Skip to main content
Top
Published in: BMC Surgery 1/2022

Open Access 01-12-2022 | Postoperative Pain Management | Study protocol

Optimal postoperative pain management after VATS lung resection by thoracic epidural analgesia, continuous paravertebral block or single-shot intercostal nerve block (OPtriAL): study protocol of a three-arm multicentre randomised controlled trial

Authors: L. N. Spaans, M. G. W. Dijkgraaf, P. Meijer, J. Mourisse, R. A. Bouwman, A. F. T. M. Verhagen, F. J. C. van den Broek, OPtriAL study group

Published in: BMC Surgery | Issue 1/2022

Login to get access

Abstract

Background

Adequate pain control after video-assisted thoracoscopic surgery (VATS) for lung resection is important to improve postoperative mobilisation, recovery, and to prevent pulmonary complications. So far, no consensus exists on optimal postoperative pain management after VATS anatomic lung resection. Thoracic epidural analgesia (TEA) is the reference standard for postoperative pain management following VATS. Although the analgesic effect of TEA is clear, it is associated with patient immobilisation, bladder dysfunction and hypotension which may result in delayed recovery and longer hospitalisation. These disadvantages of TEA initiated the development of unilateral regional techniques for pain management. The most frequently used techniques are continuous paravertebral block (PVB) and single-shot intercostal nerve block (ICNB). We hypothesize that using either PVB or ICNB is non-inferior to TEA regarding postoperative pain and superior regarding quality of recovery (QoR). Signifying faster postoperative mobilisation, reduced morbidity and shorter hospitalisation, these techniques may therefore reduce health care costs and improve patient satisfaction.

Methods

This multi-centre randomised study is a three-arm clinical trial comparing PVB, ICNB and TEA in a 1:1:1 ratio for pain (non-inferiority) and QoR (superiority) in 450 adult patients undergoing VATS anatomic lung resection. Patients will not be eligible for inclusion in case of contraindications for TEA, PVB or ICNB, chronic opioid use or if the lung surgeon estimates a high probability that the operation will be performed by thoracotomy. Primary outcomes: (1) the proportion of pain scores ≥ 4 as assessed by the numerical rating scale (NRS) measured during postoperative days (POD) 0–2; and (2) the QoR measured with the QoR-15 questionnaire on POD 1 and 2. Secondary outcome measures are cumulative use of opioids and analgesics, postoperative complications, hospitalisation, patient satisfaction and degree of mobility.

Discussion

The results of this trial will impact international guidelines with respect to perioperative care optimization after anatomic lung resection performed through VATS, and will determine the most cost-effective pain strategy and may reduce variability in postoperative pain management.
Trial registration The trial is registered at the Netherlands Trial Register (NTR) on February 1st, 2021 (NL9243). The NTR is no longer available since June 24th, 2022 and therefore a revised protocol has been registered at ClinicalTrials.gov on August 5th, 2022 (NCT05491239). Protocol version: version 3 (date 06-05-2022), ethical approval through an amendment (see ethical proof in the Study protocol proof).
Appendix
Available only for authorised users
Literature
2.
go back to reference Batchelor TJP, Rasburn NJ, Abdelnour-Berchtold E, Brunelli A, Cerfolio RJ, et al. Guidelines for enhanced recovery after lung surgery: recommendations of the Enhanced Recovery After Surgery (ERASVR) Society and the European Society of Thoracic Surgeons (ESTS). Eur J Cardio-Thoracic Surg. 2019;55:91–115.CrossRef Batchelor TJP, Rasburn NJ, Abdelnour-Berchtold E, Brunelli A, Cerfolio RJ, et al. Guidelines for enhanced recovery after lung surgery: recommendations of the Enhanced Recovery After Surgery (ERASVR) Society and the European Society of Thoracic Surgeons (ESTS). Eur J Cardio-Thoracic Surg. 2019;55:91–115.CrossRef
3.
go back to reference Spaans LN, Bousema JE, van den Broek FJC. Variation in postoperative pain management after lung surgery in the Netherlands: a survey of Dutch thoracic surgeons. Br J Anaesth. 2022;128(3):e222–5.CrossRef Spaans LN, Bousema JE, van den Broek FJC. Variation in postoperative pain management after lung surgery in the Netherlands: a survey of Dutch thoracic surgeons. Br J Anaesth. 2022;128(3):e222–5.CrossRef
4.
go back to reference Hermanides J, Hollmann MW, Stevens MF, Lirk P. Failed epidural: causes and management. Br J Anaesth. 2012;109(2):144–54.CrossRef Hermanides J, Hollmann MW, Stevens MF, Lirk P. Failed epidural: causes and management. Br J Anaesth. 2012;109(2):144–54.CrossRef
5.
go back to reference Ventham NT, Hughes M, O’Neill S, Johns N, Brady RR, Wigmore SJ. Systematic review and meta-analysis of continuous local anaesthetic wound infiltration versus epidural analgesia for postoperative pain following abdominal surgery. Br J Surg. 2013;100:1280–9.CrossRef Ventham NT, Hughes M, O’Neill S, Johns N, Brady RR, Wigmore SJ. Systematic review and meta-analysis of continuous local anaesthetic wound infiltration versus epidural analgesia for postoperative pain following abdominal surgery. Br J Surg. 2013;100:1280–9.CrossRef
6.
go back to reference Ganapathy S, Sondekoppam RV, Terlecki M, Brookes J, Das Adhikary S, Subramanian L. Comparison of efficacy and safety of lateral-to-medial continuous transversus abdominis plane block with thoracic epidural analgesia in patients undergoing abdominal surgery: a randomised, open-label feasibility study. Eur J Anaesthesiol. 2015;32:797–804.CrossRef Ganapathy S, Sondekoppam RV, Terlecki M, Brookes J, Das Adhikary S, Subramanian L. Comparison of efficacy and safety of lateral-to-medial continuous transversus abdominis plane block with thoracic epidural analgesia in patients undergoing abdominal surgery: a randomised, open-label feasibility study. Eur J Anaesthesiol. 2015;32:797–804.CrossRef
7.
go back to reference Clemente A, Carli F. The physiological effects of thoracic epidural anesthesia and analgesia on the cardiovascular, respiratory and gastrointestinal systems. Minerva Anestesiol. 2008;74:549–63.PubMed Clemente A, Carli F. The physiological effects of thoracic epidural anesthesia and analgesia on the cardiovascular, respiratory and gastrointestinal systems. Minerva Anestesiol. 2008;74:549–63.PubMed
8.
go back to reference Umari M, Carpanese V, Moro V, Baldo G, Addesa S, et al. Postoperative analgesia after pulmonary resection with a focus on video-assisted thoracoscopic surgery. Eur J Cardio-Thoracic Surg. 2017; 00: 1–7. Umari M, Carpanese V, Moro V, Baldo G, Addesa S, et al. Postoperative analgesia after pulmonary resection with a focus on video-assisted thoracoscopic surgery. Eur J Cardio-Thoracic Surg. 2017; 00: 1–7.
9.
go back to reference Bingham AE, Fu R, Horn J-L, Abrahams MS. Continuous peripheral nerve block compared with single-injection peripheral nerve block: a systematic review and meta-analysis of randomized controlled trials. Reg Anesth Pain Med. 2012;37(6):583–94.CrossRef Bingham AE, Fu R, Horn J-L, Abrahams MS. Continuous peripheral nerve block compared with single-injection peripheral nerve block: a systematic review and meta-analysis of randomized controlled trials. Reg Anesth Pain Med. 2012;37(6):583–94.CrossRef
10.
go back to reference Medina M, Foiles SR, Francois M, Asche CV, Ren J. Comparison of cost and outcomes in patients receiving thoracic epidural versus liposomal bupivacaine for video-assisted thoracoscopic pulmonary resection. Am J Surg. 2019;217:520–4.CrossRef Medina M, Foiles SR, Francois M, Asche CV, Ren J. Comparison of cost and outcomes in patients receiving thoracic epidural versus liposomal bupivacaine for video-assisted thoracoscopic pulmonary resection. Am J Surg. 2019;217:520–4.CrossRef
11.
go back to reference Umari M, Falini S, Segat M, Zuliani M, Crisman M. Anesthesia and fast-track in video-assisted thoracic surgery (VATS): from evidence to practice. J Thorac Dis. 2018;10(Suppl 4):S542–54.CrossRef Umari M, Falini S, Segat M, Zuliani M, Crisman M. Anesthesia and fast-track in video-assisted thoracic surgery (VATS): from evidence to practice. J Thorac Dis. 2018;10(Suppl 4):S542–54.CrossRef
12.
go back to reference Kiasari AZ, Babaei A, Alipour A, Motevalli S, Baradari AG. Comparison of hemodynamic changes in unilateral spinal anesthesia versus epidural anesthesia below the t10 sensory level in unilateral surgeries: a double-blind randomized clinical trial. Med Arch. 2017;71(4):274–9.CrossRef Kiasari AZ, Babaei A, Alipour A, Motevalli S, Baradari AG. Comparison of hemodynamic changes in unilateral spinal anesthesia versus epidural anesthesia below the t10 sensory level in unilateral surgeries: a double-blind randomized clinical trial. Med Arch. 2017;71(4):274–9.CrossRef
13.
go back to reference Feray S, Lubach J, Joshi GP, Bonnet F, Van de Velde M, PROSPECT Working Group *of the European Society of Regional Anaesthesia and Pain Therapy. PROSPECT guidelines for video-assisted thoracoscopic surgery: a systematic review and procedure-specific postoperative pain management recommendations. Anaesthesia. 2022;77(3):311–25.CrossRef Feray S, Lubach J, Joshi GP, Bonnet F, Van de Velde M, PROSPECT Working Group *of the European Society of Regional Anaesthesia and Pain Therapy. PROSPECT guidelines for video-assisted thoracoscopic surgery: a systematic review and procedure-specific postoperative pain management recommendations. Anaesthesia. 2022;77(3):311–25.CrossRef
14.
go back to reference Chow TKF. PROSPECT guidelines no longer recommend thoracic epidural analgesia for video-assisted thoracoscopic surgery. Anaesthesia. 2022;77(8):937.CrossRef Chow TKF. PROSPECT guidelines no longer recommend thoracic epidural analgesia for video-assisted thoracoscopic surgery. Anaesthesia. 2022;77(8):937.CrossRef
15.
go back to reference Thompson C, French DG, Costache I. Pain management within an enhanced recovery program after thoracic surgery. J Thorac Dis. 2018;10(Suppl 32):S3773–80.CrossRef Thompson C, French DG, Costache I. Pain management within an enhanced recovery program after thoracic surgery. J Thorac Dis. 2018;10(Suppl 32):S3773–80.CrossRef
16.
go back to reference Herrera F, Wong J, Chung F. A Systematic review of postoperative recovery outcomes measurements after ambulatory surgery. Anesth Analg. 2007;105:63–9.CrossRef Herrera F, Wong J, Chung F. A Systematic review of postoperative recovery outcomes measurements after ambulatory surgery. Anesth Analg. 2007;105:63–9.CrossRef
17.
go back to reference Myles PS, Reeves MDS, Anderson H, Weeks AM. Measurement of quality of recovery in 5672 patients after anaesthesia and surgery. Anaesth Intensive Care. 2000;28:276–80.CrossRef Myles PS, Reeves MDS, Anderson H, Weeks AM. Measurement of quality of recovery in 5672 patients after anaesthesia and surgery. Anaesth Intensive Care. 2000;28:276–80.CrossRef
18.
go back to reference Kim DH, Oh YJ, Lee JG, Ha D, Chang YJ, et al. Efficacy of ultrasound-guided serratus plane block on postoperative quality of recovery and analgesia after video-assisted thoracic surgery: a randomized, triple-blind, placebo-controlled study. Anesth Analg. 2018;126(4):1353–61.CrossRef Kim DH, Oh YJ, Lee JG, Ha D, Chang YJ, et al. Efficacy of ultrasound-guided serratus plane block on postoperative quality of recovery and analgesia after video-assisted thoracic surgery: a randomized, triple-blind, placebo-controlled study. Anesth Analg. 2018;126(4):1353–61.CrossRef
19.
go back to reference Lee SH, Lee CY, Lee JG, Kim N, Lee HM, Oh YJ. Intraoperative dexmedetomidine improves the quality of recovery and postoperative pulmonary function in patients undergoing video-assisted thoracoscopic surgery a CONSORT-prospective, randomized, controlled trial. Medicine. 2016;95(7):e2854.CrossRef Lee SH, Lee CY, Lee JG, Kim N, Lee HM, Oh YJ. Intraoperative dexmedetomidine improves the quality of recovery and postoperative pulmonary function in patients undergoing video-assisted thoracoscopic surgery a CONSORT-prospective, randomized, controlled trial. Medicine. 2016;95(7):e2854.CrossRef
20.
go back to reference Stark PA, Myles PS, Burke JA. Development and psychometric evaluation of a postoperative quality of recovery score. Anesthesiology. 2013;118:1332–40.CrossRef Stark PA, Myles PS, Burke JA. Development and psychometric evaluation of a postoperative quality of recovery score. Anesthesiology. 2013;118:1332–40.CrossRef
21.
go back to reference Rizzi A, Raveglia F, Scarci M, Cioffi U, Baisi A. The best strategy to control pain after thoracic surgery: multimodal strategy against pain. Video-assist Thorac Surg. 2019;4:26.CrossRef Rizzi A, Raveglia F, Scarci M, Cioffi U, Baisi A. The best strategy to control pain after thoracic surgery: multimodal strategy against pain. Video-assist Thorac Surg. 2019;4:26.CrossRef
22.
go back to reference Gornall BF, Myles PS, Smith CL, Burke JA, Leslie K, et al. Measurement of quality of recovery using the QoR-40: a quantitative systematic review. Br J Anaesth. 2013;111(2):161–9.CrossRef Gornall BF, Myles PS, Smith CL, Burke JA, Leslie K, et al. Measurement of quality of recovery using the QoR-40: a quantitative systematic review. Br J Anaesth. 2013;111(2):161–9.CrossRef
23.
go back to reference Kleif J, Waage J, Christensen KB, Gogenur I. Systematic review of the QoR-15 score, a patient- reported outcome measure measuring quality of recovery after surgery and anaesthesia. Br J Anaesth. 2018;120(1):28–36.CrossRef Kleif J, Waage J, Christensen KB, Gogenur I. Systematic review of the QoR-15 score, a patient- reported outcome measure measuring quality of recovery after surgery and anaesthesia. Br J Anaesth. 2018;120(1):28–36.CrossRef
24.
go back to reference Myles PS. Measuring quality of recovery in perioperative clinical trials. Curr Opin Anesthesiol. 2018;31:396–401.CrossRef Myles PS. Measuring quality of recovery in perioperative clinical trials. Curr Opin Anesthesiol. 2018;31:396–401.CrossRef
25.
go back to reference Bousema JE, Dias EM, Hagen SM, Govaert B, Meijer P, et al. Subpleural multilevel intercostal continuous analgesia after thoracoscopic pulmonary resection: a pilot study. J Cardiothorac Surg. 2019;14:179.CrossRef Bousema JE, Dias EM, Hagen SM, Govaert B, Meijer P, et al. Subpleural multilevel intercostal continuous analgesia after thoracoscopic pulmonary resection: a pilot study. J Cardiothorac Surg. 2019;14:179.CrossRef
26.
go back to reference Dunnett CW. A multiple comparison procedure for comparing several treatments with a control. JASA. 1995;50:1096–121.CrossRef Dunnett CW. A multiple comparison procedure for comparing several treatments with a control. JASA. 1995;50:1096–121.CrossRef
27.
go back to reference Myles PS, Myles DB, Galagher W, Chew C, MacDonald N. Minimal clinically important difference for three quality of recovery scales. Anesthesiology. 2016;125:39–45.CrossRef Myles PS, Myles DB, Galagher W, Chew C, MacDonald N. Minimal clinically important difference for three quality of recovery scales. Anesthesiology. 2016;125:39–45.CrossRef
Metadata
Title
Optimal postoperative pain management after VATS lung resection by thoracic epidural analgesia, continuous paravertebral block or single-shot intercostal nerve block (OPtriAL): study protocol of a three-arm multicentre randomised controlled trial
Authors
L. N. Spaans
M. G. W. Dijkgraaf
P. Meijer
J. Mourisse
R. A. Bouwman
A. F. T. M. Verhagen
F. J. C. van den Broek
OPtriAL study group
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Surgery / Issue 1/2022
Electronic ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-022-01765-y

Other articles of this Issue 1/2022

BMC Surgery 1/2022 Go to the issue