Skip to main content
Top
Published in: BMC Health Services Research 1/2008

Open Access 01-12-2008 | Research article

Predicting ICU survival: A meta-level approach

Authors: Lefteris G Gortzis, Filippos Sakellaropoulos, Ioannis Ilias, Konstantinos Stamoulis, Ioanna Dimopoulou

Published in: BMC Health Services Research | Issue 1/2008

Login to get access

Abstract

Background

The performance of separate Intensive Care Unit (ICU) status scoring systems vis-à-vis prediction of outcome is not satisfactory. Computer-based predictive modeling techniques may yield good results but their performance has seldom been extensively compared to that of other mature or emerging predictive models. The objective of the present study was twofold: to propose a prototype meta-level predicting approach concerning Intensive Care Unit (ICU) survival and to evaluate the effectiveness of typical mining models in this context.

Methods

Data on 158 men and 46 women, were used retrospectively (75% of the patients survived). We used Glasgow Coma Scale (GCS), Acute Physiology And Chronic Health Evaluation II (APACHE II), Sequential Organ Failure Assessment (SOFA) and Injury Severity Score (ISS) values to structure a decision tree (DTM), a neural network (NNM) and a logistic regression (LRM) model and we evaluated the assessment indicators implementing Receiver Operating Characteristics (ROC) plot analysis.

Results

Our findings indicate that regarding the assessment of indicators' capacity there are specific discrete limits that should be taken into account. The Az score ± SE was 0.8773± 0.0376 for the DTM, 0.8061± 0.0427 for the NNM and 0.8204± 0.0376 for the LRM, suggesting that the proposed DTM achieved a near optimal Az score.

Conclusion

The predicting processes of ICU survival may go "one step forward", by using classic composite assessment indicators as variables.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wong DT, Knaus WA: Predicting outcome in critical care: the current status of the APACHE prognostic scoring system. Can J Anaesth. 1991, 38 (3): 374-383.CrossRefPubMed Wong DT, Knaus WA: Predicting outcome in critical care: the current status of the APACHE prognostic scoring system. Can J Anaesth. 1991, 38 (3): 374-383.CrossRefPubMed
3.
go back to reference Kwok MH, Dobb GJ, Knuiman M, Finn J, Lee KY, Webb SAR: A comparison of admission and worst 24-hour Acute Physiology and Chronic Health Evaluation II scores in predicting hospital mortality: a retrospective cohort study. Crit Care. 2006, 10: R4-10.1186/cc3913.CrossRef Kwok MH, Dobb GJ, Knuiman M, Finn J, Lee KY, Webb SAR: A comparison of admission and worst 24-hour Acute Physiology and Chronic Health Evaluation II scores in predicting hospital mortality: a retrospective cohort study. Crit Care. 2006, 10: R4-10.1186/cc3913.CrossRef
4.
go back to reference Holmes CL, Gregoire G, Russell JA: Assessment of severity of illness. Principles of Critical Care 3rd edition. Edited by: In Hall JB SGAWLDHE. 2005, New York , McGraw-Hill, 63-78. Holmes CL, Gregoire G, Russell JA: Assessment of severity of illness. Principles of Critical Care 3rd edition. Edited by: In Hall JB SGAWLDHE. 2005, New York , McGraw-Hill, 63-78.
5.
go back to reference Peek N, Arts DG, Bosman RJ, van der Voort PH, de Keizer NF: External validation of prognostic models for critically ill patients required substantial sample sizes. J Clin Epidemiol. 2007, 60: 491-500. 10.1016/j.jclinepi.2006.08.011.CrossRefPubMed Peek N, Arts DG, Bosman RJ, van der Voort PH, de Keizer NF: External validation of prognostic models for critically ill patients required substantial sample sizes. J Clin Epidemiol. 2007, 60: 491-500. 10.1016/j.jclinepi.2006.08.011.CrossRefPubMed
6.
go back to reference Hariharan S, Zbar A: Risk scoring in perioperative and surgical intensive care patients: a review. Curr Surg. 2006, 63 (3): 226-236. 10.1016/j.cursur.2006.02.005.CrossRefPubMed Hariharan S, Zbar A: Risk scoring in perioperative and surgical intensive care patients: a review. Curr Surg. 2006, 63 (3): 226-236. 10.1016/j.cursur.2006.02.005.CrossRefPubMed
7.
go back to reference den Boer S, de Keizer NF, de Jonge E: Performance of prognostic models in critically ill cancer patients - a review. Crit Care. 2005, 9 (4): R458-63. 10.1186/cc3765.CrossRefPubMedPubMedCentral den Boer S, de Keizer NF, de Jonge E: Performance of prognostic models in critically ill cancer patients - a review. Crit Care. 2005, 9 (4): R458-63. 10.1186/cc3765.CrossRefPubMedPubMedCentral
8.
go back to reference Nimgaonkar A, Karnad DR, Sudarshan S, Ohno-Machado L, Kohane I: Prediction of mortality in an Indian intensive care unit Comparison between APACHE II and artificial neural networks. Intensive Care Med. 2004, 30: 248-253. 10.1007/s00134-003-2105-4.CrossRefPubMed Nimgaonkar A, Karnad DR, Sudarshan S, Ohno-Machado L, Kohane I: Prediction of mortality in an Indian intensive care unit Comparison between APACHE II and artificial neural networks. Intensive Care Med. 2004, 30: 248-253. 10.1007/s00134-003-2105-4.CrossRefPubMed
9.
go back to reference Rutledge R: Injury Severity and Probability of Survival Assessment in Trauma Patients Using a Predictive Hierarchical Network Model Derived from ICD-9 Codes. J Trauma. 1995, 38 (4): 590-601.CrossRefPubMed Rutledge R: Injury Severity and Probability of Survival Assessment in Trauma Patients Using a Predictive Hierarchical Network Model Derived from ICD-9 Codes. J Trauma. 1995, 38 (4): 590-601.CrossRefPubMed
10.
go back to reference Eftekhar B, Mohammad K, Ardebili HA, Ghodsi M, Ketabchi E: Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Med Inform Decis Mak. 2005, 5: 3-10.1186/1472-6947-5-3.CrossRefPubMedPubMedCentral Eftekhar B, Mohammad K, Ardebili HA, Ghodsi M, Ketabchi E: Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Med Inform Decis Mak. 2005, 5: 3-10.1186/1472-6947-5-3.CrossRefPubMedPubMedCentral
11.
go back to reference Suka M, Oeda S, Ichimura T, Yoshida K, Takezawa J: Comparison of proportional hazard model and neural network models in a real data set of intensive care unit patients. Stud Health Technol Inform. 2004, 107 (Pt 1): 741-745.PubMed Suka M, Oeda S, Ichimura T, Yoshida K, Takezawa J: Comparison of proportional hazard model and neural network models in a real data set of intensive care unit patients. Stud Health Technol Inform. 2004, 107 (Pt 1): 741-745.PubMed
12.
go back to reference Kayaalp M, Cooper GF, Clermont G: Predicting ICU mortality: a comparison of stationary and nonstationary temporal models. Proc AMIA Symp. 2000, 418-422. Kayaalp M, Cooper GF, Clermont G: Predicting ICU mortality: a comparison of stationary and nonstationary temporal models. Proc AMIA Symp. 2000, 418-422.
13.
go back to reference Williams TA, Dobb GJ, Finn JC, Webb SA: Long-term survival from intensive care: a review. Intensive Care Med. 2005, 31 (10): 1306-1315. 10.1007/s00134-005-2744-8.CrossRefPubMed Williams TA, Dobb GJ, Finn JC, Webb SA: Long-term survival from intensive care: a review. Intensive Care Med. 2005, 31 (10): 1306-1315. 10.1007/s00134-005-2744-8.CrossRefPubMed
15.
go back to reference Hosmer. D W, Hosmer. T, Le Cessie. S, Lemeshow. S: A comparison of goodness-of-fit tests for the logistic regression model. Stat Med. 1997, 16: 965-980. 10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509>3.0.CO;2-O.CrossRefPubMed Hosmer. D W, Hosmer. T, Le Cessie. S, Lemeshow. S: A comparison of goodness-of-fit tests for the logistic regression model. Stat Med. 1997, 16: 965-980. 10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509>3.0.CO;2-O.CrossRefPubMed
16.
go back to reference Metz CE: Basic principles of ROC analysis. Seminars in Nuclear Medicine. 1978, 283-298. 10.1016/S0001-2998(78)80014-2. Metz CE: Basic principles of ROC analysis. Seminars in Nuclear Medicine. 1978, 283-298. 10.1016/S0001-2998(78)80014-2.
17.
go back to reference Beck JR, Shultz EK: The use of relative operating characteristic (ROC) curves in test performance evaluation. Arch Pathol Lab Med. 1986, 110 (1): 13-20.PubMed Beck JR, Shultz EK: The use of relative operating characteristic (ROC) curves in test performance evaluation. Arch Pathol Lab Med. 1986, 110 (1): 13-20.PubMed
18.
go back to reference Hanley. A J, McNeil. J B: A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983, 148: 839-843.CrossRef Hanley. A J, McNeil. J B: A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983, 148: 839-843.CrossRef
19.
go back to reference Schuster DP: Acute lung injury and predictors of mortality. Am J Physiol Lung Cell Mol Physiol. 2003, 285: L18-L19.CrossRefPubMed Schuster DP: Acute lung injury and predictors of mortality. Am J Physiol Lung Cell Mol Physiol. 2003, 285: L18-L19.CrossRefPubMed
Metadata
Title
Predicting ICU survival: A meta-level approach
Authors
Lefteris G Gortzis
Filippos Sakellaropoulos
Ioannis Ilias
Konstantinos Stamoulis
Ioanna Dimopoulou
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Health Services Research / Issue 1/2008
Electronic ISSN: 1472-6963
DOI
https://doi.org/10.1186/1472-6963-8-157

Other articles of this Issue 1/2008

BMC Health Services Research 1/2008 Go to the issue