Skip to main content
Top
Published in: BMC Anesthesiology 1/2020

Open Access 01-12-2020 | Research article

Predictive factors for successful INTELLiVENT-ASV® use: a retrospective observational study

Authors: Shinshu Katayama, Ken Tonai, Jun Shima, Kansuke Koyama, Shin Nunomiya

Published in: BMC Anesthesiology | Issue 1/2020

Login to get access

Abstract

Background

INTELLiVENT-ASV® (I-ASV) is a closed-loop ventilation mode that automatically controls the ventilation settings. Although a number of studies have reported the usefulness of I-ASV, the clinical situations in which it may be useful have not yet been clarified. We aimed to report our initial 3 years of experience using I-ASV, particularly the clinical conditions and the technical and organizational factors associated with its use. Furthermore, we evaluated the usefulness of I-ASV and determined the predictive factors for successful management with I-ASV.

Methods

This single-center, retrospective observational study included patients who were ventilated using the Hamilton G5® ventilator (Hamilton Medical AG, Rhäzüns, Switzerland) from January 2016 to December 2018. The patients were categorized into the “I-ASV success” group and “I-ASV failure” group (those receiving mechanical ventilation with I-ASV along with any other mode). Multivariate analysis was performed to identify factors associated with successful I-ASV management.

Results

Of the 189 patients, 135 (71.4%) were categorized into the I-ASV success group. In the I-ASV success group, the reasons for ICU admission included post-elective surgery (94.1%), post-emergent surgery (81.5%), and other medical reasons (55.6%). I-ASV failure was associated with a low P/F ratio (278 vs. 167, P = 0.0003) and high Acute Physiology and Chronic Health Evaluation (APACHE) II score (21 vs. 26, P < 0.0001). The main reasons for not using I-ASV included strong inspiratory effort and asynchrony. The APACHE II score was an independent predictive factor for successful management with I-ASV, with an odds ratio of 0.92 (95% confidential interval 0.87–0.96, P = 0.0006). The area under the receiver operating curve for the APACHE II score was 0.722 (cut-off: 24).

Conclusions

In this study, we found that 71.4% of the fully mechanically ventilated patients could be managed successfully with I-ASV. The APACHE II score was an independent factor that could help predict the successful management of I-ASV. To improve I-ASV management, it is necessary to focus on patient-ventilator interactions.
Literature
1.
go back to reference Mead J. Control of respiratory frequency. J Appl Physiol. 1960;15:325–36.CrossRef Mead J. Control of respiratory frequency. J Appl Physiol. 1960;15:325–36.CrossRef
2.
go back to reference Arnal JM, Wysocki M, Novotni D, Demory D, Lopez R, Donati S, et al. Safety and efficacy of a fully closed-loop control ventilation (IntelliVent-ASV(R)) in sedated ICU patients with acute respiratory failure: a prospective randomized crossover study. Intensive Care Med. 2012;38:781–7.CrossRef Arnal JM, Wysocki M, Novotni D, Demory D, Lopez R, Donati S, et al. Safety and efficacy of a fully closed-loop control ventilation (IntelliVent-ASV(R)) in sedated ICU patients with acute respiratory failure: a prospective randomized crossover study. Intensive Care Med. 2012;38:781–7.CrossRef
3.
go back to reference Arnal JM, Garnero A, Novonti D, Demory D, Duxcros L, Berric A, et al. Feasibility study on full closed-loop control ventilation (IntelliVent-ASV) in ICU patients with acute respiratory failure: a prospective observational comparative study. Crit Care. 2013;17:R196.CrossRef Arnal JM, Garnero A, Novonti D, Demory D, Duxcros L, Berric A, et al. Feasibility study on full closed-loop control ventilation (IntelliVent-ASV) in ICU patients with acute respiratory failure: a prospective observational comparative study. Crit Care. 2013;17:R196.CrossRef
4.
go back to reference Clavieras N, Wysocki M, Coisel Y, Galia F, Conseil M, Chanques G, et al. Prospective randomized crossover study of a new closed-loop control system versus pressure support during weaning from mechanical ventilation. Anesthesiology. 2013;119:631–41.CrossRef Clavieras N, Wysocki M, Coisel Y, Galia F, Conseil M, Chanques G, et al. Prospective randomized crossover study of a new closed-loop control system versus pressure support during weaning from mechanical ventilation. Anesthesiology. 2013;119:631–41.CrossRef
5.
go back to reference Lellouche F, Bouchard PA, Simard S, L'Her E, Wysocki M. Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients. Intensive Care Med. 2013;39:463–71.CrossRef Lellouche F, Bouchard PA, Simard S, L'Her E, Wysocki M. Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients. Intensive Care Med. 2013;39:463–71.CrossRef
6.
go back to reference Beijers AJ, Roos AN, Bindels AJ. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014;40:752–3.CrossRef Beijers AJ, Roos AN, Bindels AJ. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014;40:752–3.CrossRef
7.
go back to reference Bialais E, Wittebole X, Vignaux L, Roeseler J, Wysocki M, Meyer J, et al. Closed-loop ventilation mode (IntelliVent(R)-ASV) in intensive care unit: a randomized trial. Minerva Anesthesiol. 2016;82:657–68. Bialais E, Wittebole X, Vignaux L, Roeseler J, Wysocki M, Meyer J, et al. Closed-loop ventilation mode (IntelliVent(R)-ASV) in intensive care unit: a randomized trial. Minerva Anesthesiol. 2016;82:657–68.
8.
go back to reference Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRef Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRef
9.
go back to reference Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22:707–10.CrossRef Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22:707–10.CrossRef
10.
go back to reference Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.CrossRef Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.CrossRef
Metadata
Title
Predictive factors for successful INTELLiVENT-ASV® use: a retrospective observational study
Authors
Shinshu Katayama
Ken Tonai
Jun Shima
Kansuke Koyama
Shin Nunomiya
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2020
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-020-01014-w

Other articles of this Issue 1/2020

BMC Anesthesiology 1/2020 Go to the issue