Skip to main content
Top
Published in: Netherlands Heart Journal 3/2017

Open Access 01-03-2017 | Review Article - Point of View

Potential new mechanisms of pro-arrhythmia in arrhythmogenic cardiomyopathy: focus on calcium sensitive pathways

Authors: C. J. M. van Opbergen, M. Delmar, T. A. B. van Veen

Published in: Netherlands Heart Journal | Issue 3/2017

Login to get access

Abstract

Arrhythmogenic cardiomyopathy, or its most well-known subform arrhythmogenic right ventricular cardiomyopathy (ARVC), is a cardiac disease mainly characterised by a gradual replacement of the myocardial mass by fibrous and fatty tissue, leading to dilatation of the ventricular wall, arrhythmias and progression towards heart failure. ARVC is commonly regarded as a disease of the intercalated disk in which mutations in desmosomal proteins are an important causative factor. Interestingly, the Dutch founder mutation PLN R14Del has been identified to play an additional, and major, role in ARVC patients within the Netherlands. This is remarkable since the phospholamban (PLN) protein plays a leading role in regulation of the sarcoplasmic reticulum calcium load rather than in the establishment of intercellular integrity. In this review we outline the intracellular cardiac calcium dynamics and relate pathophysiological signalling, induced by disturbed calcium handling, with activation of calmodulin dependent kinase II (CaMKII) and calcineurin A (CnA). We postulate a thus far unrecognised role for Ca2+ sensitive signalling proteins in maladaptive remodelling of the macromolecular protein complex that forms the intercalated disk, during pro-arrhythmic remodelling of the heart.
Literature
1.
go back to reference Van Tintelen JP, Pieper PG, Van Spaendonck-Zwarts KY, et al. Pregnancy, cardiomyopathies, and genetics. Cardiovasc Res. 2014;101:571–8.CrossRefPubMed Van Tintelen JP, Pieper PG, Van Spaendonck-Zwarts KY, et al. Pregnancy, cardiomyopathies, and genetics. Cardiovasc Res. 2014;101:571–8.CrossRefPubMed
2.
go back to reference Groeneweg JA, Bhonsale A, James CA, et al. Clinical Presentation, Long-Term Follow-Up, and Outcomes of 1001 Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Patients and Family Members. Circ Cardiovasc Genet. 2015;8:437–46.CrossRefPubMed Groeneweg JA, Bhonsale A, James CA, et al. Clinical Presentation, Long-Term Follow-Up, and Outcomes of 1001 Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Patients and Family Members. Circ Cardiovasc Genet. 2015;8:437–46.CrossRefPubMed
3.
go back to reference van Tintelen JP, Entius MM, Bhuiyan ZA, et al. Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2006;113:1650–8.CrossRefPubMed van Tintelen JP, Entius MM, Bhuiyan ZA, et al. Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2006;113:1650–8.CrossRefPubMed
4.
go back to reference Cuenca S, Ruiz-Cano MJ, Gimeno-Blanes JR, et al. Genetic Basis of Familial Dilated Cardiomyopathy Undergoing Heart Transplantation. J Heart Lung Transplant. 2016;35:625–35.CrossRefPubMed Cuenca S, Ruiz-Cano MJ, Gimeno-Blanes JR, et al. Genetic Basis of Familial Dilated Cardiomyopathy Undergoing Heart Transplantation. J Heart Lung Transplant. 2016;35:625–35.CrossRefPubMed
5.
go back to reference Cerrone M, Noorman M, Lin X, et al. Sodium current deficit and arrhythmogenesis in a murine model of plakophilin-2 haploinsufficiency. Cardiovasc Res. 2012;95:460–8.CrossRefPubMedPubMedCentral Cerrone M, Noorman M, Lin X, et al. Sodium current deficit and arrhythmogenesis in a murine model of plakophilin-2 haploinsufficiency. Cardiovasc Res. 2012;95:460–8.CrossRefPubMedPubMedCentral
6.
go back to reference Qu Z, Weiss JN. Mechanisms of ventricular arrhythmias: from molecular fluctuations to electrical turbulence. Annu Rev Physiol. 2015;77:29–55.CrossRefPubMed Qu Z, Weiss JN. Mechanisms of ventricular arrhythmias: from molecular fluctuations to electrical turbulence. Annu Rev Physiol. 2015;77:29–55.CrossRefPubMed
7.
go back to reference de Jong S, van Veen TAB, van Rijen HVM, et al. Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol. 2011;57:630–8.CrossRefPubMed de Jong S, van Veen TAB, van Rijen HVM, et al. Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol. 2011;57:630–8.CrossRefPubMed
8.
go back to reference Noorman M, Hakim S, Kessler E, et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm. 2013;10:412–9.CrossRefPubMed Noorman M, Hakim S, Kessler E, et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm. 2013;10:412–9.CrossRefPubMed
9.
go back to reference Basso C, Bauce B, Corrado D, et al. Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol. 2012;9:223–33.CrossRef Basso C, Bauce B, Corrado D, et al. Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol. 2012;9:223–33.CrossRef
10.
go back to reference Haghighi K, Kolokathis F. Gramolini, et al. A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci. U S A. 2006;103:1388–93.CrossRef Haghighi K, Kolokathis F. Gramolini, et al. A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci. U S A. 2006;103:1388–93.CrossRef
11.
go back to reference van der Zwaag PA, van Rijsingen IAW, Asimaki A, et al. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur J Heart Fail. 2012;14:1199–207.CrossRefPubMedPubMedCentral van der Zwaag PA, van Rijsingen IAW, Asimaki A, et al. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur J Heart Fail. 2012;14:1199–207.CrossRefPubMedPubMedCentral
12.
go back to reference Chen SN, Gurha P, Lombardi R, et al. The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ Res. 2014;114:454–68.CrossRefPubMed Chen SN, Gurha P, Lombardi R, et al. The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ Res. 2014;114:454–68.CrossRefPubMed
13.
go back to reference Garcia-Gras E, Lombardi R, Giocondo MJ, et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest. 2006;116:2012–21.CrossRefPubMedPubMedCentral Garcia-Gras E, Lombardi R, Giocondo MJ, et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest. 2006;116:2012–21.CrossRefPubMedPubMedCentral
14.
go back to reference Noorman M, van der Heyden MAG, van Veen TAB, et al. Cardiac cell-cell junctions in health and disease: Electrical versus mechanical coupling. J Mol Cell Cardiol. 2009;47:23–31.CrossRefPubMed Noorman M, van der Heyden MAG, van Veen TAB, et al. Cardiac cell-cell junctions in health and disease: Electrical versus mechanical coupling. J Mol Cell Cardiol. 2009;47:23–31.CrossRefPubMed
15.
go back to reference Chelko SP, Asimaki A, Andersen P, et al. Central role for GSK3β in the pathogenesis of arrhythmogenic cardiomyopathy. JCI Insight. 2016;pii: e85923 Chelko SP, Asimaki A, Andersen P, et al. Central role for GSK3β in the pathogenesis of arrhythmogenic cardiomyopathy. JCI Insight. 2016;pii: e85923
16.
go back to reference Leo-Macias A, Agullo-Pascual E, Sanchez-Alonso JL, et al. Erratum: Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc. Nat Commun. 2016;7:10919.CrossRefPubMedPubMedCentral Leo-Macias A, Agullo-Pascual E, Sanchez-Alonso JL, et al. Erratum: Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc. Nat Commun. 2016;7:10919.CrossRefPubMedPubMedCentral
17.
go back to reference Sato PY, Coombs W, Lin X, et al. Interactions between ankyrin-G, Plakophilin-2, and Connexin43 at the cardiac intercalated disc. Circ Res. 2011;109:193–201.CrossRefPubMedPubMedCentral Sato PY, Coombs W, Lin X, et al. Interactions between ankyrin-G, Plakophilin-2, and Connexin43 at the cardiac intercalated disc. Circ Res. 2011;109:193–201.CrossRefPubMedPubMedCentral
18.
go back to reference Makara MA, Curran J, Little SC, et al. Ankyrin-G coordinates intercalated disc signaling platform to regulate cardiac excitability in vivo. Circ Res. 2014;115:929–38.CrossRefPubMedPubMedCentral Makara MA, Curran J, Little SC, et al. Ankyrin-G coordinates intercalated disc signaling platform to regulate cardiac excitability in vivo. Circ Res. 2014;115:929–38.CrossRefPubMedPubMedCentral
19.
go back to reference Groeneweg JA, van der Zwaag PA, Jongbloed JDH, et al. Left-dominant arrhythmogenic cardiomyopathy in a large family: associated desmosomal or nondesmosomal genotype? Heart Rhythm. 2013;10:548–59.CrossRefPubMed Groeneweg JA, van der Zwaag PA, Jongbloed JDH, et al. Left-dominant arrhythmogenic cardiomyopathy in a large family: associated desmosomal or nondesmosomal genotype? Heart Rhythm. 2013;10:548–59.CrossRefPubMed
21.
go back to reference Haghighi K, Pritchard T, Bossuyt J, et al. The human phospholamban Arg14-deletion mutant localizes to plasma membrane and interacts with the Na/K-ATPase. J Mol Cell Cardiol. 2012;52:773–82.CrossRefPubMed Haghighi K, Pritchard T, Bossuyt J, et al. The human phospholamban Arg14-deletion mutant localizes to plasma membrane and interacts with the Na/K-ATPase. J Mol Cell Cardiol. 2012;52:773–82.CrossRefPubMed
22.
go back to reference Backs J, Backs T, Neef S, et al. The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA. 2009;106:2342–7.CrossRefPubMedPubMedCentral Backs J, Backs T, Neef S, et al. The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA. 2009;106:2342–7.CrossRefPubMedPubMedCentral
24.
go back to reference Luo A, Cao Z, Xiang Y, et al. Ketamine attenuates the Na+-dependent Ca2+ overload in rabbit ventricular myocytes in vitro by inhibiting late Na+ and L‑type Ca2+ currents. Acta Pharmacol Sin. 2015;36:1327–36.CrossRefPubMedPubMedCentral Luo A, Cao Z, Xiang Y, et al. Ketamine attenuates the Na+-dependent Ca2+ overload in rabbit ventricular myocytes in vitro by inhibiting late Na+ and L‑type Ca2+ currents. Acta Pharmacol Sin. 2015;36:1327–36.CrossRefPubMedPubMedCentral
25.
go back to reference Wang H‑G, Zhu W, Kanter RJ, et al. A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias. J Mol Cell Cardiol. 2016;92:52–62.CrossRefPubMed Wang H‑G, Zhu W, Kanter RJ, et al. A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias. J Mol Cell Cardiol. 2016;92:52–62.CrossRefPubMed
26.
go back to reference Noble D, Noble PJ. Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium-calcium overload. Heart. 2006;92(Suppl 4):iv1–5.PubMedPubMedCentral Noble D, Noble PJ. Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium-calcium overload. Heart. 2006;92(Suppl 4):iv1–5.PubMedPubMedCentral
27.
go back to reference Rötzer V, Hartlieb E, Vielmuth F, et al. E‑cadherin and Src associate with extradesmosomal Dsg3 and modulate desmosome assembly and adhesion. Cell Mol Life Sci. 2015;72:4885–97.CrossRefPubMed Rötzer V, Hartlieb E, Vielmuth F, et al. E‑cadherin and Src associate with extradesmosomal Dsg3 and modulate desmosome assembly and adhesion. Cell Mol Life Sci. 2015;72:4885–97.CrossRefPubMed
29.
go back to reference Karakikes I, Stillitano F, Nonnenmacher M, et al. Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat Commun. 2015;6:6955.CrossRefPubMedPubMedCentral Karakikes I, Stillitano F, Nonnenmacher M, et al. Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat Commun. 2015;6:6955.CrossRefPubMedPubMedCentral
30.
go back to reference Schmitt JP, Kamisago M, Asahi M, et al. Dilated cardiomyopathy and heart failure caused by a. Mutat Phospholamban Sci. 2003;299:1410–3. Schmitt JP, Kamisago M, Asahi M, et al. Dilated cardiomyopathy and heart failure caused by a. Mutat Phospholamban Sci. 2003;299:1410–3.
31.
go back to reference Haghighi K, Kolokathis F, Pater L, et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest. 2003;111:869–76.CrossRefPubMedPubMedCentral Haghighi K, Kolokathis F, Pater L, et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest. 2003;111:869–76.CrossRefPubMedPubMedCentral
32.
go back to reference Liu G‑S, Morales A, Vafiadaki E, et al. A novel human R25C-phospholamban mutation is associated with super-inhibition of calcium cycling and ventricular arrhythmia. Cardiovasc Res. 2015;107:164–74.CrossRefPubMedPubMedCentral Liu G‑S, Morales A, Vafiadaki E, et al. A novel human R25C-phospholamban mutation is associated with super-inhibition of calcium cycling and ventricular arrhythmia. Cardiovasc Res. 2015;107:164–74.CrossRefPubMedPubMedCentral
33.
go back to reference Sossalla S, Fluschnik N, Schotola H, et al. Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ Res. 2010;107:1150–61.CrossRefPubMed Sossalla S, Fluschnik N, Schotola H, et al. Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ Res. 2010;107:1150–61.CrossRefPubMed
34.
go back to reference Maltsev VA, Reznikov V, Undrovinas NA, et al. Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: similarities and differences. Am J Physiol Heart Circ Physiol. 2008;294:H1597–608.CrossRefPubMedPubMedCentral Maltsev VA, Reznikov V, Undrovinas NA, et al. Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: similarities and differences. Am J Physiol Heart Circ Physiol. 2008;294:H1597–608.CrossRefPubMedPubMedCentral
35.
go back to reference Zhang R, Khoo MSC, Wu Y, et al. Calmodulin kinase II inhibition protects against structural heart disease. Nat Med. 2005;11:409–17.CrossRefPubMed Zhang R, Khoo MSC, Wu Y, et al. Calmodulin kinase II inhibition protects against structural heart disease. Nat Med. 2005;11:409–17.CrossRefPubMed
36.
go back to reference Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7:589–600.CrossRefPubMed Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7:589–600.CrossRefPubMed
37.
go back to reference Singh MV, Kapoun A, Higgins L, et al. Ca2+/calmodulin-dependent kinase II triggers cell membrane injury by inducing complement factor B gene expression in the mouse heart. J Clin Invest. 2009;119:986–96.CrossRefPubMedPubMedCentral Singh MV, Kapoun A, Higgins L, et al. Ca2+/calmodulin-dependent kinase II triggers cell membrane injury by inducing complement factor B gene expression in the mouse heart. J Clin Invest. 2009;119:986–96.CrossRefPubMedPubMedCentral
38.
go back to reference Winters CJ, Koval O, Murthy S, et al. CaMKII inhibition in type II pneumocytes protects from bleomycin-induced pulmonary fibrosis by preventing Ca2+-dependent apoptosis. Am J Physiol Lung Cell Mol Physiol. 2016;310:L86–94.CrossRefPubMed Winters CJ, Koval O, Murthy S, et al. CaMKII inhibition in type II pneumocytes protects from bleomycin-induced pulmonary fibrosis by preventing Ca2+-dependent apoptosis. Am J Physiol Lung Cell Mol Physiol. 2016;310:L86–94.CrossRefPubMed
39.
go back to reference Glynn P, Musa H, Wu X, et al. Voltage-Gated Sodium Channel Phosphorylation at Ser571 Regulates Late Current, Arrhythmia, and Cardiac Function In Vivo. Circulation. 2015;132:567–77.CrossRefPubMedPubMedCentral Glynn P, Musa H, Wu X, et al. Voltage-Gated Sodium Channel Phosphorylation at Ser571 Regulates Late Current, Arrhythmia, and Cardiac Function In Vivo. Circulation. 2015;132:567–77.CrossRefPubMedPubMedCentral
40.
go back to reference Wagner S, Dybkova N, Rasenack ECL, et al. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest. 2006;116:3127–38.CrossRefPubMedPubMedCentral Wagner S, Dybkova N, Rasenack ECL, et al. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest. 2006;116:3127–38.CrossRefPubMedPubMedCentral
41.
go back to reference Hund TJ, Koval OM, Li J, et al. A β(IV)-spectrin/CaMKII signaling complex is essential for membrane excitability in mice. J Clin Invest. 2010;120:3508–19.CrossRefPubMedPubMedCentral Hund TJ, Koval OM, Li J, et al. A β(IV)-spectrin/CaMKII signaling complex is essential for membrane excitability in mice. J Clin Invest. 2010;120:3508–19.CrossRefPubMedPubMedCentral
42.
go back to reference Mohler PJ, Rivolta I, Napolitano C, et al. Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc Natl Acad Sci U S A. 2004;101:17533–8.CrossRefPubMedPubMedCentral Mohler PJ, Rivolta I, Napolitano C, et al. Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc Natl Acad Sci U S A. 2004;101:17533–8.CrossRefPubMedPubMedCentral
43.
go back to reference Xu Q, Kopp RF, Chen Y, et al. Gating of connexin 43 gap junctions by a cytoplasmic loop calmodulin binding domain. Am J Physiol Cell Physiol. 2012;302:C1548–56.CrossRefPubMedPubMedCentral Xu Q, Kopp RF, Chen Y, et al. Gating of connexin 43 gap junctions by a cytoplasmic loop calmodulin binding domain. Am J Physiol Cell Physiol. 2012;302:C1548–56.CrossRefPubMedPubMedCentral
44.
go back to reference Huang RY-C, Laing JG, Kanter EM, et al. Identification of CaMKII phosphorylation sites in Connexin43 by high-resolution mass spectrometry. J Proteome Res. 2011;10:1098–109.CrossRefPubMedPubMedCentral Huang RY-C, Laing JG, Kanter EM, et al. Identification of CaMKII phosphorylation sites in Connexin43 by high-resolution mass spectrometry. J Proteome Res. 2011;10:1098–109.CrossRefPubMedPubMedCentral
45.
go back to reference Diedrichs H, Hagemeister J, Chi M, et al. Activation of the calcineurin/NFAT signalling cascade starts early in human hypertrophic myocardium. J Int Med Res. 2007;35:803–18. Diedrichs H, Hagemeister J, Chi M, et al. Activation of the calcineurin/NFAT signalling cascade starts early in human hypertrophic myocardium. J Int Med Res. 2007;35:803–18.
46.
go back to reference Fontes MSC, Raaijmakers AJA, van Doorn T, et al. Changes in Cx43 and NaV1.5 expression precede the occurrence of substantial fibrosis in calcineurin-induced murine cardiac hypertrophy. PLOS ONE. 2014;9:e87226.CrossRefPubMedPubMedCentral Fontes MSC, Raaijmakers AJA, van Doorn T, et al. Changes in Cx43 and NaV1.5 expression precede the occurrence of substantial fibrosis in calcineurin-induced murine cardiac hypertrophy. PLOS ONE. 2014;9:e87226.CrossRefPubMedPubMedCentral
48.
go back to reference Agullo-Pascual E, Lin X, Leo-Macias A, et al. Super-resolution imaging reveals that loss of the C‑terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc. Cardiovasc Res. 2014;104:371–81.CrossRefPubMedPubMedCentral Agullo-Pascual E, Lin X, Leo-Macias A, et al. Super-resolution imaging reveals that loss of the C‑terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc. Cardiovasc Res. 2014;104:371–81.CrossRefPubMedPubMedCentral
49.
go back to reference Te Rijdt WP, van Tintelen JP, Vink A, et al. Phospholamban p.Arg14del cardiomyopathy is characterized by phospholamban aggregates, aggresomes and autophagic degradation. Histopathology. 2016;69:542–50.CrossRef Te Rijdt WP, van Tintelen JP, Vink A, et al. Phospholamban p.Arg14del cardiomyopathy is characterized by phospholamban aggregates, aggresomes and autophagic degradation. Histopathology. 2016;69:542–50.CrossRef
50.
go back to reference Sabir IN, Killeen MJ, Grace AA, et al. Ventricular arrhythmogenesis: insights from murine models. Prog Biophys Mol Biol. 2008;98:208–18. Sabir IN, Killeen MJ, Grace AA, et al. Ventricular arrhythmogenesis: insights from murine models. Prog Biophys Mol Biol. 2008;98:208–18.
Metadata
Title
Potential new mechanisms of pro-arrhythmia in arrhythmogenic cardiomyopathy: focus on calcium sensitive pathways
Authors
C. J. M. van Opbergen
M. Delmar
T. A. B. van Veen
Publication date
01-03-2017
Publisher
Bohn Stafleu van Loghum
Published in
Netherlands Heart Journal / Issue 3/2017
Print ISSN: 1568-5888
Electronic ISSN: 1876-6250
DOI
https://doi.org/10.1007/s12471-017-0946-7

Other articles of this Issue 3/2017

Netherlands Heart Journal 3/2017 Go to the issue