghamohammad S, Sepehr A, Miri ST, Najafi S, Rohani M, Pourshafiea MR. The effects of the probiotic cocktail on modulation of the NF-kB and JAK/STAT signaling pathways involved in the inflammatory response in bowel disease model. BMC Immunol. 2022;23(1):1–10.CrossRef
16.
go back to reference Ghanavati R, Asadollahi P, Shapourabadi MB, Razavi S, Talebi M, Rohani M. Inhibitory effects of Lactobacilli cocktail on HT-29 colon carcinoma cells growth and modulation of the Notch and Wnt/β-catenin signaling pathways. Microb Pathog. 2020;139:103829.CrossRefPubMed Ghanavati R, Asadollahi P, Shapourabadi MB, Razavi S, Talebi M, Rohani M. Inhibitory effects of Lactobacilli cocktail on HT-29 colon carcinoma cells growth and modulation of the Notch and Wnt/β-catenin signaling pathways. Microb Pathog. 2020;139:103829.CrossRefPubMed
17.
go back to reference Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8.CrossRefPubMed Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8.CrossRefPubMed
18.
go back to reference Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Reviews Gastroenterol Hepatol. 2015;12(12):720–7.CrossRef Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Reviews Gastroenterol Hepatol. 2015;12(12):720–7.CrossRef
19.
go back to reference Chibbar R, Dieleman LA. Probiotics in the management of ulcerative colitis. J Clin Gastroenterol. 2015;49:50–S5.CrossRef Chibbar R, Dieleman LA. Probiotics in the management of ulcerative colitis. J Clin Gastroenterol. 2015;49:50–S5.CrossRef
20.
go back to reference Guo W, Mao B, Cui S, Tang X, Zhang Q, Zhao J, et al. Protective effects of a novel probiotic Bifidobacterium pseudolongum on the intestinal barrier of colitis mice via modulating the Pparγ/STAT3 pathway and intestinal microbiota. Foods. 2022;11(11):1551.CrossRefPubMedPubMedCentral Guo W, Mao B, Cui S, Tang X, Zhang Q, Zhao J, et al. Protective effects of a novel probiotic Bifidobacterium pseudolongum on the intestinal barrier of colitis mice via modulating the Pparγ/STAT3 pathway and intestinal microbiota. Foods. 2022;11(11):1551.CrossRefPubMedPubMedCentral
21.
go back to reference Wu F, Wuri G, Fang B, Shi M, Zhang M, Zhao L. Alleviative mechanism and effect of Bifidobacterium animalis A6 on dextran sodium sulfate-induced ulcerative colitis in mice. Food Sci Nutr. 2023;11(2):892–902.CrossRefPubMed Wu F, Wuri G, Fang B, Shi M, Zhang M, Zhao L. Alleviative mechanism and effect of Bifidobacterium animalis A6 on dextran sodium sulfate-induced ulcerative colitis in mice. Food Sci Nutr. 2023;11(2):892–902.CrossRefPubMed
22.
go back to reference Cordes F, Foell D, Ding JN, Varga G, Bettenworth D. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn’s disease. World J Gastroenterol. 2020;26(28):4055.CrossRefPubMedPubMedCentral Cordes F, Foell D, Ding JN, Varga G, Bettenworth D. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn’s disease. World J Gastroenterol. 2020;26(28):4055.CrossRefPubMedPubMedCentral
23.
go back to reference Mehta DS, Wurster AL, Grusby MJ. Biology of IL-21 and the IL‐21 receptor. Immunol Rev. 2004;202(1):84–95.CrossRefPubMed Mehta DS, Wurster AL, Grusby MJ. Biology of IL-21 and the IL‐21 receptor. Immunol Rev. 2004;202(1):84–95.CrossRefPubMed
24.
go back to reference Parmigiani A, Lichtenheld M, Pahwa S. IL-21 reduces production of pro-inflammatory cytokines by activated CD8 T cells (44.26). Am Assoc Immnol; 2012. Parmigiani A, Lichtenheld M, Pahwa S. IL-21 reduces production of pro-inflammatory cytokines by activated CD8 T cells (44.26). Am Assoc Immnol; 2012.
25.
go back to reference Connelly TM, Koltun WA, Berg AS, Hegarty JP, Brinton D, Deiling S, et al. A single nucleotide polymorphism in the STAT5 gene favors colonic as opposed to small-bowel inflammation in Crohn’s disease. Dis colon rectum. 2013;56(9):1068–74.CrossRefPubMed Connelly TM, Koltun WA, Berg AS, Hegarty JP, Brinton D, Deiling S, et al. A single nucleotide polymorphism in the STAT5 gene favors colonic as opposed to small-bowel inflammation in Crohn’s disease. Dis colon rectum. 2013;56(9):1068–74.CrossRefPubMed
26.
go back to reference Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld J-C. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line: pathways that are shared with and distinct from IL-10. J Biol Chem. 2002;277(37):33676–82.CrossRefPubMed Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld J-C. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line: pathways that are shared with and distinct from IL-10. J Biol Chem. 2002;277(37):33676–82.CrossRefPubMed
27.
go back to reference Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. Anti-inflammatory and pro-inflammatory roles of TGF-β, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol. 2009;9(4):447–53.CrossRefPubMedPubMedCentral Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. Anti-inflammatory and pro-inflammatory roles of TGF-β, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol. 2009;9(4):447–53.CrossRefPubMedPubMedCentral
28.
go back to reference Zundler S, Neurath MF. Integrating immunologic signaling networks: the JAK/STAT pathway in colitis and colitis-associated cancer. Vaccines. 2016;4(1):5.CrossRefPubMedPubMedCentral Zundler S, Neurath MF. Integrating immunologic signaling networks: the JAK/STAT pathway in colitis and colitis-associated cancer. Vaccines. 2016;4(1):5.CrossRefPubMedPubMedCentral
29.
go back to reference Delgado-Ramirez Y, Ocaña-Soriano A, Ledesma-Soto Y, Olguín JE, Hernandez-Ruiz J, Terrazas LI, et al. STAT6 is critical for the induction of Regulatory T cells in vivo Controlling the initial steps of Colitis-Associated Cancer. Int J Mol Sci. 2021;22(8):4049.CrossRefPubMedPubMedCentral Delgado-Ramirez Y, Ocaña-Soriano A, Ledesma-Soto Y, Olguín JE, Hernandez-Ruiz J, Terrazas LI, et al. STAT6 is critical for the induction of Regulatory T cells in vivo Controlling the initial steps of Colitis-Associated Cancer. Int J Mol Sci. 2021;22(8):4049.CrossRefPubMedPubMedCentral
31.
go back to reference Olivera P, Danese S, Peyrin-Biroulet L. JAK inhibition in inflammatory bowel disease. Expert Rev Clin Immunol. 2017;13(7):693–703.CrossRefPubMed Olivera P, Danese S, Peyrin-Biroulet L. JAK inhibition in inflammatory bowel disease. Expert Rev Clin Immunol. 2017;13(7):693–703.CrossRefPubMed
32.
go back to reference Virtanen AT, Haikarainen T, Raivola J, Silvennoinen O. Selective JAKinibs: prospects in inflammatory and autoimmune diseases. BioDrugs. 2019;33(1):15.CrossRef Virtanen AT, Haikarainen T, Raivola J, Silvennoinen O. Selective JAKinibs: prospects in inflammatory and autoimmune diseases. BioDrugs. 2019;33(1):15.CrossRef
33.
go back to reference Gao K, Wang C, Liu L, Dou X, Liu J, Yuan L, et al. Immunomodulation and signaling mechanism of Lactobacillus rhamnosus GG and its components on porcine intestinal epithelial cells stimulated by lipopolysaccharide. J Microbiol Immunol Infect. 2017;50(5):700–13.CrossRefPubMed Gao K, Wang C, Liu L, Dou X, Liu J, Yuan L, et al. Immunomodulation and signaling mechanism of Lactobacillus rhamnosus GG and its components on porcine intestinal epithelial cells stimulated by lipopolysaccharide. J Microbiol Immunol Infect. 2017;50(5):700–13.CrossRefPubMed
34.
go back to reference Lutz C, Weder B, Hünerwadel A, Fagagnini S, Lang B, Beerenwinkel N, et al. Myeloid differentiation primary response gene (MyD) 88 signalling is not essential for intestinal fibrosis development. Sci Rep. 2017;7(1):1–10.CrossRef Lutz C, Weder B, Hünerwadel A, Fagagnini S, Lang B, Beerenwinkel N, et al. Myeloid differentiation primary response gene (MyD) 88 signalling is not essential for intestinal fibrosis development. Sci Rep. 2017;7(1):1–10.CrossRef
Metadata
Title
Investigation of the anti-inflammatory effects of native potential probiotics as supplementary therapeutic agents in an in-vitro model of inflammation
Authors
Shadi Aghamohammad
Amin Sepehr
Seyedeh Tina Miri
Saeideh Najafi
Mohammad R. Pourshafie
Mahdi Rohani
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04153-y

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue