Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Potent antiplasmodial extracts and fractions from Terminalia mantaly and Terminalia superba

Authors: Cedric D. J. Mbouna, Rufin M. T. Kouipou, Rodrigue Keumoe, Lauve R. Y. Tchokouaha, Patrick V. T. Fokou, Brice M. T. Tali, Dinkar Sahal, Fabrice F. Boyom

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

The emergence and spread of malaria parasites resistant to artemisinin-based combination therapy stresses the need for novel drugs against malaria. Investigating plants used in traditional medicine to treat malaria remains a credible option for new anti-malarial drug development. This study was aimed at investigating the antiplasmodial activity and selectivity of extracts and fractions from Terminalia mantaly and Terminalia superba (Combretaceae) that are used in Cameroon to treat malaria.

Methods

Twelve methanolic (m) and water (w) extracts obtained by maceration of powdered dried leaves (l), stem bark (sb) and root (r) of Terminalia mantaly (Tm) and Terminalia superba (Ts) and 12 derived fractions of hexane, chloroform, ethyl acetate and 4 final residues of selected extracts were assessed for antiplasmodial potential in vitro against the chloroquine-resistant PfINDO and the chloroquine-sensitive Pf3D7 strains of Plasmodium falciparum using the SYBR green I-based fluorescence assay. The cytotoxicity of potent extracts and fractions was evaluated in vitro using the MTT assay on HEK239T cell line.

Results

The antiplasmodial IC50 of extracts from both plants ranged from 0.26 to > 25 µg/mL. Apart from the extracts Tmrm and Tsrw that exerted moderate antiplasmodial activities (IC50: 5–20 µg/mL) and Tmrw that was found to be non-active at the tested concentrations (IC50 > 25 µg/mL), all other tested crude extracts exhibited potent activities with IC50 < 5 µg/mL. The aqueous extracts from the stem bark of Terminalia mantaly (Tmsbw) and the leaf of Terminalia superba (Tslw) displayed the highest antiplasmodial activities (IC50: 0.26–1.26 µg/mL) and selectivity (SI > 158) on both resistant PfINDO and sensitive Pf3D7 strains. Four fractions upon further extraction with chloroform and ethyl acetate (TmlwChl, TmsbwChl, TmsbwEA, TsrmEA) afforded from three selected crude extracts (Tmlw, Tmsbw, Tsrm) exhibited highly potent activities against both P. falciparum strains (IC50 < 2 µg/mL) and high selectivity (SI > 109).

Conclusions

The results achieved in this work validate the reported traditional use of Terminalia mantaly and Terminalia superba to treat malaria. Moreover, the highly potent and selective fractions warrant further investigation to characterize the active antiplasmodial principles and progress them to rodent malaria models studies if activity and selectivity are evidenced.
Literature
1.
go back to reference WHO. World malaria report 2015. Geneva: World Health Organization; 2015. WHO. World malaria report 2015. Geneva: World Health Organization; 2015.
2.
go back to reference WHO. World malaria report 2010. Geneva: World Health Organization; 2010. WHO. World malaria report 2010. Geneva: World Health Organization; 2010.
3.
go back to reference Ntonifor NH, Veyufambom S. Assessing the effective use of mosquito nets in the prevention of malaria in some parts of Mezam division, Northwest Region Cameroon. Malar J. 2016;15:390.CrossRefPubMedPubMedCentral Ntonifor NH, Veyufambom S. Assessing the effective use of mosquito nets in the prevention of malaria in some parts of Mezam division, Northwest Region Cameroon. Malar J. 2016;15:390.CrossRefPubMedPubMedCentral
4.
go back to reference Kamkumo RG, Ngoutane AM, Tchokouaha LRY, Fokou PVT, Madiesse EAK, Legac J, et al. From Sorindeia juglandifolia (Anacardiaceae) exhibit potent antiplasmodial activities in vitro and in vivo. Malar J. 2012;11:382.CrossRefPubMedPubMedCentral Kamkumo RG, Ngoutane AM, Tchokouaha LRY, Fokou PVT, Madiesse EAK, Legac J, et al. From Sorindeia juglandifolia (Anacardiaceae) exhibit potent antiplasmodial activities in vitro and in vivo. Malar J. 2012;11:382.CrossRefPubMedPubMedCentral
5.
go back to reference Tsabang N, Tsouh FPV, Yamthe TLR, Noguem B, Bakarnga-Via I, Dongmo NMS, et al. Ethnopharmacological survey of Annonaceae medicinal plants used to treat malaria in four areas of Cameroon. J Ethnopharmacol. 2012;139:171–80.CrossRefPubMed Tsabang N, Tsouh FPV, Yamthe TLR, Noguem B, Bakarnga-Via I, Dongmo NMS, et al. Ethnopharmacological survey of Annonaceae medicinal plants used to treat malaria in four areas of Cameroon. J Ethnopharmacol. 2012;139:171–80.CrossRefPubMed
6.
7.
go back to reference Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, et al. A major genome region underlying artemisinin resistance in malaria. Science. 2012;336:79–82.CrossRefPubMedPubMedCentral Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, et al. A major genome region underlying artemisinin resistance in malaria. Science. 2012;336:79–82.CrossRefPubMedPubMedCentral
8.
go back to reference Dobson SMM. The history of antimalarial drugs. In: Rosenthal PJ, editor. Antimalarial chemotherapy: mechanisms of action, resistance, and new directions in drug discovery. Totowa: Humana Press; 2001. p. 15–25. Dobson SMM. The history of antimalarial drugs. In: Rosenthal PJ, editor. Antimalarial chemotherapy: mechanisms of action, resistance, and new directions in drug discovery. Totowa: Humana Press; 2001. p. 15–25.
9.
go back to reference Titanji VPK, Zofou D, Ngemenya MN. The antimalarial potential of medicinal plants used for the treatment of malaria in Cameroonian folk medicine. Afr J Trad CAM. 2008;5:302–21. Titanji VPK, Zofou D, Ngemenya MN. The antimalarial potential of medicinal plants used for the treatment of malaria in Cameroonian folk medicine. Afr J Trad CAM. 2008;5:302–21.
10.
go back to reference Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth. 1983;65:55–63.CrossRef Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth. 1983;65:55–63.CrossRef
11.
12.
go back to reference Kaushik NK, Bagavan A, Rahuman AA, Zahir AA, Kamaraj C, Elango G, et al. Evaluation of antiplasmodial activity of medicinal plants from North Indian Buchpora and South Indian Eastern Ghats. Malar J. 2015;14:65.CrossRefPubMedPubMedCentral Kaushik NK, Bagavan A, Rahuman AA, Zahir AA, Kamaraj C, Elango G, et al. Evaluation of antiplasmodial activity of medicinal plants from North Indian Buchpora and South Indian Eastern Ghats. Malar J. 2015;14:65.CrossRefPubMedPubMedCentral
13.
go back to reference Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother. 2004;48:1803–6.CrossRefPubMedPubMedCentral Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother. 2004;48:1803–6.CrossRefPubMedPubMedCentral
14.
go back to reference Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.CrossRefPubMed Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.CrossRefPubMed
15.
go back to reference Gessler MC, Nkunya MHN, Nwasumbi LB, Heinrich M, Tonner M. Screening Tanzanian medical plants for antimalarial activity. Acta Trop. 1994;55:65–7.CrossRef Gessler MC, Nkunya MHN, Nwasumbi LB, Heinrich M, Tonner M. Screening Tanzanian medical plants for antimalarial activity. Acta Trop. 1994;55:65–7.CrossRef
16.
go back to reference Ngemenya MN, Tane P, Berzins K, Titanji VPK. Antiplasmodial activity of some medicinal plants used in Cameroon: preliminary toxicity studies of highly active extracts. In: XIth annual conference of the Cameroon Bioscience Society, 16–18 December, 2004. Ngemenya MN, Tane P, Berzins K, Titanji VPK. Antiplasmodial activity of some medicinal plants used in Cameroon: preliminary toxicity studies of highly active extracts. In: XIth annual conference of the Cameroon Bioscience Society, 16–18 December, 2004.
17.
go back to reference Le Bras J, Deloron P, Ricour A, Andrieu B, Savel J, Coulaud JP. Plasmodium falciparum: drug sensitivity in vitro of isolates before and after adaptation to continuous culture. Exp Parasitol. 1983;56:9–14.CrossRefPubMed Le Bras J, Deloron P, Ricour A, Andrieu B, Savel J, Coulaud JP. Plasmodium falciparum: drug sensitivity in vitro of isolates before and after adaptation to continuous culture. Exp Parasitol. 1983;56:9–14.CrossRefPubMed
18.
go back to reference Adewunmi CO, Agbedahunsi JM, Adebajo AC, Aladesanmi AJ, Murphy N, Wando J. Ethno-veterinary medicine: screening of Nigerian medicinal plants for trypanocidal properties. J Ethnopharmacol. 2001;77:19–24.CrossRefPubMed Adewunmi CO, Agbedahunsi JM, Adebajo AC, Aladesanmi AJ, Murphy N, Wando J. Ethno-veterinary medicine: screening of Nigerian medicinal plants for trypanocidal properties. J Ethnopharmacol. 2001;77:19–24.CrossRefPubMed
19.
go back to reference Muganga R, Angenot L, Tits M, Frédérich M. In vitro and In vivo antiplasmodial activity of three Rwandan medicinal plants and identification of their active compounds. Planta Med. 2014;80:482–9.CrossRefPubMed Muganga R, Angenot L, Tits M, Frédérich M. In vitro and In vivo antiplasmodial activity of three Rwandan medicinal plants and identification of their active compounds. Planta Med. 2014;80:482–9.CrossRefPubMed
20.
go back to reference Mohd Abd Razak MR, Afzan A, Ali R, Jalaluddin NFA, Wasiman MI, Zahari SHS, et al. Effect of selected local medicinal plants on the asexual blood stage of chloroquine resistant Plasmodium falciparum. BMC Complement Altern Med. 2014;14:492.CrossRefPubMedPubMedCentral Mohd Abd Razak MR, Afzan A, Ali R, Jalaluddin NFA, Wasiman MI, Zahari SHS, et al. Effect of selected local medicinal plants on the asexual blood stage of chloroquine resistant Plasmodium falciparum. BMC Complement Altern Med. 2014;14:492.CrossRefPubMedPubMedCentral
21.
go back to reference Abiodun O, Gbotosho G, Ajaiyeoba E, Happi T, Falade M, Wittlin S, et al. In vitro antiplasmodial activity and toxicity assessment of some plants from Nigerian ethnomedicine. Pharm Biol. 2011;49:9–14.CrossRefPubMed Abiodun O, Gbotosho G, Ajaiyeoba E, Happi T, Falade M, Wittlin S, et al. In vitro antiplasmodial activity and toxicity assessment of some plants from Nigerian ethnomedicine. Pharm Biol. 2011;49:9–14.CrossRefPubMed
22.
go back to reference Sanon S, Gansane A, Ouattara LP, Traore A, Ouedraogo IN, Tiono A, et al. In vitro antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso. Afr J Lab Med. 2013;2:1–7.CrossRef Sanon S, Gansane A, Ouattara LP, Traore A, Ouedraogo IN, Tiono A, et al. In vitro antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso. Afr J Lab Med. 2013;2:1–7.CrossRef
23.
go back to reference Ouattara LP, Sanon S, Mahiou-Leddet V, Gansané A, Baghdikian B, Traoré A, et al. In vitro antiplasmodial activity of some medicinal plants of Burkina Faso. Parasitol Res. 2014;113:405–16.CrossRefPubMed Ouattara LP, Sanon S, Mahiou-Leddet V, Gansané A, Baghdikian B, Traoré A, et al. In vitro antiplasmodial activity of some medicinal plants of Burkina Faso. Parasitol Res. 2014;113:405–16.CrossRefPubMed
24.
go back to reference Bagavan A, Rahuman AA, Kamaraj C, Kaushik NK, Mohanakrishnan D, Sahal D. Antiplasmodial activity of botanical extracts against Plasmodium falciparum. Parasitol Res. 2011;108:1099–109.CrossRefPubMed Bagavan A, Rahuman AA, Kamaraj C, Kaushik NK, Mohanakrishnan D, Sahal D. Antiplasmodial activity of botanical extracts against Plasmodium falciparum. Parasitol Res. 2011;108:1099–109.CrossRefPubMed
25.
go back to reference Ngouana TK, Mbouna CDJ, Kuipou RMT, Tchuenmogne MAT, Zeuko’o EM, Ngouana V, et al. Potent and synergistic extract combinations from Terminalia catappa, Terminalia mantaly and Monodora tenuifolia against pathogenic yeasts. Medicines (Basel). 2015;2:220–35.CrossRef Ngouana TK, Mbouna CDJ, Kuipou RMT, Tchuenmogne MAT, Zeuko’o EM, Ngouana V, et al. Potent and synergistic extract combinations from Terminalia catappa, Terminalia mantaly and Monodora tenuifolia against pathogenic yeasts. Medicines (Basel). 2015;2:220–35.CrossRef
26.
go back to reference Tchuenmogne MAT, Kammalac TN, Gohlke S, Kouipou RMT, Aslan A, Kuzu M, et al. Compounds from Terminalia mantaly L. (Combretaceae) stem bark exhibit potent inhibition against some pathogenic yeasts and enzymes of metabolic significance. Medicines (Basel). 2017;4:6.CrossRef Tchuenmogne MAT, Kammalac TN, Gohlke S, Kouipou RMT, Aslan A, Kuzu M, et al. Compounds from Terminalia mantaly L. (Combretaceae) stem bark exhibit potent inhibition against some pathogenic yeasts and enzymes of metabolic significance. Medicines (Basel). 2017;4:6.CrossRef
27.
go back to reference Zofou D, Kowa TK, Wabo HK, Ngemenya MN, Tane P, Titanji VPK. Hypericum lanceolatum (Hypericaceae) as a potential source of new anti-malarial agents: a bioassay-guided fractionation of the stem bark. Malar J. 2011;10:167.CrossRefPubMedPubMedCentral Zofou D, Kowa TK, Wabo HK, Ngemenya MN, Tane P, Titanji VPK. Hypericum lanceolatum (Hypericaceae) as a potential source of new anti-malarial agents: a bioassay-guided fractionation of the stem bark. Malar J. 2011;10:167.CrossRefPubMedPubMedCentral
28.
go back to reference Pham AT, Nguyen C, Malterud KE, Diallo D, Wangensteen H. Bioactive flavone-C-glycosides of the African medicinal plant Biophytumum braculum. Molecules. 2013;18:10312–9.CrossRefPubMed Pham AT, Nguyen C, Malterud KE, Diallo D, Wangensteen H. Bioactive flavone-C-glycosides of the African medicinal plant Biophytumum braculum. Molecules. 2013;18:10312–9.CrossRefPubMed
29.
go back to reference Su Q, Krai P, Goetz M, Cassera MB, Kingston DGI. Antiplasmodial isoflavanes and pterocarpans from Apoplanesia paniculata. Planta Med. 2015;81:1128–32.CrossRefPubMedPubMedCentral Su Q, Krai P, Goetz M, Cassera MB, Kingston DGI. Antiplasmodial isoflavanes and pterocarpans from Apoplanesia paniculata. Planta Med. 2015;81:1128–32.CrossRefPubMedPubMedCentral
30.
go back to reference Malterud KE. Ethnopharmacology, chemistry and biological properties of four Malian medicinal plants. Plants (Basel). 2017;6:11.CrossRef Malterud KE. Ethnopharmacology, chemistry and biological properties of four Malian medicinal plants. Plants (Basel). 2017;6:11.CrossRef
31.
go back to reference Meyersa MJ, Andersona EJ, McNitta SA, Krenninga TM, Singha M, Xub J, et al. Evaluation of spiropiperidine hydantoins as a novel class of antimalarial agents. Bioorg Med Chem. 2015;23:5144–50.CrossRef Meyersa MJ, Andersona EJ, McNitta SA, Krenninga TM, Singha M, Xub J, et al. Evaluation of spiropiperidine hydantoins as a novel class of antimalarial agents. Bioorg Med Chem. 2015;23:5144–50.CrossRef
Metadata
Title
Potent antiplasmodial extracts and fractions from Terminalia mantaly and Terminalia superba
Authors
Cedric D. J. Mbouna
Rufin M. T. Kouipou
Rodrigue Keumoe
Lauve R. Y. Tchokouaha
Patrick V. T. Fokou
Brice M. T. Tali
Dinkar Sahal
Fabrice F. Boyom
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2298-1

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.