Skip to main content
Top
Published in: International Orthopaedics 3/2014

01-03-2014 | Original Paper

Primary stability of the Fitmore® stem: biomechanical comparison

Authors: Wojciech Pepke, Jan Nadorf, Volker Ewerbeck, Marcus R. Streit, Stefan Kinkel, Tobias Gotterbarm, Michael W. Maier, J. Philippe Kretzer

Published in: International Orthopaedics | Issue 3/2014

Login to get access

Abstract

Purpose

After clinical introduction of the Fitmore® stem (Zimmer), we noticed the formation of cortical hypertrophies in a few cases. We questioned whether (1) the primary stability or (2) load transfer of the Fitmore® stem differs from other stems unassociated with the formation of hypertrophies. We compared the Fitmore® stem to the well-established CLS® stem.

Methods

Four Fitmore® and four CLS® stems were implanted in eight synthetic femurs. A cyclic torque around the stem axis and a mediolateral cyclic torque were applied. Micromotions between stems and femurs were measured to classify the specific rotational implant stability and to analyse the bending behaviour of the stem.

Results

No statistical differences were found between the two stem designs with respect to their rotational stability (p = 0.82). For both stems, a proximal fixation was found. However, for the mediolateral bending behavior, we observed a significantly (p < 0.01) higher flexibility of the CLS® stem compared to the Fitmore® stem.

Conclusion

Hip stem implantation may induce remodelling of the periprosthetic bone structure. Considering the proximal fixation of both stems, rotational stability of the Fitmore® stem might not be a plausible explanation for clinically observed formation of hypertrophies. However, bending results support our hypothesis that the CLS® stem presumably closely follows the bending of the bone, whereas the shorter Fitmore® stem acts more rigidly. Stem rigidity and flexibility needs to be considered, as they may influence the load transfer at the implant–bone interface and thus possibly affect bone remodelling processes.
Literature
1.
go back to reference Garellick G (2012) Swedish Hip Arthroplasty Register. Annual Report 2011. Department of Ortopaedics, Sahlgrenska University Hospital Garellick G (2012) Swedish Hip Arthroplasty Register. Annual Report 2011. Department of Ortopaedics, Sahlgrenska University Hospital
2.
go back to reference Rubash HE, Sinha RK, Shanbhag AS, Kim SY (1998) Pathogenesis of bone loss after total hip arthroplasty. Orthop Clin North Am 29(2):173–186PubMedCrossRef Rubash HE, Sinha RK, Shanbhag AS, Kim SY (1998) Pathogenesis of bone loss after total hip arthroplasty. Orthop Clin North Am 29(2):173–186PubMedCrossRef
4.
go back to reference Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop Relat Res 274:79–96PubMed Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop Relat Res 274:79–96PubMed
5.
go back to reference Van Rietbergen B, Huiskes R, Weinans H, Sumner DR, Turner TM, Galante JO (1992) ESB Research Award 1992. The mechanism of bone remodeling and resorption around press- fitted THA stems. J Biomech 26(4–5):369–382 Van Rietbergen B, Huiskes R, Weinans H, Sumner DR, Turner TM, Galante JO (1992) ESB Research Award 1992. The mechanism of bone remodeling and resorption around press- fitted THA stems. J Biomech 26(4–5):369–382
6.
go back to reference Sumner DR, Galante JO (1992) Determinants of stress shielding: design versus materials versus interface. Clin Orthop Relat Res 274:202–212PubMed Sumner DR, Galante JO (1992) Determinants of stress shielding: design versus materials versus interface. Clin Orthop Relat Res 274:202–212PubMed
8.
go back to reference Glassman AH, Bobyn JD, Tanzer M (2006) New femoral designs: do they influence stress shielding? Clin Orthop Relat Res 453:64–74PubMedCrossRef Glassman AH, Bobyn JD, Tanzer M (2006) New femoral designs: do they influence stress shielding? Clin Orthop Relat Res 453:64–74PubMedCrossRef
9.
go back to reference Morrey BF, Adams RA, Kessler M (2000) A conservative femoral replacement for total hip arthroplasty. A prospective study. J Bone Joint Surg Br 82(7):952–958PubMedCrossRef Morrey BF, Adams RA, Kessler M (2000) A conservative femoral replacement for total hip arthroplasty. A prospective study. J Bone Joint Surg Br 82(7):952–958PubMedCrossRef
11.
go back to reference Steinhauser E (2006) Biomechanical principles of implant anchoring. In: Gradinger R, Gollwitzer H (eds) Ossear integration. Springer Medizin Verlag, Heidelberg, pp 16–23 Steinhauser E (2006) Biomechanical principles of implant anchoring. In: Gradinger R, Gollwitzer H (eds) Ossear integration. Springer Medizin Verlag, Heidelberg, pp 16–23
12.
go back to reference Bensmann G (1990) [Cementless fixation of endoprostheses]. Biomed Tech (Berl) 35(Suppl 3):44–47CrossRef Bensmann G (1990) [Cementless fixation of endoprostheses]. Biomed Tech (Berl) 35(Suppl 3):44–47CrossRef
15.
go back to reference Schmidbauer U, Brendel T, Kunze KG, Nietert M, Ecke H (1993) Dynamic force measurement in implantation of total endoprostheses of the hip joint. Unfallchirurgie 19(1):11–15PubMed Schmidbauer U, Brendel T, Kunze KG, Nietert M, Ecke H (1993) Dynamic force measurement in implantation of total endoprostheses of the hip joint. Unfallchirurgie 19(1):11–15PubMed
16.
go back to reference Gortz W, Nagerl UV, Nagerl H, Thomsen M (2002) Spatial micromovements of uncemented femoral components after torsional loads. J Biomech Eng 124(6):706–713PubMedCrossRef Gortz W, Nagerl UV, Nagerl H, Thomsen M (2002) Spatial micromovements of uncemented femoral components after torsional loads. J Biomech Eng 124(6):706–713PubMedCrossRef
17.
18.
19.
go back to reference Wolff J (1892) Law of bone remodeling. Law of bone remodeling. Julius Wolf Institut, Charité - Universitätsmedizin Berlin, Hirschwald Wolff J (1892) Law of bone remodeling. Law of bone remodeling. Julius Wolf Institut, Charité - Universitätsmedizin Berlin, Hirschwald
20.
go back to reference Jasty M, O’Connor DO, Henshaw RM, Harrigan TP, Harris WH (1994) Fit of the uncemented femoral component and the use of cement influence the strain transfer the femoral cortex. J Orthop Res 12(5):648–656. doi:10.1002/jor.1100120507 PubMedCrossRef Jasty M, O’Connor DO, Henshaw RM, Harrigan TP, Harris WH (1994) Fit of the uncemented femoral component and the use of cement influence the strain transfer the femoral cortex. J Orthop Res 12(5):648–656. doi:10.​1002/​jor.​1100120507 PubMedCrossRef
21.
go back to reference Brodner W, Bitzan P, Lomoschitz F, Krepler P, Jankovsky R, Lehr S, Kainberger F, Gottsauner-Wolf F (2004) Changes in bone mineral density in the proximal femur after cementless total hip arthroplasty. A five-year longitudinal study. J Bone Joint Surg Br 86(1):20–26PubMed Brodner W, Bitzan P, Lomoschitz F, Krepler P, Jankovsky R, Lehr S, Kainberger F, Gottsauner-Wolf F (2004) Changes in bone mineral density in the proximal femur after cementless total hip arthroplasty. A five-year longitudinal study. J Bone Joint Surg Br 86(1):20–26PubMed
23.
go back to reference Merle C, Streit MR, Volz C, Pritsch M, Gotterbarm T, Aldinger PR (2011) Bone remodeling around stable uncemented titanium stems during the second decade after total hip arthroplasty: a DXA study at 12 and 17 years. Osteoporos Int 22(11):2879–2886. doi:10.1007/s00198-010-1483-z PubMedCrossRef Merle C, Streit MR, Volz C, Pritsch M, Gotterbarm T, Aldinger PR (2011) Bone remodeling around stable uncemented titanium stems during the second decade after total hip arthroplasty: a DXA study at 12 and 17 years. Osteoporos Int 22(11):2879–2886. doi:10.​1007/​s00198-010-1483-z PubMedCrossRef
25.
go back to reference Huiskes R, Weinans H, van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res 274:124–134PubMed Huiskes R, Weinans H, van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res 274:124–134PubMed
27.
go back to reference Mulier M, Jaecques SV, Raaijmaakers M, Nijs J, Van der Perre G, Jonkers I (2011) Early periprosthetic bone remodelling around cemented and uncemented custom-made femoral components and their uncemented acetabular cups. Arch Orthop Trauma Surg 131(7):941–948. doi:10.1007/s00402-010-1239-4 PubMedCrossRef Mulier M, Jaecques SV, Raaijmaakers M, Nijs J, Van der Perre G, Jonkers I (2011) Early periprosthetic bone remodelling around cemented and uncemented custom-made femoral components and their uncemented acetabular cups. Arch Orthop Trauma Surg 131(7):941–948. doi:10.​1007/​s00402-010-1239-4 PubMedCrossRef
28.
go back to reference Yamaguchi K, Masuhara K, Ohzono K, Sugano N, Nishii T, Ochi T (2000) Evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty. The influence of the extent of porous coating. J Bone Joint Surg Am 82-A(10):1426–1431PubMed Yamaguchi K, Masuhara K, Ohzono K, Sugano N, Nishii T, Ochi T (2000) Evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty. The influence of the extent of porous coating. J Bone Joint Surg Am 82-A(10):1426–1431PubMed
Metadata
Title
Primary stability of the Fitmore® stem: biomechanical comparison
Authors
Wojciech Pepke
Jan Nadorf
Volker Ewerbeck
Marcus R. Streit
Stefan Kinkel
Tobias Gotterbarm
Michael W. Maier
J. Philippe Kretzer
Publication date
01-03-2014
Publisher
Springer Berlin Heidelberg
Published in
International Orthopaedics / Issue 3/2014
Print ISSN: 0341-2695
Electronic ISSN: 1432-5195
DOI
https://doi.org/10.1007/s00264-013-2138-4

Other articles of this Issue 3/2014

International Orthopaedics 3/2014 Go to the issue