Skip to main content
Top
Published in: Journal of Translational Medicine 1/2014

Open Access 01-12-2014 | Research

Potential therapeutic targets for hypoxia-induced pulmonary artery hypertension

Authors: Li Dong, Yuping Li, HongLing Hu, Lin Shi, Junjie Chen, Beibei Wang, Chaolei Chen, Haiping Zhu, Yunlei Li, Qiu Li, Liping Zhang, Chengshui Chen

Published in: Journal of Translational Medicine | Issue 1/2014

Login to get access

Abstract

Background

Hypoxic pulmonary artery hypertension (PAH) as a severe pulmonary disease is characterized by changes of pulmonary vascular reconstruction. Mitochondrial ATP-sensitive potassium channel (mitoKATP) was considered as one of factors responsible for the proliferation of hypoxic pulmonary arterial smooth muscle cells (PASMCs), although the exact mechanisms remain unclear.

Methods

Pulmonary artery hypertension was induced in rats with or without 5-hydroxydecanoate (5-HD). The mean pulmonary artery pressure, morphologic changes, mRNA and protein expressions of voltage-gated potassium channels (Kv1.5 channel), were measured. The concentrations of monocyte chemo-attractant protein-1 (MCP-1) and transforming growth factor-beta1 (TGF-β1) were detected. Furthermore, pulmonary arterial smooth muscle cells (PASMCs) were isolated and cultured with or without hypoxia pretreated with or without 5-HD or/and Kv1.5 inhibitor 4-aminopyridine (4-AP). Mitochondrial membrane potential (Δψm) and the proliferation of PASMCs were detected.

Results

5-HD significantly prevented the development of PAH by blocking the mitochondrial membrane depolarization, increased the expression of voltage-gated potassium channels, and reduced pulmonary hypertension mediated by TGF-β1 or MCP-1 signaling pathway.

Conclusion

The MitoKATP plays an important role in the development of PAH and may be therapeutic target for the treatment of disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mandegar M, Fung YC, Huang W, Remillard CV, Rubin LJ, Yuan JX: Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res. 2004, 68: 75-103. 10.1016/j.mvr.2004.06.001.CrossRefPubMed Mandegar M, Fung YC, Huang W, Remillard CV, Rubin LJ, Yuan JX: Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res. 2004, 68: 75-103. 10.1016/j.mvr.2004.06.001.CrossRefPubMed
2.
go back to reference Moudgil R, Michelakis ED, Archer SL: Hypoxic pulmonary vasoconstriction. J Appl Physiol. 2005, 98: 390-403.CrossRefPubMed Moudgil R, Michelakis ED, Archer SL: Hypoxic pulmonary vasoconstriction. J Appl Physiol. 2005, 98: 390-403.CrossRefPubMed
3.
go back to reference Zhang S, Fantozzi I, Tigno DD, Yi ES, Platoshyn O, Thistlethwaite PA, Kriett JM, Yung G, Rubin LJ, Yuan JX: Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol. 2003, 285: 740-754. Zhang S, Fantozzi I, Tigno DD, Yi ES, Platoshyn O, Thistlethwaite PA, Kriett JM, Yung G, Rubin LJ, Yuan JX: Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol. 2003, 285: 740-754.
4.
go back to reference Ward JP, McMurtry IF: Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol. 2009, 9: 287-296. 10.1016/j.coph.2009.02.006.PubMedCentralCrossRefPubMed Ward JP, McMurtry IF: Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol. 2009, 9: 287-296. 10.1016/j.coph.2009.02.006.PubMedCentralCrossRefPubMed
5.
go back to reference Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zúñiga-Pflücker JC, Kroemer G, Penninger JM: Essential role of mitochondrial apoptosis-inducing factor in programmed cell death. Nature. 2001, 29: 549-554.CrossRef Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zúñiga-Pflücker JC, Kroemer G, Penninger JM: Essential role of mitochondrial apoptosis-inducing factor in programmed cell death. Nature. 2001, 29: 549-554.CrossRef
6.
go back to reference Hong Z, Weir EK, Nelson DP, Olschewski A: Subacute hypoxia decreases voltage-activated potassium channel expression and function in pulmonary artery myocytes. Am J Respir Cell Mol Biol. 2004, 31: 337-343. 10.1165/rcmb.2003-0386OC.CrossRefPubMed Hong Z, Weir EK, Nelson DP, Olschewski A: Subacute hypoxia decreases voltage-activated potassium channel expression and function in pulmonary artery myocytes. Am J Respir Cell Mol Biol. 2004, 31: 337-343. 10.1165/rcmb.2003-0386OC.CrossRefPubMed
7.
go back to reference Huang SS, Huang JS: TGF-beta control of cell proliferation. J Cell Biochem. 2005, 96: 447-462. 10.1002/jcb.20558.CrossRefPubMed Huang SS, Huang JS: TGF-beta control of cell proliferation. J Cell Biochem. 2005, 96: 447-462. 10.1002/jcb.20558.CrossRefPubMed
8.
go back to reference Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J, Feghali-Bostwick C, Mutlu GM, Budinger GR, Chandel NS: Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling. J Biol Chem. 2013, 288: 770-777. 10.1074/jbc.M112.431973.PubMedCentralCrossRefPubMed Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J, Feghali-Bostwick C, Mutlu GM, Budinger GR, Chandel NS: Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling. J Biol Chem. 2013, 288: 770-777. 10.1074/jbc.M112.431973.PubMedCentralCrossRefPubMed
9.
go back to reference Miyokawa-Gorin K, Takahashi K, Handa K, Kitahara A, Sumitani Y, Katsuta H, Tanaka T, Nishida S, Yoshimoto K, Ohno H, Ishida H: Induction of mitochondrial uncoupling enhances VEGF120 but reduces MCP-1 release in mature 3 T3-L1 adipocytes: possible regulatory mechanism through endogenous ER stress and AMPK-related pathways. Biochem Biophys Res Commun. 2012, 9: 200-205.CrossRef Miyokawa-Gorin K, Takahashi K, Handa K, Kitahara A, Sumitani Y, Katsuta H, Tanaka T, Nishida S, Yoshimoto K, Ohno H, Ishida H: Induction of mitochondrial uncoupling enhances VEGF120 but reduces MCP-1 release in mature 3 T3-L1 adipocytes: possible regulatory mechanism through endogenous ER stress and AMPK-related pathways. Biochem Biophys Res Commun. 2012, 9: 200-205.CrossRef
10.
go back to reference Hassoun PM, Mouthon L, Barberà JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, Newman JH, Rabinovitch M, Schermuly R, Stenmark KR, Voelkel NF, Yuan JX, Humbert M: Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009, 54: 10-19. 10.1016/j.jacc.2009.04.006.CrossRef Hassoun PM, Mouthon L, Barberà JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, Newman JH, Rabinovitch M, Schermuly R, Stenmark KR, Voelkel NF, Yuan JX, Humbert M: Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009, 54: 10-19. 10.1016/j.jacc.2009.04.006.CrossRef
11.
go back to reference Hu HL, Zhang ZX, Chen CS, Cai C, Zhao JP, Wang X: Effects of mitochondrial potassium channel and membrane potential on hypoxic human pulmonary artery smooth muscle cells [J]. Am J Respri Cell Mol Biol. 2010, 42: 661-666. 10.1165/rcmb.2009-0017OC.CrossRef Hu HL, Zhang ZX, Chen CS, Cai C, Zhao JP, Wang X: Effects of mitochondrial potassium channel and membrane potential on hypoxic human pulmonary artery smooth muscle cells [J]. Am J Respri Cell Mol Biol. 2010, 42: 661-666. 10.1165/rcmb.2009-0017OC.CrossRef
12.
go back to reference Jian-Ping Z, Zhou Zhi-Gang H, Hong-Ling GZ, Tao W, Guo-Hua Z, Zhen-Xiang Z: The relationships among reactive oxygen species, hypoxia-inducible factor 1α and cell proliferation in rat pulmonary arterial smooth muscle cells under hypoxia. Acta Physiologica Sinica. 2007, 59: 319-324. Jian-Ping Z, Zhou Zhi-Gang H, Hong-Ling GZ, Tao W, Guo-Hua Z, Zhen-Xiang Z: The relationships among reactive oxygen species, hypoxia-inducible factor 1α and cell proliferation in rat pulmonary arterial smooth muscle cells under hypoxia. Acta Physiologica Sinica. 2007, 59: 319-324.
13.
go back to reference Paddenberg R, Faulhammer P, Goldenberg A, Gries B, Heinl J, Kummer W: Impact of modulators of mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) on hypoxic pulmonary vasoconstriction. AdvExp Med Biol. 2009, 648: 361-368. 10.1007/978-90-481-2259-2_41.CrossRef Paddenberg R, Faulhammer P, Goldenberg A, Gries B, Heinl J, Kummer W: Impact of modulators of mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) on hypoxic pulmonary vasoconstriction. AdvExp Med Biol. 2009, 648: 361-368. 10.1007/978-90-481-2259-2_41.CrossRef
14.
go back to reference Wang T, Zhang ZX, Xu YJ, Hu QH: 5-Hydroxydecanoate inhibits proliferation of hypoxic human pulmonary artery smooth muscle cells by blocking mitochondrial K(ATP) channels. Acta Pharmacol Sin. 2007, 28: 1531-1540. 10.1111/j.1745-7254.2007.00636.x.CrossRefPubMed Wang T, Zhang ZX, Xu YJ, Hu QH: 5-Hydroxydecanoate inhibits proliferation of hypoxic human pulmonary artery smooth muscle cells by blocking mitochondrial K(ATP) channels. Acta Pharmacol Sin. 2007, 28: 1531-1540. 10.1111/j.1745-7254.2007.00636.x.CrossRefPubMed
15.
go back to reference Wang T, Zhang ZX, Xu YJ: Effect of mitochondrial KATP channel on voltage-gated K + channel in 24 hour-hypoxic human pulmonary artery smooth muscle cells. Chin Med J (Engl). 2005, 118: 12-19. Wang T, Zhang ZX, Xu YJ: Effect of mitochondrial KATP channel on voltage-gated K + channel in 24 hour-hypoxic human pulmonary artery smooth muscle cells. Chin Med J (Engl). 2005, 118: 12-19.
16.
go back to reference Sun P, Liu WL: Method for measuring the pulmonary artery pressure with a right cardiac catheter in rats [Article in Chinese]. J of Chinese Acad of Med Sci. 1984, 6: 465-467. Sun P, Liu WL: Method for measuring the pulmonary artery pressure with a right cardiac catheter in rats [Article in Chinese]. J of Chinese Acad of Med Sci. 1984, 6: 465-467.
17.
go back to reference Krick S, Platoshyn O, McDaniel SS, Rubin LJ, Yuan JX: Augmented K + currents and mitochondrial membrane depolarization in pulmonary artery myocyte apoptosis. Am J Physiol Lung Cell Mol Physiol. 2001, 281: 887-894. Krick S, Platoshyn O, McDaniel SS, Rubin LJ, Yuan JX: Augmented K + currents and mitochondrial membrane depolarization in pulmonary artery myocyte apoptosis. Am J Physiol Lung Cell Mol Physiol. 2001, 281: 887-894.
18.
19.
go back to reference Das B, Sarkar C: Cardiomyocyte mitochondrial KATP channels participate in the antiarrhythmic and antiinfarct effects of KATP activators during ischemia and reperfusion in an intact anesthetized rabbit model. Pol J Pharmacol. 2003, 55: 771-786.PubMed Das B, Sarkar C: Cardiomyocyte mitochondrial KATP channels participate in the antiarrhythmic and antiinfarct effects of KATP activators during ischemia and reperfusion in an intact anesthetized rabbit model. Pol J Pharmacol. 2003, 55: 771-786.PubMed
20.
go back to reference Costa AD, Quinlan CL, Andrukhiv A, West IC, Jabůrek M, Garlid KD: The direct physiological effects of mitoKATP opening on heart mitochondria. Am J Physiol Heart Circ Physiol. 2006, 290: 406-415.CrossRef Costa AD, Quinlan CL, Andrukhiv A, West IC, Jabůrek M, Garlid KD: The direct physiological effects of mitoKATP opening on heart mitochondria. Am J Physiol Heart Circ Physiol. 2006, 290: 406-415.CrossRef
21.
go back to reference Nilakantan V, Liang H, Mortensen J, Taylor E, Johnson CP: Variable effects of the mitoK(ATP) channel modulators diazoxide and 5-HD in ATP-depleted renal epithelial cells. Mol Cell Biochem. 2010, 335: 211-222. 10.1007/s11010-009-0271-6.CrossRefPubMed Nilakantan V, Liang H, Mortensen J, Taylor E, Johnson CP: Variable effects of the mitoK(ATP) channel modulators diazoxide and 5-HD in ATP-depleted renal epithelial cells. Mol Cell Biochem. 2010, 335: 211-222. 10.1007/s11010-009-0271-6.CrossRefPubMed
22.
go back to reference Teshima Y, Akao M, Li RA, Chong TH, Baumgartner WA, Johnston MV, Marbán E: Mitochondrial ATP-sensitive potassium channel acti-vation protects cerebellar granule neurons from apoptosis induced by oxidative stress. Stroke. 2003, 349: 1796-1802.CrossRef Teshima Y, Akao M, Li RA, Chong TH, Baumgartner WA, Johnston MV, Marbán E: Mitochondrial ATP-sensitive potassium channel acti-vation protects cerebellar granule neurons from apoptosis induced by oxidative stress. Stroke. 2003, 349: 1796-1802.CrossRef
23.
go back to reference Cao C, Healey S, Amaral A, Lee-Couture A, Wan S, Kouttab N, Chu W, Wan Y: ATP-sensitive potassium channel: a novel target for pro-tection against UV-induced human skin cell damage. J Cell Physiol. 2007, 212: 252-263. 10.1002/jcp.21026.CrossRefPubMed Cao C, Healey S, Amaral A, Lee-Couture A, Wan S, Kouttab N, Chu W, Wan Y: ATP-sensitive potassium channel: a novel target for pro-tection against UV-induced human skin cell damage. J Cell Physiol. 2007, 212: 252-263. 10.1002/jcp.21026.CrossRefPubMed
24.
go back to reference Hu HL, Wang T, Zhang ZX, Zhao JP, Xu YJ: Effect of diazoxide on change of H2O2 in rat pulmonary artery smooth muscle cells and proliferation of hypoxic rat pulmonary artery smooth muscle cells [Article in Chinese]. Chin J Pathophysiol. 2007, 23: 2002-2006. Hu HL, Wang T, Zhang ZX, Zhao JP, Xu YJ: Effect of diazoxide on change of H2O2 in rat pulmonary artery smooth muscle cells and proliferation of hypoxic rat pulmonary artery smooth muscle cells [Article in Chinese]. Chin J Pathophysiol. 2007, 23: 2002-2006.
25.
go back to reference Wang YX, Zheng YM: ROS-dependent signaling mechanisms for hypoxic Ca (2+) response in pulmonary artery myocytes. Antioxid Redox Signal. 2010, 12: 611-623. 10.1089/ars.2009.2877.PubMedCentralCrossRefPubMed Wang YX, Zheng YM: ROS-dependent signaling mechanisms for hypoxic Ca (2+) response in pulmonary artery myocytes. Antioxid Redox Signal. 2010, 12: 611-623. 10.1089/ars.2009.2877.PubMedCentralCrossRefPubMed
26.
go back to reference Archer SL, London B, Hampl V, Wu X, Nsair A, Puttagunta L, Hashimoto K, Waite RE, Michelakis ED: Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J. 2001, 15: 1801-1803.PubMed Archer SL, London B, Hampl V, Wu X, Nsair A, Puttagunta L, Hashimoto K, Waite RE, Michelakis ED: Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J. 2001, 15: 1801-1803.PubMed
27.
go back to reference Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, Karwande SV, Stringham JC, Bull DA, Gleich M, Kennedy TP, Hoidal JR: Transforming growth factor-beta 1 induces Nox4 NAD (P) H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells [J]. Am J Physiol Lung Cell Mol Physiol. 2006, 290: 661-673. 10.1152/ajplung.00269.2005.CrossRef Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, Karwande SV, Stringham JC, Bull DA, Gleich M, Kennedy TP, Hoidal JR: Transforming growth factor-beta 1 induces Nox4 NAD (P) H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells [J]. Am J Physiol Lung Cell Mol Physiol. 2006, 290: 661-673. 10.1152/ajplung.00269.2005.CrossRef
28.
go back to reference Ismail S, Sturrock A, Wu P, Cahill B, Norman K, Huecksteadt T, Sanders K, Kennedy T, Hoidal J: NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: the role of autocrine production of transforming growth factor-β1 and insulin-like growth factor binding protein-3[J]. Am J Physiol Lung Cell Mol Physiol. 2009, 296: 489-499. 10.1152/ajplung.90488.2008.CrossRef Ismail S, Sturrock A, Wu P, Cahill B, Norman K, Huecksteadt T, Sanders K, Kennedy T, Hoidal J: NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: the role of autocrine production of transforming growth factor-β1 and insulin-like growth factor binding protein-3[J]. Am J Physiol Lung Cell Mol Physiol. 2009, 296: 489-499. 10.1152/ajplung.90488.2008.CrossRef
29.
go back to reference Balabanian K, Foussat A, Dorfmüller P, Durand-Gasselin I, Capel F, Bouchet-Delbos L, Portier A, Marfaing-Koka A, Krzysiek R, Rimaniol AC, Simonneau G, Emilie D, Humbert M: CX (3) C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2002, 165: 1419-1425. 10.1164/rccm.2106007.CrossRefPubMed Balabanian K, Foussat A, Dorfmüller P, Durand-Gasselin I, Capel F, Bouchet-Delbos L, Portier A, Marfaing-Koka A, Krzysiek R, Rimaniol AC, Simonneau G, Emilie D, Humbert M: CX (3) C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2002, 165: 1419-1425. 10.1164/rccm.2106007.CrossRefPubMed
30.
go back to reference Molet S, Furukawa K, Maghazechi A, Hamid Q, Giaid A: Chemokine-and cytokine-induced expression of endothelin 1 and endothelin-converting enzyme 1 in endothelial cells. J Allergy Clin Immunol. 2000, 105: 333-338. 10.1016/S0091-6749(00)90084-8.CrossRefPubMed Molet S, Furukawa K, Maghazechi A, Hamid Q, Giaid A: Chemokine-and cytokine-induced expression of endothelin 1 and endothelin-converting enzyme 1 in endothelial cells. J Allergy Clin Immunol. 2000, 105: 333-338. 10.1016/S0091-6749(00)90084-8.CrossRefPubMed
Metadata
Title
Potential therapeutic targets for hypoxia-induced pulmonary artery hypertension
Authors
Li Dong
Yuping Li
HongLing Hu
Lin Shi
Junjie Chen
Beibei Wang
Chaolei Chen
Haiping Zhu
Yunlei Li
Qiu Li
Liping Zhang
Chengshui Chen
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2014
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-12-39

Other articles of this Issue 1/2014

Journal of Translational Medicine 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.