Skip to main content
Top
Published in: BMC Surgery 1/2022

Open Access 01-12-2022 | Research

Posterior atlantoaxial internal fixation using Harms technique assisted by 3D-based navigation robot for treatment of atlantoaxial instability

Authors: Zhao Lang, Xiaoguang Han, Mingxing Fan, Yajun Liu, Da He, Wei Tian

Published in: BMC Surgery | Issue 1/2022

Login to get access

Abstract

Background

To evaluate the accuracy of screw placement using the TiRobot surgical robot in the Harms procedure and to assess the clinical outcomes of this technique.

Methods

This retrospective study included 21 patients with atlantoaxial instability treated by posterior atlantoaxial internal fixation (Harms procedure) using the TiRobot surgical robot between March 2016 and June 2021. The precision of screw placement, perioperative parameters and clinical outcomes were recorded. Screw placement was assessed based on intraoperative guiding pin accuracy measurements on intraoperative C-arm cone-beam computed tomography (CT) images using overlay technology and the incidence of screw encroachment identified on CT images.

Results

Among the 21 patients, the mean age was 44.8 years, and the causes of atlantoaxial instability were os odontoideum (n = 11), rheumatoid arthritis (n = 2), unknown pathogenesis (n = 3), and type II odontoid fracture (n = 5). A total of 82 screws were inserted with robotic assistance. From intraoperative guiding pin accuracy measurements, the average translational and angular deviations were 1.52 ± 0.35 mm (range 1.14–2.25 mm) and 2.25° ± 0.45° (range 1.73°–3.20º), respectively. Screw placement was graded as A for 80.5% of screws, B for 15.9%, and C for 3.7%. No complications related to screw misplacement were observed. After the 1-year follow-up, all patients with a neurological deficit experienced neurological improvement based on Nurick Myelopathy Scale scores, and all patients with preoperative neck pain reported improvement based on Visual Analog Scale scores.

Conclusions

Posterior atlantoaxial internal fixation using the Harms technique assisted by a 3D-based navigation robot is safe, accurate, and effective for treating atlantoaxial instability.
Literature
1.
go back to reference Panda S, Ravishankar S, Nagaraja D. Bilateral vertebral artery dissection caused by atlantoaxial dislocation. J Assoc Physicians India. 2010;58:187–9.PubMed Panda S, Ravishankar S, Nagaraja D. Bilateral vertebral artery dissection caused by atlantoaxial dislocation. J Assoc Physicians India. 2010;58:187–9.PubMed
2.
go back to reference Yin Q, Ai F, Zhang K, Chang Y, Xia H, Wu Z, et al. Irreducible anterior atlantoaxial dislocation: one-stage treatment with a transoral atlantoaxial reduction plate fixation and fusion. Report of 5 cases and review of the literature. Spine. 2005;30:E375–81.CrossRefPubMed Yin Q, Ai F, Zhang K, Chang Y, Xia H, Wu Z, et al. Irreducible anterior atlantoaxial dislocation: one-stage treatment with a transoral atlantoaxial reduction plate fixation and fusion. Report of 5 cases and review of the literature. Spine. 2005;30:E375–81.CrossRefPubMed
3.
go back to reference Goel A, Laheri V. Plate and screw fixation for atlanto-axial subluxation. Acta Neurochir (Wien). 1994;129:47–53.CrossRef Goel A, Laheri V. Plate and screw fixation for atlanto-axial subluxation. Acta Neurochir (Wien). 1994;129:47–53.CrossRef
4.
go back to reference Harms J, Melcher RP. Posterior C1–C2 fusion with polyaxial screw and rod fixation. Spine. 2001;26:2467–71.CrossRefPubMed Harms J, Melcher RP. Posterior C1–C2 fusion with polyaxial screw and rod fixation. Spine. 2001;26:2467–71.CrossRefPubMed
5.
go back to reference Du JY, Aichmair A, Kueper J, Wright T, Lebl DR. Biomechanical analysis of screw constructs for atlantoaxial fixation in cadavers: a systematic review and meta-analysis. J Neurosurg Spine. 2015;22:151–61.CrossRefPubMed Du JY, Aichmair A, Kueper J, Wright T, Lebl DR. Biomechanical analysis of screw constructs for atlantoaxial fixation in cadavers: a systematic review and meta-analysis. J Neurosurg Spine. 2015;22:151–61.CrossRefPubMed
6.
go back to reference Derman PB, Lampe LP, Lyman S, Kueper J, Pan TJ, Girardi FP, et al. Atlantoaxial fusion: sixteen years of epidemiology, indications, and complications in New York State. Spine. 2016;41:1586–92.CrossRefPubMed Derman PB, Lampe LP, Lyman S, Kueper J, Pan TJ, Girardi FP, et al. Atlantoaxial fusion: sixteen years of epidemiology, indications, and complications in New York State. Spine. 2016;41:1586–92.CrossRefPubMed
7.
go back to reference Yang YL, Zhou DS, He JL. Comparison of isocentric C-arm 3-dimensional navigation and conventional fluoroscopy for C1 lateral mass and C2 pedicle screw placement for atlantoaxial instability. J Spinal Disord Tech. 2013;26:127–34.CrossRefPubMed Yang YL, Zhou DS, He JL. Comparison of isocentric C-arm 3-dimensional navigation and conventional fluoroscopy for C1 lateral mass and C2 pedicle screw placement for atlantoaxial instability. J Spinal Disord Tech. 2013;26:127–34.CrossRefPubMed
8.
go back to reference Peng YN, Tsai LC, Hsu HC, Kao CH. Accuracy of robot-assisted versus conventional freehand pedicle screw placement in spine surgery: a systematic review and meta-analysis of randomized controlled trials. Ann Transl Med. 2020;8:824.CrossRefPubMedPubMedCentral Peng YN, Tsai LC, Hsu HC, Kao CH. Accuracy of robot-assisted versus conventional freehand pedicle screw placement in spine surgery: a systematic review and meta-analysis of randomized controlled trials. Ann Transl Med. 2020;8:824.CrossRefPubMedPubMedCentral
9.
go back to reference Fan Y, Du J, Zhang J, Liu S, Xue X, Huang Y, et al. Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery. Med Sci Monit. 2017;23:5960–8.CrossRefPubMedPubMedCentral Fan Y, Du J, Zhang J, Liu S, Xue X, Huang Y, et al. Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery. Med Sci Monit. 2017;23:5960–8.CrossRefPubMedPubMedCentral
10.
go back to reference Zhang Q, Han XG, Xu YF, Fan MX, Zhao JW, Liu YJ, et al. Robotic navigation during spine surgery. Expert Rev Med Devices. 2020;17:27–32.CrossRefPubMed Zhang Q, Han XG, Xu YF, Fan MX, Zhao JW, Liu YJ, et al. Robotic navigation during spine surgery. Expert Rev Med Devices. 2020;17:27–32.CrossRefPubMed
11.
go back to reference Tian W. Robot-assisted posterior C1–2 transarticular screw fixation for atlantoaxial instability: a case report. Spine. 2016;41(Suppl 19):B2-b5.CrossRefPubMed Tian W. Robot-assisted posterior C1–2 transarticular screw fixation for atlantoaxial instability: a case report. Spine. 2016;41(Suppl 19):B2-b5.CrossRefPubMed
12.
13.
go back to reference Tian W, Liu YJ, Liu B, He D, Wu JY, Han XG, et al. Guideline for thoracolumbar pedicle screw placement assisted by orthopaedic surgical robot. Orthop Surg. 2019;11:153–9.CrossRefPubMedPubMedCentral Tian W, Liu YJ, Liu B, He D, Wu JY, Han XG, et al. Guideline for thoracolumbar pedicle screw placement assisted by orthopaedic surgical robot. Orthop Surg. 2019;11:153–9.CrossRefPubMedPubMedCentral
14.
go back to reference Wang B, Cao J, Chang J, Yin G, Cai W, Li Q, et al. Effectiveness of Tirobot-assisted vertebroplasty in treating thoracolumbar osteoporotic compression fracture. J Orthop Surg Res. 2021;16:65.CrossRefPubMedPubMedCentral Wang B, Cao J, Chang J, Yin G, Cai W, Li Q, et al. Effectiveness of Tirobot-assisted vertebroplasty in treating thoracolumbar osteoporotic compression fracture. J Orthop Surg Res. 2021;16:65.CrossRefPubMedPubMedCentral
15.
go back to reference Liu ZJ, Hu YC, Tian W, Jin X, Qi HT, Sun YX, et al. Robot-aided minimally invasive lumbopelvic fixation in treatment of traumatic spinopelvic dissociation. Orthop Surg. 2021;13:563–72.CrossRefPubMedPubMedCentral Liu ZJ, Hu YC, Tian W, Jin X, Qi HT, Sun YX, et al. Robot-aided minimally invasive lumbopelvic fixation in treatment of traumatic spinopelvic dissociation. Orthop Surg. 2021;13:563–72.CrossRefPubMedPubMedCentral
17.
go back to reference Murphy TM, McEvoy L, Bolger C. Surgical considerations of rheumatoid disease involving the craniocervical junction and atlantoaxial vertebrae. Rheumatoid Arthritis-Etiology, Consequences and Co-Morbidities. 2012:275–82. Murphy TM, McEvoy L, Bolger C. Surgical considerations of rheumatoid disease involving the craniocervical junction and atlantoaxial vertebrae. Rheumatoid Arthritis-Etiology, Consequences and Co-Morbidities. 2012:275–82.
18.
go back to reference Heuer GG, Hardesty DA, Bhowmick DA, Bailey R, Magge SN, Storm PB. Treatment of pediatric atlantoaxial instability with traditional and modified Goel-Harms fusion constructs. Eur Spine J. 2009;18:884–92.CrossRefPubMedPubMedCentral Heuer GG, Hardesty DA, Bhowmick DA, Bailey R, Magge SN, Storm PB. Treatment of pediatric atlantoaxial instability with traditional and modified Goel-Harms fusion constructs. Eur Spine J. 2009;18:884–92.CrossRefPubMedPubMedCentral
19.
go back to reference Brockmeyer DL, York JE, Apfelbaum RI. Anatomical suitability of C1–2 transarticular screw placement in pediatric patients. J Neurosurg. 2000;92:7–11.PubMed Brockmeyer DL, York JE, Apfelbaum RI. Anatomical suitability of C1–2 transarticular screw placement in pediatric patients. J Neurosurg. 2000;92:7–11.PubMed
20.
go back to reference Hong JT, Lee SW, Son BC, Sung JH, Yang SH, Kim IS, et al. Analysis of anatomical variations of bone and vascular structures around the posterior atlantal arch using three-dimensional computed tomography angiography. J Neurosurg Spine. 2008;8:230–6.CrossRefPubMed Hong JT, Lee SW, Son BC, Sung JH, Yang SH, Kim IS, et al. Analysis of anatomical variations of bone and vascular structures around the posterior atlantal arch using three-dimensional computed tomography angiography. J Neurosurg Spine. 2008;8:230–6.CrossRefPubMed
21.
go back to reference Yeom JS, Buchowski JM, Park KW, Chang BS, Lee CK, Riew KD. Undetected vertebral artery groove and foramen violations during C1 lateral mass and C2 pedicle screw placement. Spine. 2008;33:E942–9.CrossRefPubMed Yeom JS, Buchowski JM, Park KW, Chang BS, Lee CK, Riew KD. Undetected vertebral artery groove and foramen violations during C1 lateral mass and C2 pedicle screw placement. Spine. 2008;33:E942–9.CrossRefPubMed
22.
go back to reference Elgafy H, Pompo F, Vela R, Elsamaloty HM. Ipsilateral arcuate foramen and high-riding vertebral artery: implication on C1–C2 instrumentation. Spine J. 2014;14:1351–5.CrossRefPubMed Elgafy H, Pompo F, Vela R, Elsamaloty HM. Ipsilateral arcuate foramen and high-riding vertebral artery: implication on C1–C2 instrumentation. Spine J. 2014;14:1351–5.CrossRefPubMed
23.
go back to reference Fatima N, Massaad E, Hadzipasic M, Shankar GM, Shin JH. Safety and accuracy of robot-assisted placement of pedicle screws compared to conventional free-hand technique: a systematic review and meta-analysis. Spine J. 2021;21:181–92.CrossRefPubMed Fatima N, Massaad E, Hadzipasic M, Shankar GM, Shin JH. Safety and accuracy of robot-assisted placement of pedicle screws compared to conventional free-hand technique: a systematic review and meta-analysis. Spine J. 2021;21:181–92.CrossRefPubMed
24.
go back to reference Zhan J, Xu W, Lin J, Luan J, Hou Y, Wang Y, et al. Accuracy and safety of robot-assisted versus fluoroscopy-guided posterior C1 lateral mass and C2 pedicle screw internal fixation for atlantoaxial dislocation: a preliminary study. Biomed Res Int. 2022;2022:8508113.CrossRefPubMedPubMedCentral Zhan J, Xu W, Lin J, Luan J, Hou Y, Wang Y, et al. Accuracy and safety of robot-assisted versus fluoroscopy-guided posterior C1 lateral mass and C2 pedicle screw internal fixation for atlantoaxial dislocation: a preliminary study. Biomed Res Int. 2022;2022:8508113.CrossRefPubMedPubMedCentral
25.
go back to reference Li Y, Lin J, Wang Y, Luo H, Wang J, Lu S, et al. Comparative study of 3D printed navigation template-assisted atlantoaxial pedicle screws versus free-hand screws for type II odontoid fractures. Eur Spine J. 2021;30:498–506.CrossRefPubMed Li Y, Lin J, Wang Y, Luo H, Wang J, Lu S, et al. Comparative study of 3D printed navigation template-assisted atlantoaxial pedicle screws versus free-hand screws for type II odontoid fractures. Eur Spine J. 2021;30:498–506.CrossRefPubMed
26.
go back to reference Sancipriano V, Penner F, Cofano F, Ajello M, Marengo N, Petrone S, et al. Intraoperative computed tomography for C1–C2 stabilization by goel-harms: analysis of clinical efficacy and a novel classification of screw placement accuracy. World Neurosurg. 2022;158:e19–37.CrossRefPubMed Sancipriano V, Penner F, Cofano F, Ajello M, Marengo N, Petrone S, et al. Intraoperative computed tomography for C1–C2 stabilization by goel-harms: analysis of clinical efficacy and a novel classification of screw placement accuracy. World Neurosurg. 2022;158:e19–37.CrossRefPubMed
27.
go back to reference Li HM, Zhang RJ, Shen CL. Accuracy of pedicle screw placement and clinical outcomes of robot-assisted technique versus conventional freehand technique in spine surgery from nine randomized controlled trials: a meta-analysis. Spine. 2020;45:E111–9.CrossRefPubMed Li HM, Zhang RJ, Shen CL. Accuracy of pedicle screw placement and clinical outcomes of robot-assisted technique versus conventional freehand technique in spine surgery from nine randomized controlled trials: a meta-analysis. Spine. 2020;45:E111–9.CrossRefPubMed
28.
go back to reference van Dijk JD, van den Ende RP, Stramigioli S, Köchling M, Höss N. Clinical pedicle screw accuracy and deviation from planning in robot-guided spine surgery: robot-guided pedicle screw accuracy. Spine. 2015;40:E986–91.CrossRefPubMed van Dijk JD, van den Ende RP, Stramigioli S, Köchling M, Höss N. Clinical pedicle screw accuracy and deviation from planning in robot-guided spine surgery: robot-guided pedicle screw accuracy. Spine. 2015;40:E986–91.CrossRefPubMed
29.
go back to reference Devito DP, Kaplan L, Dietl R, Pfeiffer M, Horne D, Silberstein B, et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine. 2010;35:2109–15.CrossRefPubMed Devito DP, Kaplan L, Dietl R, Pfeiffer M, Horne D, Silberstein B, et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine. 2010;35:2109–15.CrossRefPubMed
30.
go back to reference Jiang B, Karim Ahmed A, Zygourakis CC, Kalb S, Zhu AM, Godzik J, et al. Pedicle screw accuracy assessment in ExcelsiusGPS® robotic spine surgery: evaluation of deviation from pre-planned trajectory. Chin Neurosurg J. 2018;4:23.CrossRefPubMedPubMedCentral Jiang B, Karim Ahmed A, Zygourakis CC, Kalb S, Zhu AM, Godzik J, et al. Pedicle screw accuracy assessment in ExcelsiusGPS® robotic spine surgery: evaluation of deviation from pre-planned trajectory. Chin Neurosurg J. 2018;4:23.CrossRefPubMedPubMedCentral
31.
go back to reference Zhang Q, Fan MX, Han XG, Liu YJ, He D, Liu B, et al. Risk factors of unsatisfactory robot-assisted pedicle screw placement: a case-control study. Neurospine. 2021;18:839–44.CrossRefPubMedPubMedCentral Zhang Q, Fan MX, Han XG, Liu YJ, He D, Liu B, et al. Risk factors of unsatisfactory robot-assisted pedicle screw placement: a case-control study. Neurospine. 2021;18:839–44.CrossRefPubMedPubMedCentral
32.
go back to reference Tian W, Han X, Liu B, Liu Y, Hu Y, Han X, et al. A robot-assisted surgical system using a force-image control method for pedicle screw insertion. PLoS ONE. 2014;9: e86346.CrossRefPubMedPubMedCentral Tian W, Han X, Liu B, Liu Y, Hu Y, Han X, et al. A robot-assisted surgical system using a force-image control method for pedicle screw insertion. PLoS ONE. 2014;9: e86346.CrossRefPubMedPubMedCentral
33.
go back to reference Holly LT, Schwender JD, Rouben DP, Foley KT. Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus. 2006;20:E6.CrossRefPubMed Holly LT, Schwender JD, Rouben DP, Foley KT. Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus. 2006;20:E6.CrossRefPubMed
34.
go back to reference Meyer M, Farah K, Graillon T, Dufour H, Blondel B, Fuentes S. Minimally invasive percutaneous C1–C2 fixation using an intraoperative three-dimensional imaging-based navigation system for management of odontoid fractures. World Neurosurg. 2020;137:266–71.CrossRefPubMed Meyer M, Farah K, Graillon T, Dufour H, Blondel B, Fuentes S. Minimally invasive percutaneous C1–C2 fixation using an intraoperative three-dimensional imaging-based navigation system for management of odontoid fractures. World Neurosurg. 2020;137:266–71.CrossRefPubMed
35.
go back to reference Bodon G, Patonay L, Baksa G, Olerud C. Applied anatomy of a minimally invasive muscle-splitting approach to posterior C1–C2 fusion: an anatomical feasibility study. Surg Radiol Anat. 2014;36:1063–9.CrossRefPubMed Bodon G, Patonay L, Baksa G, Olerud C. Applied anatomy of a minimally invasive muscle-splitting approach to posterior C1–C2 fusion: an anatomical feasibility study. Surg Radiol Anat. 2014;36:1063–9.CrossRefPubMed
36.
go back to reference Holly LT, Isaacs RE, Frempong-Boadu AK. Minimally invasive atlantoaxial fusion. Neurosurgery. 2010;66:193–7.CrossRefPubMed Holly LT, Isaacs RE, Frempong-Boadu AK. Minimally invasive atlantoaxial fusion. Neurosurgery. 2010;66:193–7.CrossRefPubMed
Metadata
Title
Posterior atlantoaxial internal fixation using Harms technique assisted by 3D-based navigation robot for treatment of atlantoaxial instability
Authors
Zhao Lang
Xiaoguang Han
Mingxing Fan
Yajun Liu
Da He
Wei Tian
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Surgery / Issue 1/2022
Electronic ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-022-01826-2

Other articles of this Issue 1/2022

BMC Surgery 1/2022 Go to the issue