Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Research

Prehospital administration of tranexamic acid in trauma patients

Authors: Arasch Wafaisade, Rolf Lefering, Bertil Bouillon, Andreas B. Böhmer, Michael Gäßler, Matthias Ruppert, TraumaRegister DGU

Published in: Critical Care | Issue 1/2016

Login to get access

Abstract

Background

Evidence on prehospital administration of the antifibrinolytic tranexamic acid (TXA) in civilian trauma populations is scarce. The aim was to study whether prehospital TXA use in trauma patients was associated with improved outcomes.

Methods

The prehospital database of the ADAC (General German Automobile Club) Air Rescue Service was linked with the TraumaRegister of the German Trauma Society to reidentify patients documented in both registries. Primarily admitted trauma patients (2012 until 2014) who were treated with TXA during the prehospital phase were matched with patients who had not received prehospital TXA, applying propensity score-based matching.

Results

The matching yielded two identical cohorts (n = 258 in each group), since there were no significant differences in demographics or injury characteristics (mean Injury Severity Score 24 ± 14 [TXA] vs. 24 ± 16 [control]; p = 0.46). The majority had sustained blunt injury (90.3 % vs. 93.0 %; p = 0.34). There were no differences with respect to prehospital therapy, including rates of intubation, chest tube insertion or both administration of i.v. fluids and catecholamines. During ER treatment, the TXA cohort received fewer numbers of red blood cells and plasma units, but without reaching statistical significance. Incidences of organ failure, sepsis or thromboembolism showed no significant differences as well, although data were incomplete for these parameters. Early mortality was significantly lower in the TXA group (e.g., 24-h mortality 5.8 % [TXA] vs. 12.4 % [control]; p = 0.01), and mean time to death was 8.8 ± 13.4 days vs. 3.6 ± 4.9 days, respectively (p = 0.001). Overall hospital mortality was similar in both groups (14.7 % vs. 16.3 %; p = 0.72). The most pronounced mortality difference was observed in patients with a high propensity score, reflecting severe injury load.

Conclusions

This is the first civilian study, to our knowledge, in which the effect of prehospital TXA use in trauma patients has been examined. TXA was associated with prolonged time to death and significantly improved early survival. Until further evidence emerges, the results of this study support the use of TXA during prehospital treatment of severely injured patients.
Literature
1.
go back to reference Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma. 2006;60(6 Suppl):S3–11.CrossRefPubMed Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma. 2006;60(6 Suppl):S3–11.CrossRefPubMed
2.
go back to reference Wafaisade A, Wutzler S, Lefering R, Tjardes T, Banerjee M, Paffrath T, et al. Drivers of acute coagulopathy after severe trauma: a multivariate analysis of 1987 patients. Emerg Med J. 2010;27:934–9.CrossRefPubMed Wafaisade A, Wutzler S, Lefering R, Tjardes T, Banerjee M, Paffrath T, et al. Drivers of acute coagulopathy after severe trauma: a multivariate analysis of 1987 patients. Emerg Med J. 2010;27:934–9.CrossRefPubMed
3.
go back to reference Maegele M, Lefering R, Yucel N, Tjardes T, Rixen D, Paffrath T, et al. Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury. 2007;38:298–304.CrossRefPubMed Maegele M, Lefering R, Yucel N, Tjardes T, Rixen D, Paffrath T, et al. Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury. 2007;38:298–304.CrossRefPubMed
4.
5.
go back to reference Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313:471–82.CrossRefPubMedPubMedCentral Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313:471–82.CrossRefPubMedPubMedCentral
6.
go back to reference Wafaisade A, Lefering R, Maegele M, Lendemans S, Flohé S, Hussmann B, et al. Coagulation management of bleeding trauma patients is changing in German trauma centers: an analysis from the trauma registry of the German Society for Trauma Surgery. J Trauma Acute Care Surg. 2012;72:936–42.CrossRefPubMed Wafaisade A, Lefering R, Maegele M, Lendemans S, Flohé S, Hussmann B, et al. Coagulation management of bleeding trauma patients is changing in German trauma centers: an analysis from the trauma registry of the German Society for Trauma Surgery. J Trauma Acute Care Surg. 2012;72:936–42.CrossRefPubMed
7.
go back to reference Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77:811–7.CrossRefPubMedPubMedCentral Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77:811–7.CrossRefPubMedPubMedCentral
8.
go back to reference Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376:23–32.CrossRefPubMed Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376:23–32.CrossRefPubMed
9.
go back to reference Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, Dewan Y, et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377:1096–101.e2.CrossRefPubMed Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, Dewan Y, et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377:1096–101.e2.CrossRefPubMed
10.
go back to reference Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17:R76.CrossRefPubMedPubMedCentral Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17:R76.CrossRefPubMedPubMedCentral
11.
go back to reference Helm M, Haunstein B, Schlechtriemen T, Ruppert M, Lampl L, Gäßler M. EZ-IO(®) intraosseous device implementation in German Helicopter Emergency Medical Service. Resuscitation. 2015;88:43–7.CrossRefPubMed Helm M, Haunstein B, Schlechtriemen T, Ruppert M, Lampl L, Gäßler M. EZ-IO(®) intraosseous device implementation in German Helicopter Emergency Medical Service. Resuscitation. 2015;88:43–7.CrossRefPubMed
12.
go back to reference Weiss M, Bernoulli L, Zollinger A. The NACA scale: construct and predictive validity of the NACA scale for prehospital severity rating in trauma patients. Anaesthesist. 2001;50:150–4.CrossRefPubMed Weiss M, Bernoulli L, Zollinger A. The NACA scale: construct and predictive validity of the NACA scale for prehospital severity rating in trauma patients. Anaesthesist. 2001;50:150–4.CrossRefPubMed
13.
go back to reference Scoring Study Committee of the German Society of Trauma Surgery. Trauma register of the German Society of Trauma Surgery [in German]. Unfallchirurg. 1994;97:230–7. Scoring Study Committee of the German Society of Trauma Surgery. Trauma register of the German Society of Trauma Surgery [in German]. Unfallchirurg. 1994;97:230–7.
14.
go back to reference Baker SP, O’Neill B, Haddon W, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14:187–96.CrossRefPubMed Baker SP, O’Neill B, Haddon W, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14:187–96.CrossRefPubMed
15.
16.
go back to reference Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Crit Care Med. 1998;26:1793–800.CrossRefPubMed Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Crit Care Med. 1998;26:1793–800.CrossRefPubMed
17.
18.
go back to reference Wagner C, Dati F. Thromboplastinzeit. In: Thomas L, editor. Labor und Diagnose: Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik. Frankfurt, Germany: TH-Books; 2000. p. 613–6. Wagner C, Dati F. Thromboplastinzeit. In: Thomas L, editor. Labor und Diagnose: Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik. Frankfurt, Germany: TH-Books; 2000. p. 613–6.
19.
go back to reference Holcomb JB, Weiskopf R, Champion H, Gould SA, Sauer RM, Brasel K, et al. Challenges to effective research in acute trauma resuscitation: consent and endpoints. Shock. 2011;35:107–13.CrossRefPubMed Holcomb JB, Weiskopf R, Champion H, Gould SA, Sauer RM, Brasel K, et al. Challenges to effective research in acute trauma resuscitation: consent and endpoints. Shock. 2011;35:107–13.CrossRefPubMed
20.
go back to reference Jiménez JJ, Iribarren JL, Brouard M, Hernández D, Palmero S, Jiménez A, et al. Safety and effectiveness of two treatment regimes with tranexamic acid to minimize inflammatory response in elective cardiopulmonary bypass patients: a randomized double-blind, dose-dependent, phase IV clinical trial. J Cardiothorac Surg. 2011;6:138.CrossRefPubMedPubMedCentral Jiménez JJ, Iribarren JL, Brouard M, Hernández D, Palmero S, Jiménez A, et al. Safety and effectiveness of two treatment regimes with tranexamic acid to minimize inflammatory response in elective cardiopulmonary bypass patients: a randomized double-blind, dose-dependent, phase IV clinical trial. J Cardiothorac Surg. 2011;6:138.CrossRefPubMedPubMedCentral
21.
go back to reference Ker K, Prieto-Merino D, Roberts I. Systematic review, meta-analysis and meta-regression of the effect of tranexamic acid on surgical blood loss. Br J Surg. 2013;100:1271–9.CrossRefPubMed Ker K, Prieto-Merino D, Roberts I. Systematic review, meta-analysis and meta-regression of the effect of tranexamic acid on surgical blood loss. Br J Surg. 2013;100:1271–9.CrossRefPubMed
22.
go back to reference Casati V, Romano A, Novelli E, D’Angelo A. Tranexamic acid for trauma. Lancet. 2010;376:1049–50. author reply 1050–1.CrossRefPubMed Casati V, Romano A, Novelli E, D’Angelo A. Tranexamic acid for trauma. Lancet. 2010;376:1049–50. author reply 1050–1.CrossRefPubMed
23.
go back to reference Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) Study. Arch Surg. 2012;147:113–9.CrossRefPubMed Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) Study. Arch Surg. 2012;147:113–9.CrossRefPubMed
24.
go back to reference Morrison JJ, Ross JD, Dubose JJ, Jansen JO, Midwinter MJ, Rasmussen TE. Association of cryoprecipitate and tranexamic acid with improved survival following wartime injury: findings from the MATTERs II Study. JAMA Surg. 2013;148:218–25.CrossRefPubMed Morrison JJ, Ross JD, Dubose JJ, Jansen JO, Midwinter MJ, Rasmussen TE. Association of cryoprecipitate and tranexamic acid with improved survival following wartime injury: findings from the MATTERs II Study. JAMA Surg. 2013;148:218–25.CrossRefPubMed
25.
go back to reference Valle EJ, Allen CJ, Van Haren RM, Jouria JM, Li H, Livingstone AS, et al. Do all trauma patients benefit from tranexamic acid? J Trauma Acute Care Surg. 2014;76:1373–8.CrossRefPubMed Valle EJ, Allen CJ, Van Haren RM, Jouria JM, Li H, Livingstone AS, et al. Do all trauma patients benefit from tranexamic acid? J Trauma Acute Care Surg. 2014;76:1373–8.CrossRefPubMed
26.
go back to reference Cole E, Davenport R, Willett K, Brohi K. Tranexamic acid use in severely injured civilian patients and the effects on outcomes: a prospective cohort study. Ann Surg. 2015;261:390–4.CrossRefPubMed Cole E, Davenport R, Willett K, Brohi K. Tranexamic acid use in severely injured civilian patients and the effects on outcomes: a prospective cohort study. Ann Surg. 2015;261:390–4.CrossRefPubMed
27.
go back to reference Ausset S, Glassberg E, Nadler R, Sunde G, Cap AP, Hoffmann C, et al. Tranexamic acid as part of remote damage-control resuscitation in the prehospital setting: a critical appraisal of the medical literature and available alternatives. J Trauma Acute Care Surg. 2015;78(6 Suppl 1):S70–5.CrossRefPubMed Ausset S, Glassberg E, Nadler R, Sunde G, Cap AP, Hoffmann C, et al. Tranexamic acid as part of remote damage-control resuscitation in the prehospital setting: a critical appraisal of the medical literature and available alternatives. J Trauma Acute Care Surg. 2015;78(6 Suppl 1):S70–5.CrossRefPubMed
28.
go back to reference Paudyal P, Smith J, Robinson M, South A, Higginson I, Reuben A, et al. Tranexamic acid in major trauma: implementation and evaluation across South West England. Eur J Emerg Med. doi:10.1097/MEJ.0000000000000323. Paudyal P, Smith J, Robinson M, South A, Higginson I, Reuben A, et al. Tranexamic acid in major trauma: implementation and evaluation across South West England. Eur J Emerg Med. doi:10.​1097/​MEJ.​0000000000000323​.
29.
go back to reference Lipsky AM, Abramovich A, Nadler R, Feinstein U, Shaked G, Kreiss Y, et al. Tranexamic acid in the prehospital setting: Israel Defense Forces’ initial experience. Injury. 2014;45:66–70.CrossRefPubMed Lipsky AM, Abramovich A, Nadler R, Feinstein U, Shaked G, Kreiss Y, et al. Tranexamic acid in the prehospital setting: Israel Defense Forces’ initial experience. Injury. 2014;45:66–70.CrossRefPubMed
30.
go back to reference Benov A, Glassberg E, Nadler R, Gendler S, Erlich T, Bader T, et al. Role I trauma experience of the Israeli Defense Forces on the Syrian border. J Trauma Acute Care Surg. 2014;77(3 Suppl 2):S71–6.CrossRefPubMed Benov A, Glassberg E, Nadler R, Gendler S, Erlich T, Bader T, et al. Role I trauma experience of the Israeli Defense Forces on the Syrian border. J Trauma Acute Care Surg. 2014;77(3 Suppl 2):S71–6.CrossRefPubMed
31.
go back to reference Vu EN, Schlamp RS, Wand RT, Kleine-Deters GA, Vu MP, Tallon JM. Prehospital use of tranexamic acid for hemorrhagic shock in primary and secondary air medical evacuation. Air Med J. 2013;32:289–92.CrossRefPubMed Vu EN, Schlamp RS, Wand RT, Kleine-Deters GA, Vu MP, Tallon JM. Prehospital use of tranexamic acid for hemorrhagic shock in primary and secondary air medical evacuation. Air Med J. 2013;32:289–92.CrossRefPubMed
32.
go back to reference Brown JB, Neal MD, Guyette FX, Peitzman AB, Billiar TR, Zuckerbraun BS, et al. Design of the Study of Tranexamic Acid during Air Medical Prehospital Transport (STAAMP) trial: addressing the knowledge gaps. Prehosp Emerg Care. 2015;19:79–86.CrossRefPubMedPubMedCentral Brown JB, Neal MD, Guyette FX, Peitzman AB, Billiar TR, Zuckerbraun BS, et al. Design of the Study of Tranexamic Acid during Air Medical Prehospital Transport (STAAMP) trial: addressing the knowledge gaps. Prehosp Emerg Care. 2015;19:79–86.CrossRefPubMedPubMedCentral
33.
go back to reference Mitra B, Mazur S, Cameron PA, Bernard S, Burns B, Smith A, et al. Tranexamic acid for trauma: filling the “GAP” in evidence. Emerg Med Australas. 2014;26:194–7.CrossRefPubMed Mitra B, Mazur S, Cameron PA, Bernard S, Burns B, Smith A, et al. Tranexamic acid for trauma: filling the “GAP” in evidence. Emerg Med Australas. 2014;26:194–7.CrossRefPubMed
Metadata
Title
Prehospital administration of tranexamic acid in trauma patients
Authors
Arasch Wafaisade
Rolf Lefering
Bertil Bouillon
Andreas B. Böhmer
Michael Gäßler
Matthias Ruppert
TraumaRegister DGU
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1322-5

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue