Skip to main content
Top
Published in: Pediatric Cardiology 6/2018

01-08-2018 | Riley Symposium

Potential Common Pathogenic Pathways for the Left Ventricular Noncompaction Cardiomyopathy (LVNC)

Authors: Ying Liu, Hanying Chen, Weinian Shou

Published in: Pediatric Cardiology | Issue 6/2018

Login to get access

Abstract

Ventricular trabeculation and compaction are two essential morphogenetic events for generating a functionally competent ventricular wall. A significant reduction in trabeculation is usually associated with hypoplastic wall and ventricular compact zone deficiencies, which commonly leads to embryonic heart failure and early embryonic lethality. In contrast, the arrest of ventricular wall compaction (noncompaction) is believed to be causative to the left ventricular noncompaction (LVNC), a genetically heterogeneous disorder and the third most common cardiomyopathy among pediatric patients. After critically reviewing recent findings from genetically engineered mouse models, we suggest a model which proposes that defects in myofibrillogenesis and polarization in trabecular cardiomyocytes underly the common pathogenic mechanism for ventricular noncompaction.
Literature
1.
go back to reference Towbin JA (2010) Left ventricular noncompaction: a new form of heart failure. Heart Fail Clin 6:453–469CrossRefPubMed Towbin JA (2010) Left ventricular noncompaction: a new form of heart failure. Heart Fail Clin 6:453–469CrossRefPubMed
2.
go back to reference Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA (2001) Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 86:666–671CrossRefPubMedPubMedCentral Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA (2001) Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 86:666–671CrossRefPubMedPubMedCentral
3.
go back to reference Oechslin E, Jenni R (2011) Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J 32:1446–1456CrossRefPubMed Oechslin E, Jenni R (2011) Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J 32:1446–1456CrossRefPubMed
4.
go back to reference Freedom RM, Yoo SJ, Perrin D, Taylor G, Petersen S, Anderson RH (2005) The morphological spectrum of ventricular noncompaction. Cardiology Young 15:345–364CrossRef Freedom RM, Yoo SJ, Perrin D, Taylor G, Petersen S, Anderson RH (2005) The morphological spectrum of ventricular noncompaction. Cardiology Young 15:345–364CrossRef
5.
go back to reference Grant RT (1926) An unusual anomaly of the coronary vessels in the malformed heart of a child. Heart 13:273–283 Grant RT (1926) An unusual anomaly of the coronary vessels in the malformed heart of a child. Heart 13:273–283
6.
go back to reference Lee TM, Hsu DT, Kantor P, Towbin JA, Ware SM, Colan SD, Chung WK, Jefferies JL, Rossano JW, Castleberry CD, Addonizio LJ, Lal AK, Lamour JM, Miller EM, Thrush PT, Czachor JD, Razoky H, Hill A, Lipshultz SE (2017) Pediatric cardiomyopathies. Circ Res 121:855–873CrossRefPubMedPubMedCentral Lee TM, Hsu DT, Kantor P, Towbin JA, Ware SM, Colan SD, Chung WK, Jefferies JL, Rossano JW, Castleberry CD, Addonizio LJ, Lal AK, Lamour JM, Miller EM, Thrush PT, Czachor JD, Razoky H, Hill A, Lipshultz SE (2017) Pediatric cardiomyopathies. Circ Res 121:855–873CrossRefPubMedPubMedCentral
7.
go back to reference Daubeney PE, Nugent AW, Chondros P, Carlin JB, Colan SD, Cheung M, Davis AM, Chow CW, Weintraub RG (2006) Clinical features and outcomes of childhood dilated cardiomyopathy: results from a national population-based study. Circulation 114:2671–2678CrossRefPubMed Daubeney PE, Nugent AW, Chondros P, Carlin JB, Colan SD, Cheung M, Davis AM, Chow CW, Weintraub RG (2006) Clinical features and outcomes of childhood dilated cardiomyopathy: results from a national population-based study. Circulation 114:2671–2678CrossRefPubMed
8.
go back to reference Nugent AW, Daubeney PE, Chondros P, Carlin JB, Colan SD, Cheung M, Davis AM, Chow CW, Weintraub RG (2005) Clinical features and outcomes of childhood hypertrophic cardiomyopathy: results from a national population-based study. Circulation 112:1332–1338CrossRefPubMed Nugent AW, Daubeney PE, Chondros P, Carlin JB, Colan SD, Cheung M, Davis AM, Chow CW, Weintraub RG (2005) Clinical features and outcomes of childhood hypertrophic cardiomyopathy: results from a national population-based study. Circulation 112:1332–1338CrossRefPubMed
9.
go back to reference Nugent AW, Daubeney PE, Chondros P, Carlin JB, Cheung M, Wilkinson LC, Davis AM, Kahler SG, Chow CW, Wilkinson JL, Weintraub RG (2003) The epidemiology of childhood cardiomyopathy in Australia. New Engl J Med 348:1639–1646CrossRefPubMed Nugent AW, Daubeney PE, Chondros P, Carlin JB, Cheung M, Wilkinson LC, Davis AM, Kahler SG, Chow CW, Wilkinson JL, Weintraub RG (2003) The epidemiology of childhood cardiomyopathy in Australia. New Engl J Med 348:1639–1646CrossRefPubMed
10.
go back to reference Towbin JA, Jefferies JL (2017) Cardiomyopathies due to left ventricular noncompaction, mitochondrial and storage diseases, and inborn errors of metabolism. Circ Res 121:838–854CrossRefPubMed Towbin JA, Jefferies JL (2017) Cardiomyopathies due to left ventricular noncompaction, mitochondrial and storage diseases, and inborn errors of metabolism. Circ Res 121:838–854CrossRefPubMed
11.
12.
13.
go back to reference Moorman AF, Christoffels VM, Anderson RH, van den Hoff MJ (2007) The heart-forming fields: one or multiple? Philos Trans R Soc Lond B 362:1257–1265CrossRef Moorman AF, Christoffels VM, Anderson RH, van den Hoff MJ (2007) The heart-forming fields: one or multiple? Philos Trans R Soc Lond B 362:1257–1265CrossRef
14.
go back to reference Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH (2000) Developmental patterning of the myocardium. Anat Rec 258:319–337CrossRefPubMed Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH (2000) Developmental patterning of the myocardium. Anat Rec 258:319–337CrossRefPubMed
15.
go back to reference Brutsaert DL, Andries LJ (1992) The endocardial endothelium. Am J Physiol 263:H985–H1002PubMed Brutsaert DL, Andries LJ (1992) The endocardial endothelium. Am J Physiol 263:H985–H1002PubMed
16.
go back to reference Risebro CA, Riley PR (2006) Formation of the ventricles. Sci World J 6:1862–1880CrossRef Risebro CA, Riley PR (2006) Formation of the ventricles. Sci World J 6:1862–1880CrossRef
17.
go back to reference Taber LA (1998) Mechanical aspects of cardiac development. Progress Biophys Mol Biol 69:237–255CrossRef Taber LA (1998) Mechanical aspects of cardiac development. Progress Biophys Mol Biol 69:237–255CrossRef
18.
go back to reference Dorri F, Niederer PF, Redmann K, Lunkenheimer PP, Cryer CW, Anderson RH (2007) An analysis of the spatial arrangement of the myocardial aggregates making up the wall of the left ventricle. Eur J Cardiothorac Surg 31:430–437CrossRefPubMed Dorri F, Niederer PF, Redmann K, Lunkenheimer PP, Cryer CW, Anderson RH (2007) An analysis of the spatial arrangement of the myocardial aggregates making up the wall of the left ventricle. Eur J Cardiothorac Surg 31:430–437CrossRefPubMed
19.
go back to reference Lunkenheimer PP, Redmann K, Kling N, Jiang X, Rothaus K, Cryer CW, Wubbeling F, Niederer P, Heitz PU, Ho SY, Anderson RH (2006) Three-dimensional architecture of the left ventricular myocardium. Anat Rec 288:565–578CrossRef Lunkenheimer PP, Redmann K, Kling N, Jiang X, Rothaus K, Cryer CW, Wubbeling F, Niederer P, Heitz PU, Ho SY, Anderson RH (2006) Three-dimensional architecture of the left ventricular myocardium. Anat Rec 288:565–578CrossRef
20.
go back to reference Anderson RH, Ho SY, Sanchez-Quintana D, Redmann K, Lunkenheimer PP (2006) Heuristic problems in defining the three-dimensional arrangement of the ventricular myocytes. Anat Rec A 288:579–586CrossRef Anderson RH, Ho SY, Sanchez-Quintana D, Redmann K, Lunkenheimer PP (2006) Heuristic problems in defining the three-dimensional arrangement of the ventricular myocytes. Anat Rec A 288:579–586CrossRef
21.
go back to reference Lunkenheimer PP, Redmann K, Westermann P, Rothaus K, Cryer CW, Niederer P, Anderson RH (2006) The myocardium and its fibrous matrix working in concert as a spatially netted mesh: a critical review of the purported tertiary structure of the ventricular mass. Eur J Cardiothorac Surg 29(Suppl 1):S41–S49CrossRefPubMed Lunkenheimer PP, Redmann K, Westermann P, Rothaus K, Cryer CW, Niederer P, Anderson RH (2006) The myocardium and its fibrous matrix working in concert as a spatially netted mesh: a critical review of the purported tertiary structure of the ventricular mass. Eur J Cardiothorac Surg 29(Suppl 1):S41–S49CrossRefPubMed
22.
go back to reference Schmid P, Lunkenheimer PP, Redmann K, Rothaus K, Jiang X, Cryer CW, Jaermann T, Niederer P, Boesiger P, Anderson RH (2007) Statistical analysis of the angle of intrusion of porcine ventricular myocytes from epicardium to endocardium using diffusion tensor magnetic resonance imaging. Anat Rec (Hoboken) 290:1413–1423CrossRef Schmid P, Lunkenheimer PP, Redmann K, Rothaus K, Jiang X, Cryer CW, Jaermann T, Niederer P, Boesiger P, Anderson RH (2007) Statistical analysis of the angle of intrusion of porcine ventricular myocytes from epicardium to endocardium using diffusion tensor magnetic resonance imaging. Anat Rec (Hoboken) 290:1413–1423CrossRef
23.
go back to reference Anderson RH, Sanchez-Quintana D, Redmann K, Lunkenheimer PP (2007) How are the myocytes aggregated so as to make up the ventricular mass? Semin Thorac Cardiovasc Surg 10:76–86CrossRef Anderson RH, Sanchez-Quintana D, Redmann K, Lunkenheimer PP (2007) How are the myocytes aggregated so as to make up the ventricular mass? Semin Thorac Cardiovasc Surg 10:76–86CrossRef
24.
go back to reference Anderson RH, Sanchez-Quintana D, Niederer P, Lunkenheimer PP (2008) Structural-functional correlates of the 3-dimensional arrangement of the myocytes making up the ventricular walls. J Thorac Cardiovasc Surg 136:10–18CrossRefPubMed Anderson RH, Sanchez-Quintana D, Niederer P, Lunkenheimer PP (2008) Structural-functional correlates of the 3-dimensional arrangement of the myocytes making up the ventricular walls. J Thorac Cardiovasc Surg 136:10–18CrossRefPubMed
25.
go back to reference Torrent-Guasp F, Kocica MJ, Corno AF, Komeda M, Carreras-Costa F, Flotats A, Cosin-Aguillar J, Wen H (2005) Towards new understanding of the heart structure and function. Eur J Cardiothorac Surg 27:191–201CrossRefPubMed Torrent-Guasp F, Kocica MJ, Corno AF, Komeda M, Carreras-Costa F, Flotats A, Cosin-Aguillar J, Wen H (2005) Towards new understanding of the heart structure and function. Eur J Cardiothorac Surg 27:191–201CrossRefPubMed
26.
go back to reference Xu Y, Malhotra A, Ren M, Schlame M (2006) The enzymatic function of tafazzin. J Biol Chem 281:39217–39224CrossRefPubMed Xu Y, Malhotra A, Ren M, Schlame M (2006) The enzymatic function of tafazzin. J Biol Chem 281:39217–39224CrossRefPubMed
27.
go back to reference Xu Y, Condell M, Plesken H, Edelman-Novemsky I, Ma J, Ren M, Schlame M (2006) A Drosophila model of Barth syndrome. Proc Natl Acad Sci USA 103:11584–11588CrossRefPubMed Xu Y, Condell M, Plesken H, Edelman-Novemsky I, Ma J, Ren M, Schlame M (2006) A Drosophila model of Barth syndrome. Proc Natl Acad Sci USA 103:11584–11588CrossRefPubMed
28.
go back to reference Klaassen S, Probst S, Oechslin E, Gerull B, Krings G, Schuler P, Greutmann M, Hurlimann D, Yegitbasi M, Pons L, Gramlich M, Drenckhahn JD, Heuser A, Berger F, Jenni R, Thierfelder L (2008) Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117:2893–2901CrossRefPubMed Klaassen S, Probst S, Oechslin E, Gerull B, Krings G, Schuler P, Greutmann M, Hurlimann D, Yegitbasi M, Pons L, Gramlich M, Drenckhahn JD, Heuser A, Berger F, Jenni R, Thierfelder L (2008) Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117:2893–2901CrossRefPubMed
29.
go back to reference Xing Y, Ichida F, Matsuoka T, Isobe T, Ikemoto Y, Higaki T, Tsuji T, Haneda N, Kuwabara A, Chen R, Futatani T, Tsubata S, Watanabe S, Watanabe K, Hirono K, Uese K, Miyawaki T, Bowles KR, Bowles NE, Towbin JA (2006) Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab 88:71–77CrossRefPubMed Xing Y, Ichida F, Matsuoka T, Isobe T, Ikemoto Y, Higaki T, Tsuji T, Haneda N, Kuwabara A, Chen R, Futatani T, Tsubata S, Watanabe S, Watanabe K, Hirono K, Uese K, Miyawaki T, Bowles KR, Bowles NE, Towbin JA (2006) Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab 88:71–77CrossRefPubMed
30.
go back to reference Schweizer PA, Schroter J, Greiner S, Haas J, Yampolsky P, Mereles D, Buss SJ, Seyler C, Bruehl C, Draguhn A, Koenen M, Meder B, Katus HA, Thomas D (2014) The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. J Am Coll Cardiol 64:757–767CrossRefPubMed Schweizer PA, Schroter J, Greiner S, Haas J, Yampolsky P, Mereles D, Buss SJ, Seyler C, Bruehl C, Draguhn A, Koenen M, Meder B, Katus HA, Thomas D (2014) The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. J Am Coll Cardiol 64:757–767CrossRefPubMed
31.
go back to reference Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV, van der Bilt IA, Baars MJ, van Haelst PL, Caliskan K, Hoedemaekers YM, Le Scouarnec S, Redon R, Pinto YM, Christiaans I, Wilde AA, Bezzina CR (2014) HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol 64:745–756CrossRefPubMed Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV, van der Bilt IA, Baars MJ, van Haelst PL, Caliskan K, Hoedemaekers YM, Le Scouarnec S, Redon R, Pinto YM, Christiaans I, Wilde AA, Bezzina CR (2014) HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol 64:745–756CrossRefPubMed
32.
go back to reference Probst S, Oechslin E, Schuler P, Greutmann M, Boye P, Knirsch W, Berger F, Thierfelder L, Jenni R, Klaassen S (2011) Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet 4:367–374CrossRefPubMed Probst S, Oechslin E, Schuler P, Greutmann M, Boye P, Knirsch W, Berger F, Thierfelder L, Jenni R, Klaassen S (2011) Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet 4:367–374CrossRefPubMed
33.
go back to reference Phoon CK, Acehan D, Schlame M, Stokes DL, Edelman-Novemsky I, Yu D, Xu Y, Viswanathan N, Ren M (2012) Tafazzin knockdown in mice leads to a developmental cardiomyopathy with early diastolic dysfunction preceding myocardial noncompaction. J Am Heart Assoc 1:e000455CrossRef Phoon CK, Acehan D, Schlame M, Stokes DL, Edelman-Novemsky I, Yu D, Xu Y, Viswanathan N, Ren M (2012) Tafazzin knockdown in mice leads to a developmental cardiomyopathy with early diastolic dysfunction preceding myocardial noncompaction. J Am Heart Assoc 1:e000455CrossRef
34.
go back to reference Luxan G, Casanova JC, Martinez-Poveda B, Prados B, D’Amato G, MacGrogan D, Gonzalez-Rajal A, Dobarro D, Torroja C, Martinez F, Izquierdo-Garcia JL, Fernandez-Friera L, Sabater-Molina M, Kong YY, Pizarro G, Ibanez B, Medrano C, Garcia-Pavia P, Gimeno JR, Monserrat L, Jimenez-Borreguero LJ, de la Pompa JL (2013) Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med 19:193–201CrossRefPubMed Luxan G, Casanova JC, Martinez-Poveda B, Prados B, D’Amato G, MacGrogan D, Gonzalez-Rajal A, Dobarro D, Torroja C, Martinez F, Izquierdo-Garcia JL, Fernandez-Friera L, Sabater-Molina M, Kong YY, Pizarro G, Ibanez B, Medrano C, Garcia-Pavia P, Gimeno JR, Monserrat L, Jimenez-Borreguero LJ, de la Pompa JL (2013) Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med 19:193–201CrossRefPubMed
35.
go back to reference Luedde M, Ehlermann P, Weichenhan D, Will R, Zeller R, Rupp S, Muller A, Steen H, Ivandic BT, Ulmer HE, Kern M, Katus HA, Frey N (2010) Severe familial left ventricular non-compaction cardiomyopathy due to a novel troponin T (TNNT2) mutation. Cardiovasc Res 86:452–460CrossRefPubMed Luedde M, Ehlermann P, Weichenhan D, Will R, Zeller R, Rupp S, Muller A, Steen H, Ivandic BT, Ulmer HE, Kern M, Katus HA, Frey N (2010) Severe familial left ventricular non-compaction cardiomyopathy due to a novel troponin T (TNNT2) mutation. Cardiovasc Res 86:452–460CrossRefPubMed
36.
go back to reference Shou W, Aghdasi B, Armstrong DL, Guo Q, Bao S, Charng MJ, Mathews LM, Schneider MD, Hamilton SL, Matzuk MM (1998) Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391:489–492CrossRefPubMed Shou W, Aghdasi B, Armstrong DL, Guo Q, Bao S, Charng MJ, Mathews LM, Schneider MD, Hamilton SL, Matzuk MM (1998) Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391:489–492CrossRefPubMed
37.
go back to reference Lee Y, Song AJ, Baker R, Micales B, Conway SJ, Lyons GE (2000) Jumonji, a nuclear protein that is necessary for normal heart development. Circ Res 86:932–938CrossRefPubMed Lee Y, Song AJ, Baker R, Micales B, Conway SJ, Lyons GE (2000) Jumonji, a nuclear protein that is necessary for normal heart development. Circ Res 86:932–938CrossRefPubMed
38.
go back to reference Crawford SE, Qi C, Misra P, Stellmach V, Rao MS, Engel JD, Zhu Y, Reddy JK (2002) Defects of the heart, eye, and megakaryocytes in peroxisome proliferator activator receptor-binding protein (PBP) null embryos implicate GATA family of transcription factors. J Biol Chem 277:3585–3592CrossRefPubMed Crawford SE, Qi C, Misra P, Stellmach V, Rao MS, Engel JD, Zhu Y, Reddy JK (2002) Defects of the heart, eye, and megakaryocytes in peroxisome proliferator activator receptor-binding protein (PBP) null embryos implicate GATA family of transcription factors. J Biol Chem 277:3585–3592CrossRefPubMed
39.
go back to reference King T, Bland Y, Webb S, Barton S, Brown NA (2002) Expression of Peg1 (Mest) in the developing mouse heart: involvement in trabeculation. Dev Dyn 225:212–215CrossRefPubMed King T, Bland Y, Webb S, Barton S, Brown NA (2002) Expression of Peg1 (Mest) in the developing mouse heart: involvement in trabeculation. Dev Dyn 225:212–215CrossRefPubMed
40.
go back to reference Shi W, Chen H, Sun J, Buckley S, Zhao J, Anderson KD, Williams RG, Warburton D (2003) TACE is required for fetal murine cardiac development and modeling. Dev Biol 261:371–380CrossRefPubMed Shi W, Chen H, Sun J, Buckley S, Zhao J, Anderson KD, Williams RG, Warburton D (2003) TACE is required for fetal murine cardiac development and modeling. Dev Biol 261:371–380CrossRefPubMed
41.
go back to reference Phillips HM, Rhee HJ, Murdoch JN, Hildreth V, Peat JD, Anderson RH, Copp AJ, Chaudhry B, Henderson DJ (2007) Disruption of planar cell polarity signaling results in congenital heart defects and cardiomyopathy attributable to early cardiomyocyte disorganization. Circ Res 101:137–145CrossRefPubMed Phillips HM, Rhee HJ, Murdoch JN, Hildreth V, Peat JD, Anderson RH, Copp AJ, Chaudhry B, Henderson DJ (2007) Disruption of planar cell polarity signaling results in congenital heart defects and cardiomyopathy attributable to early cardiomyocyte disorganization. Circ Res 101:137–145CrossRefPubMed
42.
go back to reference Phillips HM, Murdoch JN, Chaudhry B, Copp AJ, Henderson DJ (2005) Vangl2 acts via RhoA signaling to regulate polarized cell movements during development of the proximal outflow tract. Circ Res 96:292–299CrossRefPubMed Phillips HM, Murdoch JN, Chaudhry B, Copp AJ, Henderson DJ (2005) Vangl2 acts via RhoA signaling to regulate polarized cell movements during development of the proximal outflow tract. Circ Res 96:292–299CrossRefPubMed
43.
go back to reference Nakamura T, Colbert M, Krenz M, Molkentin JD, Hahn HS, Dorn GW 2nd, Robbins J (2007) Mediating ERK 1/2 signaling rescues congenital heart defects in a mouse model of Noonan syndrome. J Clin Invest 117:2123–2132CrossRefPubMedPubMedCentral Nakamura T, Colbert M, Krenz M, Molkentin JD, Hahn HS, Dorn GW 2nd, Robbins J (2007) Mediating ERK 1/2 signaling rescues congenital heart defects in a mouse model of Noonan syndrome. J Clin Invest 117:2123–2132CrossRefPubMedPubMedCentral
44.
go back to reference DiMichele LA, Hakim ZS, Sayers RL, Rojas M, Schwartz RJ, Mack CP, Taylor JM (2009) Transient expression of FRNK reveals stage-specific requirement for focal adhesion kinase activity in cardiac growth. Circ Res 104:1201–1208CrossRefPubMedPubMedCentral DiMichele LA, Hakim ZS, Sayers RL, Rojas M, Schwartz RJ, Mack CP, Taylor JM (2009) Transient expression of FRNK reveals stage-specific requirement for focal adhesion kinase activity in cardiac growth. Circ Res 104:1201–1208CrossRefPubMedPubMedCentral
45.
go back to reference Lee YC, Chang CJ, Bali D, Chen YT, Yan YT (2011) Glycogen-branching enzyme deficiency leads to abnormal cardiac development: novel insights into glycogen storage disease IV. Hum Mol Genet 20:455–465CrossRefPubMed Lee YC, Chang CJ, Bali D, Chen YT, Yan YT (2011) Glycogen-branching enzyme deficiency leads to abnormal cardiac development: novel insights into glycogen storage disease IV. Hum Mol Genet 20:455–465CrossRefPubMed
46.
go back to reference Li D, Hallett MA, Zhu W, Rubart M, Liu Y, Yang Z, Chen H, Haneline LS, Chan RJ, Schwartz RJ, Field LJ, Atkinson SJ, Shou W (2011) Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development 138:303–315CrossRefPubMedPubMedCentral Li D, Hallett MA, Zhu W, Rubart M, Liu Y, Yang Z, Chen H, Haneline LS, Chan RJ, Schwartz RJ, Field LJ, Atkinson SJ, Shou W (2011) Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development 138:303–315CrossRefPubMedPubMedCentral
47.
go back to reference Kosaka Y, Cieslik KA, Li L, Lezin G, Maguire CT, Saijoh Y, Toyo-oka K, Gambello MJ, Vatta M, Wynshaw-Boris A, Baldini A, Yost HJ, Brunelli L (2012) 14-3-3epsilon plays a role in cardiac ventricular compaction by regulating the cardiomyocyte cell cycle. Mol Cell Biol 32:5089–5102CrossRefPubMedPubMedCentral Kosaka Y, Cieslik KA, Li L, Lezin G, Maguire CT, Saijoh Y, Toyo-oka K, Gambello MJ, Vatta M, Wynshaw-Boris A, Baldini A, Yost HJ, Brunelli L (2012) 14-3-3epsilon plays a role in cardiac ventricular compaction by regulating the cardiomyocyte cell cycle. Mol Cell Biol 32:5089–5102CrossRefPubMedPubMedCentral
48.
go back to reference Ashraf H, Pradhan L, Chang EI, Terada R, Ryan NJ, Briggs LE, Chowdhury R, Zarate MA, Sugi Y, Nam HJ, Benson DW, Anderson RH, Kasahara H (2014) A mouse model of human congenital heart disease: high incidence of diverse cardiac anomalies and ventricular noncompaction produced by heterozygous Nkx2-5 homeodomain missense mutation. Circ Cardiovasc Genet 7:423–433CrossRefPubMedPubMedCentral Ashraf H, Pradhan L, Chang EI, Terada R, Ryan NJ, Briggs LE, Chowdhury R, Zarate MA, Sugi Y, Nam HJ, Benson DW, Anderson RH, Kasahara H (2014) A mouse model of human congenital heart disease: high incidence of diverse cardiac anomalies and ventricular noncompaction produced by heterozygous Nkx2-5 homeodomain missense mutation. Circ Cardiovasc Genet 7:423–433CrossRefPubMedPubMedCentral
49.
go back to reference Inoue S, Moriya M, Watanabe Y, Miyagawa-Tomita S, Niihori T, Oba D, Ono M, Kure S, Ogura T, Matsubara Y, Aoki Y (2014) New BRAF knockin mice provide a pathogenetic mechanism of developmental defects and a therapeutic approach in cardio-facio-cutaneous syndrome. Hum Mol Genet 23:6553–6566CrossRefPubMed Inoue S, Moriya M, Watanabe Y, Miyagawa-Tomita S, Niihori T, Oba D, Ono M, Kure S, Ogura T, Matsubara Y, Aoki Y (2014) New BRAF knockin mice provide a pathogenetic mechanism of developmental defects and a therapeutic approach in cardio-facio-cutaneous syndrome. Hum Mol Genet 23:6553–6566CrossRefPubMed
50.
go back to reference Liu Z, Li W, Ma X, Ding N, Spallotta F, Southon E, Tessarollo L, Gaetano C, Mukouyama YS, Thiele CJ (2014) Essential role of the zinc finger transcription factor Casz1 for mammalian cardiac morphogenesis and development. J Biol Chem 289:29801–29816CrossRefPubMedPubMedCentral Liu Z, Li W, Ma X, Ding N, Spallotta F, Southon E, Tessarollo L, Gaetano C, Mukouyama YS, Thiele CJ (2014) Essential role of the zinc finger transcription factor Casz1 for mammalian cardiac morphogenesis and development. J Biol Chem 289:29801–29816CrossRefPubMedPubMedCentral
51.
go back to reference Kokoszka JE, Waymire KG, Flierl A, Sweeney KM, Angelin A, MacGregor GR, Wallace DC (2016) Deficiency in the mouse mitochondrial adenine nucleotide translocator isoform 2 gene is associated with cardiac noncompaction. Biochim Biophys Acta 1857:1203–1212CrossRefPubMedPubMedCentral Kokoszka JE, Waymire KG, Flierl A, Sweeney KM, Angelin A, MacGregor GR, Wallace DC (2016) Deficiency in the mouse mitochondrial adenine nucleotide translocator isoform 2 gene is associated with cardiac noncompaction. Biochim Biophys Acta 1857:1203–1212CrossRefPubMedPubMedCentral
52.
go back to reference Clay H, Wilsbacher LD, Wilson SJ, Duong DN, McDonald M, Lam I, Park KE, Chun J, Coughlin SR (2016) Sphingosine 1-phosphate receptor-1 in cardiomyocytes is required for normal cardiac development. Dev Biol 418:157–165CrossRefPubMedPubMedCentral Clay H, Wilsbacher LD, Wilson SJ, Duong DN, McDonald M, Lam I, Park KE, Chun J, Coughlin SR (2016) Sphingosine 1-phosphate receptor-1 in cardiomyocytes is required for normal cardiac development. Dev Biol 418:157–165CrossRefPubMedPubMedCentral
53.
go back to reference Hirai M, Arita Y, McGlade CJ, Lee KF, Chen J, Evans SM (2017) Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest 127:569–582CrossRefPubMedPubMedCentral Hirai M, Arita Y, McGlade CJ, Lee KF, Chen J, Evans SM (2017) Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest 127:569–582CrossRefPubMedPubMedCentral
54.
go back to reference Bourke LM, Del Monte-Nieto G, Outhwaite JE, Bharti V, Pollock PM, Simmons DG, Adam A, Hur SS, Maghzal GJ, Whitelaw E, Stocker R, Suter CM, Harvey RP, Harten SK (2017) Loss of rearranged L-Myc fusion (RLF) results in defects in heart development in the mouse. Differentiation 94:8–20CrossRefPubMed Bourke LM, Del Monte-Nieto G, Outhwaite JE, Bharti V, Pollock PM, Simmons DG, Adam A, Hur SS, Maghzal GJ, Whitelaw E, Stocker R, Suter CM, Harvey RP, Harten SK (2017) Loss of rearranged L-Myc fusion (RLF) results in defects in heart development in the mouse. Differentiation 94:8–20CrossRefPubMed
55.
go back to reference Baardman ME, Zwier MV, Wisse LJ, Gittenberger-de Groot AC, Kerstjens-Frederikse WS, Hofstra RM, Jurdzinski A, Hierck BP, Jongbloed MR, Berger RM, Plosch T, DeRuiter MC (2016) Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development. Dis Model Mech 9:413–425CrossRefPubMedPubMedCentral Baardman ME, Zwier MV, Wisse LJ, Gittenberger-de Groot AC, Kerstjens-Frederikse WS, Hofstra RM, Jurdzinski A, Hierck BP, Jongbloed MR, Berger RM, Plosch T, DeRuiter MC (2016) Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development. Dis Model Mech 9:413–425CrossRefPubMedPubMedCentral
56.
go back to reference Lin W, Li D, Cheng L, Li L, Liu F, Hand NJ, Epstein JA, Rader DJ (2018) Zinc transporter Slc39a8 is essential for cardiac ventricular compaction. J Clin Invest 128:826–833CrossRefPubMedPubMedCentral Lin W, Li D, Cheng L, Li L, Liu F, Hand NJ, Epstein JA, Rader DJ (2018) Zinc transporter Slc39a8 is essential for cardiac ventricular compaction. J Clin Invest 128:826–833CrossRefPubMedPubMedCentral
57.
go back to reference Cao Q, Shen Y, Liu X, Yu X, Yuan P, Wan R, Liu X, Peng X, He W, Pu J, Hong K (2017) Phenotype and functional analyses in a transgenic mouse model of left ventricular noncompaction caused by a DTNA mutation. Int Heart J 58:939–947CrossRefPubMed Cao Q, Shen Y, Liu X, Yu X, Yuan P, Wan R, Liu X, Peng X, He W, Pu J, Hong K (2017) Phenotype and functional analyses in a transgenic mouse model of left ventricular noncompaction caused by a DTNA mutation. Int Heart J 58:939–947CrossRefPubMed
58.
go back to reference Chen X, Qin L, Liu Z, Liao L, Martin JF, Xu J (2015) Knockout of SRC-1 and SRC-3 in mice decreases cardiomyocyte proliferation and causes a noncompaction cardiomyopathy phenotype. Int J Biol Sci 11:1056–1072CrossRefPubMedPubMedCentral Chen X, Qin L, Liu Z, Liao L, Martin JF, Xu J (2015) Knockout of SRC-1 and SRC-3 in mice decreases cardiomyocyte proliferation and causes a noncompaction cardiomyopathy phenotype. Int J Biol Sci 11:1056–1072CrossRefPubMedPubMedCentral
59.
go back to reference Wang Y, Nathans J (2007) Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 134:647–658CrossRefPubMed Wang Y, Nathans J (2007) Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 134:647–658CrossRefPubMed
61.
go back to reference Hirschy A, Schatzmann F, Ehler E, Perriard JC (2006) Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289:430–441CrossRefPubMed Hirschy A, Schatzmann F, Ehler E, Perriard JC (2006) Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289:430–441CrossRefPubMed
62.
go back to reference Henderson DJ, Chaudhry B (2011) Getting to the heart of planar cell polarity signaling. Birth Defects Res A 91:460–467CrossRef Henderson DJ, Chaudhry B (2011) Getting to the heart of planar cell polarity signaling. Birth Defects Res A 91:460–467CrossRef
Metadata
Title
Potential Common Pathogenic Pathways for the Left Ventricular Noncompaction Cardiomyopathy (LVNC)
Authors
Ying Liu
Hanying Chen
Weinian Shou
Publication date
01-08-2018
Publisher
Springer US
Published in
Pediatric Cardiology / Issue 6/2018
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-018-1882-z

Other articles of this Issue 6/2018

Pediatric Cardiology 6/2018 Go to the issue