Skip to main content
Top
Published in: International Journal of Hematology 4/2009

01-05-2009 | Original Article

Possible involvement of RasGRP4 in leukemogenesis

Authors: Naoko Watanabe-Okochi, Toshihiko Oki, Yukiko Komeno, Naoko Kato, Koichiro Yuji, Ryoichi Ono, Yuka Harada, Hironori Harada, Yasuhide Hayashi, Hideaki Nakajima, Tetsuya Nosaka, Jiro Kitaura, Toshio Kitamura

Published in: International Journal of Hematology | Issue 4/2009

Login to get access

Abstract

It is now conceivable that leukemogenesis requires two types of mutations, class I and class II mutations. We previously established a mouse bone marrow-derived HF6, an IL-3-dependent cell line, that was immortalized by a class II mutation MLL/SEPT6 and can be fully transformed by class I mutations such as FLT3 mutants. To understand the molecular mechanism of leukemogenesis, particularly progression of myelodysplastic syndrome (MDS) to acute leukemia, we made cDNA libraries from the samples of patients and screened them by expression-cloning to detect class I mutations that render HF6 cells factor-independent. We identified RasGRP4, an activator of Ras, as a candidate for class I mutation from three of six patients (MDS/MPD = 1, MDS-RA = 1, MDS/AML = 2, CMMoL/AML = 1 and AML-M2 = 1). To investigate the potential roles of RasGRP4 in leukemogenesis, we tested its in vivo effect in a mouse bone marrow transplantation (BMT) model. C57BL/6J mice transplanted with RasGRP4-transduced primary bone marrow cells died of T cell leukemia, myeloid leukemia, or myeloid leukemia with T cell leukemia. To further examine if the combination of class I and class II mutations accelerated leukemic transformation, we performed a mouse BMT model in which both AML1 mutant (S291fsX300) and RasGRP4 were transduced into bone marrow cells. The double transduction led to early onset of T cell leukemia but not of AML in the transplanted mice when compared to transduction of RasGRP4 alone. Thus, we have identified RasGRP4 as a gene potentially involved in leukemogenesis and suggest that RasGRP4 cooperates with AML1 mutations in T cell leukemogenesis as a class I mutation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Beghini A, Peterlongo P, Ripamonti CB, Larizza L, Cairoli R, Morra E, et al. C-kit mutations in core binding factor leukemias. Blood. 2000;95:726–7.PubMed Beghini A, Peterlongo P, Ripamonti CB, Larizza L, Cairoli R, Morra E, et al. C-kit mutations in core binding factor leukemias. Blood. 2000;95:726–7.PubMed
3.
go back to reference Shimada A, Taki T, Tabuchi K, Tawa A, Horibe K, Tsuchida M, et al. KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood. 2006;107:1806–9. doi:10.1182/blood-2005-08-3408.CrossRefPubMed Shimada A, Taki T, Tabuchi K, Tawa A, Horibe K, Tsuchida M, et al. KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood. 2006;107:1806–9. doi:10.​1182/​blood-2005-08-3408.CrossRefPubMed
6.
go back to reference Boissel N, Leroy H, Brethon B, Philippe N, de Botton S, Auvrignon A, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia. 2006;20:965–70. doi:10.1038/sj.leu.2404188.CrossRefPubMed Boissel N, Leroy H, Brethon B, Philippe N, de Botton S, Auvrignon A, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia. 2006;20:965–70. doi:10.​1038/​sj.​leu.​2404188.CrossRefPubMed
7.
go back to reference Beghini A, Ripamonti CB, Cairoli R, Cazzaniga G, Colapietro P, Elice F, et al. KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica. 2004;89:920–5.PubMed Beghini A, Ripamonti CB, Cairoli R, Cazzaniga G, Colapietro P, Elice F, et al. KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica. 2004;89:920–5.PubMed
8.
go back to reference Christiansen DH, Andersen MK, Desta F, Pedersen-Bjergaard J. Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2005;19:2232–40. doi:10.1038/sj.leu.2404009.CrossRefPubMed Christiansen DH, Andersen MK, Desta F, Pedersen-Bjergaard J. Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2005;19:2232–40. doi:10.​1038/​sj.​leu.​2404009.CrossRefPubMed
9.
10.
go back to reference Matsuno N, Osato M, Yamashita N, Yanagida M, Nanri T, Fukushima T, et al. Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype. Leukemia. 2003;17:2492–9. doi:10.1038/sj.leu.2403160.CrossRefPubMed Matsuno N, Osato M, Yamashita N, Yanagida M, Nanri T, Fukushima T, et al. Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype. Leukemia. 2003;17:2492–9. doi:10.​1038/​sj.​leu.​2403160.CrossRefPubMed
11.
go back to reference Roumier C, Eclache V, Imbert M, Davi F, MacIntyre E, Garand R, et al. M0 AML, clinical and biologic features of the disease, including AML1 gene mutations: a report of 59 cases by the Groupe Français d’Hématologie Cellulaire (GFHC) and the Groupe Français de Cytogénétique Hématologique (GFCH). Blood. 2003;101:1277–83. doi:10.1182/blood-2002-05-1474.CrossRefPubMed Roumier C, Eclache V, Imbert M, Davi F, MacIntyre E, Garand R, et al. M0 AML, clinical and biologic features of the disease, including AML1 gene mutations: a report of 59 cases by the Groupe Français d’Hématologie Cellulaire (GFHC) and the Groupe Français de Cytogénétique Hématologique (GFCH). Blood. 2003;101:1277–83. doi:10.​1182/​blood-2002-05-1474.CrossRefPubMed
12.
go back to reference Callens C, Chevret S, Cayuela JM, Cassinat B, Raffoux E, de Botton S, et al. Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): a retrospective study from the European APL Group. Leukemia. 2005;19:1153–60. doi:10.1038/sj.leu.2403790.CrossRefPubMed Callens C, Chevret S, Cayuela JM, Cassinat B, Raffoux E, de Botton S, et al. Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): a retrospective study from the European APL Group. Leukemia. 2005;19:1153–60. doi:10.​1038/​sj.​leu.​2403790.CrossRefPubMed
13.
go back to reference Gale RE, Hills R, Pizzey AR, Kottaridis PD, Swirsky D, Gilkes AF, et al. Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood. 2005;106:3768–76. doi:10.1182/blood-2005-04-1746.CrossRefPubMed Gale RE, Hills R, Pizzey AR, Kottaridis PD, Swirsky D, Gilkes AF, et al. Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood. 2005;106:3768–76. doi:10.​1182/​blood-2005-04-1746.CrossRefPubMed
14.
15.
go back to reference Noguera NI, Breccia M, Divona M, Diverio D, Costa V, De Santis S, et al. Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia. 2002;16:2185–9. doi:10.1038/sj.leu.2402723.CrossRefPubMed Noguera NI, Breccia M, Divona M, Diverio D, Costa V, De Santis S, et al. Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia. 2002;16:2185–9. doi:10.​1038/​sj.​leu.​2402723.CrossRefPubMed
16.
go back to reference Kainz B, Heintel D, Marculescu R, Schwarzinger I, Sperr W, Le T, et al. Variable prognostic value of FLT3 internal tandem duplications in patients with de novo AML and a normal karyotype, t(15;17), t(8;21) or inv(16). Hematol J. 2002;3:283–9. doi:10.1038/sj.thj.6200196.CrossRefPubMed Kainz B, Heintel D, Marculescu R, Schwarzinger I, Sperr W, Le T, et al. Variable prognostic value of FLT3 internal tandem duplications in patients with de novo AML and a normal karyotype, t(15;17), t(8;21) or inv(16). Hematol J. 2002;3:283–9. doi:10.​1038/​sj.​thj.​6200196.CrossRefPubMed
17.
go back to reference Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R, et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood. 2004;103:1085–8. doi:10.1182/blood-2003-02-0418.CrossRefPubMed Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R, et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood. 2004;103:1085–8. doi:10.​1182/​blood-2003-02-0418.CrossRefPubMed
18.
go back to reference Liang DC, Shih LY, Fu JF, Li HY, Wang HI, Hung IJ, et al. K-Ras mutations and N-Ras mutations in childhood acute leukemias with or without mixed-lineage leukemia gene rearrangements. Cancer. 2006;106:950–6. doi:10.1002/cncr.21687.CrossRefPubMed Liang DC, Shih LY, Fu JF, Li HY, Wang HI, Hung IJ, et al. K-Ras mutations and N-Ras mutations in childhood acute leukemias with or without mixed-lineage leukemia gene rearrangements. Cancer. 2006;106:950–6. doi:10.​1002/​cncr.​21687.CrossRefPubMed
19.
go back to reference Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111:2776–84. doi:10.1182/blood-2007-08-109090.CrossRefPubMed Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111:2776–84. doi:10.​1182/​blood-2007-08-109090.CrossRefPubMed
20.
go back to reference Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999;93:3074–80.PubMed Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999;93:3074–80.PubMed
23.
go back to reference Warner JK, Wang JC, Takenaka K, Doulatov S, McKenzie JL, Harrington L, et al. Direct evidence for cooperating genetic events in the leukemic transformation of normal human hematopoietic cells. Leukemia. 2005;19:1794–805. doi:10.1038/sj.leu.2403917.CrossRefPubMed Warner JK, Wang JC, Takenaka K, Doulatov S, McKenzie JL, Harrington L, et al. Direct evidence for cooperating genetic events in the leukemic transformation of normal human hematopoietic cells. Leukemia. 2005;19:1794–805. doi:10.​1038/​sj.​leu.​2403917.CrossRefPubMed
27.
go back to reference Ono R, Nakajima H, Ozaki K, Kumagai H, Kawashima T, Taki T, et al. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest. 2005;115:919–29.CrossRefPubMedPubMedCentral Ono R, Nakajima H, Ozaki K, Kumagai H, Kawashima T, Taki T, et al. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest. 2005;115:919–29.CrossRefPubMedPubMedCentral
30.
go back to reference Yang Y, Li L, Wong GW, Krilis SA, Madhusudhan MS, Sali A, et al. RasGRP4, a new mast cell-restricted Ras guanine nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs Identification of defective variants of this signaling protein in asthma, mastocytosis, and mast cell leukemia patients and demonstration of the importance of RasGRP4 in mast cell development and function. J Biol Chem. 2002;277:25756–74. doi:10.1074/jbc.M202575200.CrossRefPubMed Yang Y, Li L, Wong GW, Krilis SA, Madhusudhan MS, Sali A, et al. RasGRP4, a new mast cell-restricted Ras guanine nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs Identification of defective variants of this signaling protein in asthma, mastocytosis, and mast cell leukemia patients and demonstration of the importance of RasGRP4 in mast cell development and function. J Biol Chem. 2002;277:25756–74. doi:10.​1074/​jbc.​M202575200.CrossRefPubMed
32.
go back to reference Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol. 2003;31:1007–14.CrossRefPubMed Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol. 2003;31:1007–14.CrossRefPubMed
33.
go back to reference Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood. 2004;103:2316–24. doi:10.1182/blood-2003-09-3074.CrossRefPubMed Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood. 2004;103:2316–24. doi:10.​1182/​blood-2003-09-3074.CrossRefPubMed
34.
go back to reference Izawa K, Kitaura J, Yamanishi Y, Matsuoka T, Oki T, Shibata F, et al. Functional analysis of activating receptor LMIR4 as a counterpart of inhibitory receptor LMIR3. J Biol Chem. 2007;282:17997–8008. doi:10.1074/jbc.M701100200.CrossRefPubMed Izawa K, Kitaura J, Yamanishi Y, Matsuoka T, Oki T, Shibata F, et al. Functional analysis of activating receptor LMIR4 as a counterpart of inhibitory receptor LMIR3. J Biol Chem. 2007;282:17997–8008. doi:10.​1074/​jbc.​M701100200.CrossRefPubMed
36.
go back to reference Reuss-Borst MA, Bühring HJ, Schmidt H, Müller CA. AML: immunophenotypic heterogeneity and prognostic significance of c-kit expression. Leukemia. 1994;8:258–63.PubMed Reuss-Borst MA, Bühring HJ, Schmidt H, Müller CA. AML: immunophenotypic heterogeneity and prognostic significance of c-kit expression. Leukemia. 1994;8:258–63.PubMed
37.
go back to reference Chinen Y, Taki T, Nishida K, Shimizu D, Okuda T, Yoshida N, et al. Identification of the novel AML1 fusion partner gene, LAF4, a fusion partner of MLL, in childhood T cell acute lymphoblastic leukemia with t(2;21)(q11;q22) by bubble PCR method for cDNA. Oncogene. 2008;27:2249–56. doi:10.1038/sj.onc.1210857.CrossRefPubMed Chinen Y, Taki T, Nishida K, Shimizu D, Okuda T, Yoshida N, et al. Identification of the novel AML1 fusion partner gene, LAF4, a fusion partner of MLL, in childhood T cell acute lymphoblastic leukemia with t(2;21)(q11;q22) by bubble PCR method for cDNA. Oncogene. 2008;27:2249–56. doi:10.​1038/​sj.​onc.​1210857.CrossRefPubMed
38.
go back to reference Mikhail FM, Coignet L, Hatem N, Mourad ZI, Farawela HM, El Kaffash DM, et al. A novel gene, FGA7, is fused to RUNX1/AML1 in a t(4;21)(q28;q22) in a patient with T cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2004;39:110–8. doi:10.1002/gcc.10302.CrossRefPubMed Mikhail FM, Coignet L, Hatem N, Mourad ZI, Farawela HM, El Kaffash DM, et al. A novel gene, FGA7, is fused to RUNX1/AML1 in a t(4;21)(q28;q22) in a patient with T cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2004;39:110–8. doi:10.​1002/​gcc.​10302.CrossRefPubMed
Metadata
Title
Possible involvement of RasGRP4 in leukemogenesis
Authors
Naoko Watanabe-Okochi
Toshihiko Oki
Yukiko Komeno
Naoko Kato
Koichiro Yuji
Ryoichi Ono
Yuka Harada
Hironori Harada
Yasuhide Hayashi
Hideaki Nakajima
Tetsuya Nosaka
Jiro Kitaura
Toshio Kitamura
Publication date
01-05-2009
Publisher
Springer Japan
Published in
International Journal of Hematology / Issue 4/2009
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-009-0299-0

Other articles of this Issue 4/2009

International Journal of Hematology 4/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine