Skip to main content
Top
Published in: Current Diabetes Reports 9/2017

Open Access 01-09-2017 | Genetics (AP Morris, Section Editor)

Prioritising Causal Genes at Type 2 Diabetes Risk Loci

Authors: Antje K. Grotz, Anna L. Gloyn, Soren K. Thomsen

Published in: Current Diabetes Reports | Issue 9/2017

Login to get access

Abstract

Purpose of Review

Genome-wide association studies (GWAS) for type 2 diabetes (T2D) risk have identified a large number of genetic loci associated with disease susceptibility. However, progress moving from association signals through causal genes to functional understanding has so far been slow, hindering clinical translation. This review discusses the benefits and limitations of emerging, unbiased approaches for prioritising causal genes at T2D risk loci.

Recent Findings

Candidate causal genes can be identified by a number of different strategies that rely on genetic data, genomic annotations, and functional screening of selected genes. To overcome the limitations of each particular method, integration of multiple data sets is proving essential for establishing confidence in the prioritised genes. Previous studies have also highlighted the need to support these efforts through identification of causal variants and disease-relevant tissues.

Summary

Prioritisation of causal genes at T2D risk loci by integrating complementary lines of evidence promises to accelerate our understanding of disease pathology and promote translation into new therapeutics.
Literature
1.
go back to reference Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PIW, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.CrossRefPubMed Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PIW, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.CrossRefPubMed
2.
go back to reference Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.CrossRefPubMed Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.CrossRefPubMed
3.
go back to reference Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579–89.CrossRefPubMedPubMedCentral Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579–89.CrossRefPubMedPubMedCentral
4.
go back to reference Cho YS, Chen C-H, Hu C, Long J, Hee Ong RT, Sim X, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2012;44:67–72.CrossRef Cho YS, Chen C-H, Hu C, Long J, Hee Ong RT, Sim X, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2012;44:67–72.CrossRef
5.
go back to reference Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90.CrossRefPubMedPubMedCentral Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90.CrossRefPubMedPubMedCentral
6.
go back to reference Steinthorsdottir V, Thorleifsson G, Sulem P, Helgason H, Grarup N, Sigurdsson A, et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet. 2014;46:294–8.CrossRefPubMed Steinthorsdottir V, Thorleifsson G, Sulem P, Helgason H, Grarup N, Sigurdsson A, et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet. 2014;46:294–8.CrossRefPubMed
7.
go back to reference •• Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536:41–7. This large-scale association study finds no support for a major role of low-frequency and rare variants in the heritability of T2D risk. CrossRefPubMedPubMedCentral •• Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536:41–7. This large-scale association study finds no support for a major role of low-frequency and rare variants in the heritability of T2D risk. CrossRefPubMedPubMedCentral
9.
go back to reference Li M, Li C, Guan W. Evaluation of coverage variation of SNP chips for genome-wide association studies. Eur J Hum Genet. 2008;16:635–43.CrossRefPubMed Li M, Li C, Guan W. Evaluation of coverage variation of SNP chips for genome-wide association studies. Eur J Hum Genet. 2008;16:635–43.CrossRefPubMed
11.
go back to reference The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.CrossRefPubMedCentral The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.CrossRefPubMedCentral
13.
go back to reference Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.CrossRefPubMedPubMedCentral Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.CrossRefPubMedPubMedCentral
14.
go back to reference The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.CrossRefPubMedCentral The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.CrossRefPubMedCentral
16.
go back to reference Udler MS, Tyrer J, Easton DF. Evaluating the power to discriminate between highly correlated SNPs in genetic association studies. Genet Epidemiol. 2010;34:463–8.CrossRefPubMed Udler MS, Tyrer J, Easton DF. Evaluating the power to discriminate between highly correlated SNPs in genetic association studies. Genet Epidemiol. 2010;34:463–8.CrossRefPubMed
17.
go back to reference • Gaulton KJ, Ferreira T, Lee Y, Raimondo A, Mägi R, Reschen ME, et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet. 2015;47:1415–25. A fine-mapping effort that identifies a single likely non-coding causal variant for the MTNR1B locus with a direct link to the potential causal gene and functional mechanism. CrossRefPubMedPubMedCentral • Gaulton KJ, Ferreira T, Lee Y, Raimondo A, Mägi R, Reschen ME, et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet. 2015;47:1415–25. A fine-mapping effort that identifies a single likely non-coding causal variant for the MTNR1B locus with a direct link to the potential causal gene and functional mechanism. CrossRefPubMedPubMedCentral
18.
go back to reference Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, Sparsø T, Holmkvsit J, Marchand M, et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet. 2009;41:89–94.CrossRefPubMed Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, Sparsø T, Holmkvsit J, Marchand M, et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet. 2009;41:89–94.CrossRefPubMed
19.
go back to reference Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini L, Hu T, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40:638–45.CrossRefPubMedPubMedCentral Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini L, Hu T, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40:638–45.CrossRefPubMedPubMedCentral
20.
go back to reference Fogarty MP, Panhuis TM, Vadlamudi S, Buchkovich ML, Mohlke KL. Allele-specific transcriptional activity at type 2 diabetes—associated single nucleotide polymorphisms in regions of pancreatic islet open chromatin at the JAZF1 locus. Diabetes. 2013;62:1756–62.CrossRefPubMedPubMedCentral Fogarty MP, Panhuis TM, Vadlamudi S, Buchkovich ML, Mohlke KL. Allele-specific transcriptional activity at type 2 diabetes—associated single nucleotide polymorphisms in regions of pancreatic islet open chromatin at the JAZF1 locus. Diabetes. 2013;62:1756–62.CrossRefPubMedPubMedCentral
21.
go back to reference Fogarty MP, Cannon ME, Vadlamudi S, Gaulton KJ, Mohlke KL. Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus. PLoS Genet. 2014;10:e1004633.CrossRefPubMedPubMedCentral Fogarty MP, Cannon ME, Vadlamudi S, Gaulton KJ, Mohlke KL. Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus. PLoS Genet. 2014;10:e1004633.CrossRefPubMedPubMedCentral
22.
go back to reference Claussnitzer M, Dankel SN, Klocke B, Grallert H, Glunk V, Riess H, et al. Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms. Cell. 2014;156:343–58.CrossRefPubMed Claussnitzer M, Dankel SN, Klocke B, Grallert H, Glunk V, Riess H, et al. Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms. Cell. 2014;156:343–58.CrossRefPubMed
23.
go back to reference • Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373:895–907. Using computational phylogenetic module complexity analysis, this study identifies a likely causal variant and functional mechanism at the strongest obesity locus, FTO . CrossRefPubMedPubMedCentral • Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373:895–907. Using computational phylogenetic module complexity analysis, this study identifies a likely causal variant and functional mechanism at the strongest obesity locus, FTO . CrossRefPubMedPubMedCentral
24.
go back to reference Frayling TM, Timpson NJ, Weedon MN, Freathy RM, Lindgren CM, Perry JRB, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.CrossRefPubMedPubMedCentral Frayling TM, Timpson NJ, Weedon MN, Freathy RM, Lindgren CM, Perry JRB, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.CrossRefPubMedPubMedCentral
25.
go back to reference Loos RJF, Yeo GSH. The bigger picture of FTO—the first GWAS-identified obesity gene. Nat Rev Endocrinol. 2014;10:51–61.CrossRefPubMed Loos RJF, Yeo GSH. The bigger picture of FTO—the first GWAS-identified obesity gene. Nat Rev Endocrinol. 2014;10:51–61.CrossRefPubMed
26.
go back to reference Thomsen SK, McCarthy MI, Gloyn AL. The importance of context: uncovering species- and tissue-specific effects of genetic risk variants for type 2 diabetes. Front Endocrinol. 2016;7. Thomsen SK, McCarthy MI, Gloyn AL. The importance of context: uncovering species- and tissue-specific effects of genetic risk variants for type 2 diabetes. Front Endocrinol. 2016;7.
27.
go back to reference • Weedon MN, Cebola I, Patch A, Flanagan SE, De Franco E, Caswell R, et al. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet. 2014;46:61–4. Important work at the PTF1A locus, which shows that studying disease-relevant tissues and developmental stages can be critical to identifying disease mechanisms. CrossRefPubMed • Weedon MN, Cebola I, Patch A, Flanagan SE, De Franco E, Caswell R, et al. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet. 2014;46:61–4. Important work at the PTF1A locus, which shows that studying disease-relevant tissues and developmental stages can be critical to identifying disease mechanisms. CrossRefPubMed
28.
go back to reference Lohmueller KE, Sparsø T, Li Q, Andersson E, Korneliussen T, Albrechtsen A, et al. Whole-exome sequencing of 2000 Danish individuals and the role of rare coding variants in type 2 diabetes. Am J Hum Genet. 2013;93:1072–86.CrossRefPubMedPubMedCentral Lohmueller KE, Sparsø T, Li Q, Andersson E, Korneliussen T, Albrechtsen A, et al. Whole-exome sequencing of 2000 Danish individuals and the role of rare coding variants in type 2 diabetes. Am J Hum Genet. 2013;93:1072–86.CrossRefPubMedPubMedCentral
29.
go back to reference Huyghe JR, Jackson AU, Fogarty MP, Buchkovich ML, Stringham HM, Sim X, et al. Exome array analysis identifies novel loci and low-frequency variants for insulin processing and secretion. Nat Genet. 2013;45:197–201.CrossRefPubMed Huyghe JR, Jackson AU, Fogarty MP, Buchkovich ML, Stringham HM, Sim X, et al. Exome array analysis identifies novel loci and low-frequency variants for insulin processing and secretion. Nat Genet. 2013;45:197–201.CrossRefPubMed
30.
go back to reference Mahajan A, Sim X, Ng HJ, Manning A, Rivas MA, Highland HM, et al. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus. PLoS Genet. 2015;11:1–25.CrossRef Mahajan A, Sim X, Ng HJ, Manning A, Rivas MA, Highland HM, et al. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus. PLoS Genet. 2015;11:1–25.CrossRef
31.
go back to reference • Flannick J, Thorleifsson G, Beer N, Jacobs SBR, Grarup N, Burtt NP, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46:357–63. This study discovers several independent loss-of-function coding variants in SLC30A8 associated with reduced risk of T2D, and thus highlights a possible treatment strategy. CrossRefPubMedPubMedCentral • Flannick J, Thorleifsson G, Beer N, Jacobs SBR, Grarup N, Burtt NP, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46:357–63. This study discovers several independent loss-of-function coding variants in SLC30A8 associated with reduced risk of T2D, and thus highlights a possible treatment strategy. CrossRefPubMedPubMedCentral
33.
go back to reference Andersen MK, Pedersen CT, Moltke I, Hansen T, Albrechtsen A, Grarup N. Genetics of type 2 diabetes: the power of isolated populations. Curr Diab Rep. 2016;16. Andersen MK, Pedersen CT, Moltke I, Hansen T, Albrechtsen A, Grarup N. Genetics of type 2 diabetes: the power of isolated populations. Curr Diab Rep. 2016;16.
34.
go back to reference Hatzikotoulas K, Gilly A, Zeggini E. Using population isolates in genetic association studies. Br Funct Genom. 2014;13:371–7.CrossRef Hatzikotoulas K, Gilly A, Zeggini E. Using population isolates in genetic association studies. Br Funct Genom. 2014;13:371–7.CrossRef
35.
go back to reference • Moltke I, Grarup N, Jørgensen ME, Bjerregaard P, Treebak JT, Fumagalli M, et al. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature. 2014;512:190–3. Demonstrating the importance of bottleneck populations, this study identifies a common coding variant in TBC1D4 with the largest effect size for a common T2D risk variant. CrossRefPubMed • Moltke I, Grarup N, Jørgensen ME, Bjerregaard P, Treebak JT, Fumagalli M, et al. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature. 2014;512:190–3. Demonstrating the importance of bottleneck populations, this study identifies a common coding variant in TBC1D4 with the largest effect size for a common T2D risk variant. CrossRefPubMed
36.
go back to reference Manning A, Highland HM, Gasser J, Sim X, Tukiainen T, Fontanllas P, et al. A low-frequency inactivating AKT2 variant enriched in the Finnish population is associated with fasting insulin levels and type 2 diabetes risk. Diabetes. 2017;db161329. Manning A, Highland HM, Gasser J, Sim X, Tukiainen T, Fontanllas P, et al. A low-frequency inactivating AKT2 variant enriched in the Finnish population is associated with fasting insulin levels and type 2 diabetes risk. Diabetes. 2017;db161329.
37.
go back to reference Tan K, Kimber WA, Luan J, Soos MA, Semple RK, Wareham NJ, et al. Analysis of genetic variation in Akt2/PKB-β in severe insulin resistance, lipodystrophy, type 2 diabetes, and related metabolic phenotypes. Diabetes. 2009;56:714–9.CrossRef Tan K, Kimber WA, Luan J, Soos MA, Semple RK, Wareham NJ, et al. Analysis of genetic variation in Akt2/PKB-β in severe insulin resistance, lipodystrophy, type 2 diabetes, and related metabolic phenotypes. Diabetes. 2009;56:714–9.CrossRef
38.
39.
go back to reference Mahajan A, Wessel J, Willems S, Zhao W, Robertson NR, Chu AY, et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. bioRxiv. 2017. Mahajan A, Wessel J, Willems S, Zhao W, Robertson NR, Chu AY, et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. bioRxiv. 2017.
40.
go back to reference Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future. Phil Trans R Soc B. 2013;368. Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future. Phil Trans R Soc B. 2013;368.
41.
go back to reference GTEx Consortium. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.CrossRefPubMedCentral GTEx Consortium. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.CrossRefPubMedCentral
42.
go back to reference Dimas AS, Lagou V, Barker A, Knowles JW, Mägi R, Hivert M, et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes. 2014;63:2158–71.CrossRefPubMedPubMedCentral Dimas AS, Lagou V, Barker A, Knowles JW, Mägi R, Hivert M, et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes. 2014;63:2158–71.CrossRefPubMedPubMedCentral
43.
go back to reference Fadista J, Vikman P, Ottosson E, Guerra Mollet I, Lou Esguerra J, Taneera J. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A. 2014;111:13924–9.CrossRefPubMedPubMedCentral Fadista J, Vikman P, Ottosson E, Guerra Mollet I, Lou Esguerra J, Taneera J. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A. 2014;111:13924–9.CrossRefPubMedPubMedCentral
44.
go back to reference • van de Bunt M, Manning Fox JE, Dai X, Barrett A, Grey C, Li L, et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet. 2015;11:1–21. This study makes an important contribution to the intersection of GWAS loci with islet cis -eQTLs, and highlights ZMIZ1 as a likely causal gene through coincidence of signals. • van de Bunt M, Manning Fox JE, Dai X, Barrett A, Grey C, Li L, et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet. 2015;11:1–21. This study makes an important contribution to the intersection of GWAS loci with islet cis -eQTLs, and highlights ZMIZ1 as a likely causal gene through coincidence of signals.
45.
go back to reference Thomsen SK, Ceroni A, van de Bunt M, Burrows C, Barrett A, Scharfmann R, et al. Systematic functional characterization of candidate causal genes for type 2 diabetes risk variants. Diabetes. 2016;65:3805–11.CrossRefPubMedPubMedCentral Thomsen SK, Ceroni A, van de Bunt M, Burrows C, Barrett A, Scharfmann R, et al. Systematic functional characterization of candidate causal genes for type 2 diabetes risk variants. Diabetes. 2016;65:3805–11.CrossRefPubMedPubMedCentral
46.
go back to reference Small KS, Hedman ÅK, Grundberg E, Nica AC, Kong A, Thorsteindottir U, et al. Identification of an imprinted master trans-regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet. 2011;43:561–4.CrossRefPubMedPubMedCentral Small KS, Hedman ÅK, Grundberg E, Nica AC, Kong A, Thorsteindottir U, et al. Identification of an imprinted master trans-regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet. 2011;43:561–4.CrossRefPubMedPubMedCentral
47.
go back to reference Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.CrossRefPubMedPubMedCentral Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.CrossRefPubMedPubMedCentral
48.
go back to reference Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7.CrossRefPubMed Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7.CrossRefPubMed
49.
go back to reference Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245–52.CrossRefPubMedPubMedCentral Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245–52.CrossRefPubMedPubMedCentral
50.
go back to reference Mancuso N, Shi H, Goddard P, Kichaev G, Gusev A, Pasaniuc B. Integrating gene expression with summary association statistics to identify genes associated with 30 complex traits. Am J Hum Genet. 2017;100:473–87.CrossRefPubMed Mancuso N, Shi H, Goddard P, Kichaev G, Gusev A, Pasaniuc B. Integrating gene expression with summary association statistics to identify genes associated with 30 complex traits. Am J Hum Genet. 2017;100:473–87.CrossRefPubMed
51.
go back to reference Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21 ± nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.CrossRefPubMed Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21 ± nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.CrossRefPubMed
52.
go back to reference Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, et al. A resource for large-scale screens in mammals. Nature. 2004;428:427–31.CrossRefPubMed Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, et al. A resource for large-scale screens in mammals. Nature. 2004;428:427–31.CrossRefPubMed
53.
go back to reference Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Heckl D, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7.CrossRefPubMed Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Heckl D, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7.CrossRefPubMed
54.
go back to reference Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–83.CrossRefPubMedPubMedCentral Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–83.CrossRefPubMedPubMedCentral
55.
go back to reference Pritsker M, Ford NR, Jenq HT, Lemischka IR. Genomewide gain-of-function genetic screen identifies functionally active genes in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 2006;103:6946–51.CrossRefPubMedPubMedCentral Pritsker M, Ford NR, Jenq HT, Lemischka IR. Genomewide gain-of-function genetic screen identifies functionally active genes in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 2006;103:6946–51.CrossRefPubMedPubMedCentral
56.
go back to reference Gilbert LA, Horlbeck MA, Adamson B, Jacqueline E, Chen Y, Whitehead EH, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159:647–61.CrossRefPubMedPubMedCentral Gilbert LA, Horlbeck MA, Adamson B, Jacqueline E, Chen Y, Whitehead EH, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159:647–61.CrossRefPubMedPubMedCentral
57.
go back to reference • Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR–Cas9. Nat Rev Genet. 2015;16:299–311. A review discussing key concepts, comparison with RNAi screening, prospects and future challenges of genome-wide CRISPR/Cas9 knockout and modulation screens. CrossRefPubMedPubMedCentral • Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR–Cas9. Nat Rev Genet. 2015;16:299–311. A review discussing key concepts, comparison with RNAi screening, prospects and future challenges of genome-wide CRISPR/Cas9 knockout and modulation screens. CrossRefPubMedPubMedCentral
58.
go back to reference Pappalardo Z, Chopra DG, Hennings TG, Richards H, Choe J, Yang K, et al. A whole genome RNA interference screen reveals a role for Spry2 in insulin transcription and the unfolded protein response. Diabetes. 2017;66:1703–12.CrossRefPubMed Pappalardo Z, Chopra DG, Hennings TG, Richards H, Choe J, Yang K, et al. A whole genome RNA interference screen reveals a role for Spry2 in insulin transcription and the unfolded protein response. Diabetes. 2017;66:1703–12.CrossRefPubMed
59.
60.
go back to reference Akerman I, Tu Z, Beucher A, Schadt E, Ravassard P, Ferrer J, et al. Human pancreatic β cell lncRNAs control cell-specific regulatory networks. Cell Metab. 2017;25:400–11.CrossRefPubMedPubMedCentral Akerman I, Tu Z, Beucher A, Schadt E, Ravassard P, Ferrer J, et al. Human pancreatic β cell lncRNAs control cell-specific regulatory networks. Cell Metab. 2017;25:400–11.CrossRefPubMedPubMedCentral
61.
go back to reference Ahlgren U, Jonsson L, Simu K, Edlund H. β-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev. 1998;12:1763–8.CrossRefPubMedPubMedCentral Ahlgren U, Jonsson L, Simu K, Edlund H. β-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev. 1998;12:1763–8.CrossRefPubMedPubMedCentral
62.
go back to reference Beer NL, Gloyn AL. Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 diabetes GWAS biology. F1000Res. 2016;5:1711.CrossRef Beer NL, Gloyn AL. Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 diabetes GWAS biology. F1000Res. 2016;5:1711.CrossRef
64.
go back to reference Gaulton KJ. Mechanisms of type 2 diabetes risk loci. Curr Diab Rep. 2017;in press. Gaulton KJ. Mechanisms of type 2 diabetes risk loci. Curr Diab Rep. 2017;in press.
65.
go back to reference Nielsen T, Sparso T, Grarup N, Jorgensen T, Pisinger C, Witte DR, et al. Type 2 diabetes risk allele near CENTD2 is associated with decreased glucose-stimulated insulin release. Diabetologia. 2011;54:1052–6.CrossRefPubMed Nielsen T, Sparso T, Grarup N, Jorgensen T, Pisinger C, Witte DR, et al. Type 2 diabetes risk allele near CENTD2 is associated with decreased glucose-stimulated insulin release. Diabetologia. 2011;54:1052–6.CrossRefPubMed
66.
go back to reference Kulzer JR, Stitzel ML, Morken MA, Huyghe JR, Fuchsberger C, Kuusisto J, et al. A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am J Hum Genet. 2014;94:186–97.CrossRefPubMedPubMedCentral Kulzer JR, Stitzel ML, Morken MA, Huyghe JR, Fuchsberger C, Kuusisto J, et al. A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am J Hum Genet. 2014;94:186–97.CrossRefPubMedPubMedCentral
67.
go back to reference •• Carrat GR, Hu M, Nguyen-Tu M-S, Chabosseau P, Gaulton KJ, De Van BM, et al. Decreased STARD10 expression is associated with defective insulin secretion in humans and mice. Am J Hum Genet. 2017;100:238–56. This study demonstrates how comprehensive integration of multiple experimental strategies and data sets can be used to infer causal mechanisms, and highlights STARD10 at the STARD10/ARAP1 locus as the likely causal gene. CrossRefPubMedPubMedCentral •• Carrat GR, Hu M, Nguyen-Tu M-S, Chabosseau P, Gaulton KJ, De Van BM, et al. Decreased STARD10 expression is associated with defective insulin secretion in humans and mice. Am J Hum Genet. 2017;100:238–56. This study demonstrates how comprehensive integration of multiple experimental strategies and data sets can be used to infer causal mechanisms, and highlights STARD10 at the STARD10/ARAP1 locus as the likely causal gene. CrossRefPubMedPubMedCentral
68.
go back to reference Rusu V, Hoch E, Mercader JM, Tenen DE, Gymrek M, Hartigan CR, et al. Type 2 diabetes variants disrupt function of SLC16A11 through two distinct mechanisms article type 2 diabetes variants disrupt function of SLC16A11 through two distinct mechanisms. Cell. 2017;170:199–212.e20.CrossRefPubMed Rusu V, Hoch E, Mercader JM, Tenen DE, Gymrek M, Hartigan CR, et al. Type 2 diabetes variants disrupt function of SLC16A11 through two distinct mechanisms article type 2 diabetes variants disrupt function of SLC16A11 through two distinct mechanisms. Cell. 2017;170:199–212.e20.CrossRefPubMed
69.
70.
go back to reference Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.CrossRefPubMedCentral Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.CrossRefPubMedCentral
Metadata
Title
Prioritising Causal Genes at Type 2 Diabetes Risk Loci
Authors
Antje K. Grotz
Anna L. Gloyn
Soren K. Thomsen
Publication date
01-09-2017
Publisher
Springer US
Published in
Current Diabetes Reports / Issue 9/2017
Print ISSN: 1534-4827
Electronic ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-017-0907-y

Other articles of this Issue 9/2017

Current Diabetes Reports 9/2017 Go to the issue

Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)

Can Cardiovascular Epidemiology and Clinical Trials Close the Risk Management Gap Between Diabetes and Prediabetes?

Pediatric Type 2 and Monogenic Diabetes (PS Zeitler, Section Editor)

Use of Continuous Glucose Monitoring in Youth-Onset Type 2 Diabetes

Economics and Policy in Diabetes (ES Huang and AA Baig, Section Editors)

Why Are Diabetes Medications So Expensive and What Can Be Done to Control Their Cost?

Economics and Policy in Diabetes (ES Huang and AA Baig, Section Editors)

Academic and Government Partnerships to Address Diabetes in the USA: a Narrative Review

Immunology, Transplantation, and Regenerative Medicine (L Piemonti and V Sordi, Section Editors)

Immunological Issues After Stem Cell-Based β Cell Replacement

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.